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Supergravity was born in 1976

It has inspired many important developments in theoretical physics over the
past 40 years!
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AdS/CFT

Supersymmetric QFT on curved space



5d N = 8 gauged SO(6) supergravity



Motivation

I Powerful exact results for supersymmetric field theories on curved
manifolds using equivariant localization [Witten], [Nekrasov], [Pestun], ...

I Supersymmetric localization (sometimes) reduces the path integral of a
gauge theory to a finite dimensional matrix integral. Still hard to evaluate
explicitly in general!

I Make progress by taking the planar limit for specific 4d N = 2
(non-conformal) gauge theories. [Russo], [Russo-Zarembo], [Buchel-Russo-Zarembo]

I Evaluation of the partition function of planar SU (N ), N = 2∗ SYM on
S4. An infinite number of quantum phase transitions as a function of
λ ≡ g2

YM N . [Russo-Zarembo]

I Apply gauge/gravity duality to this setup and test holography in a
non-conformal setup.

I Study the dynamics of N = 1 theories holographically. Localization on
S4 has not been successful (so far!) for these theories!
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Synopsis
I N = 1∗ SYM is a theory of an N = 1 vector multiplet and 3 massive

chiral multiplets in the adjoint of the gauge group. It is a massive
deformation of N = 4 SYM. There is a unique supersymmetric
Lagrangian on S4. [Pestun], [Festuccia-Seiberg], [NB-Elvang-Freedman-Pufu]

I The result from localization for N , λ� 1 for N = 2∗ is [Russo-Zarembo]

FN=2∗

S4 = − logZN=2∗

S4 = −N 2

2 (1 + (mR)2) log λ(1 + (mR)2)e2γ+ 1
2

16π2 ,

For N = 1∗ hard to calculate the partition function in the field theory.

I The goal is to calculate FN=2∗

S4 and FN=1∗

S4 holographically.

I Precision test of holography! In AdS5/CFT4 one typically compares
numbers. Here we have a whole function to match.

I Previous results from holography for N = 1∗ and N = 2∗ on R4.
[Freedman-Gubser-Pilch-Warner], [Girardello-Petrini-Porrati-Zaffaroni], [Pilch-Warner],

[Buchel-Peet-Polchinski], [Evans-Johnson-Petrini], [Polchinski-Strassler], ... On S4 the
holographic construction is more involved.
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N = 1∗ SYM theory on S4



N = 1∗ SYM on R4

The field content of N = 4 SYM is

Aµ , X1,2,3,4,5,6 , λ1,2,3,4 .

Organize this into an N = 1 vector multiplet

Aµ , ψ1 ≡ λ4 ,

and 3 chiral multiplets

χj = λj , Zj = 1√
2
(
Xj + iXj+3

)
, j = 1, 2, 3 .

Only SU (3)×U (1)R of the SO(6) R-symmetry is manifest.

The N = 1∗ theory is obtained by turning on (independent) mass terms for the
chiral multiplets.
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N = 1∗ SYM on S4

The theory is no longer conformal so it is not obvious how to put it on S4.

When there is a will there is a way! [Pestun], [Festuccia-Seiberg], ...

LS4
N=1∗ = LS4

N=4

+ 2
R2 tr

(
Z1Z̃1 + Z2Z̃2 + Z3Z̃3

)
+ tr

(
m1m̃1Z1Z̃1 + m2m̃2Z2Z̃2 + m3m̃3Z3Z̃3

)
− 1

2 tr (m1χ1χ1 + m2χ2χ2 + m3χ3χ3 + m̃1χ̃1χ̃1 + m̃2χ̃2χ̃2 + m̃3χ̃3χ̃3)

− 1√
2

tr
[
miε

ijkZiZ̃jZ̃k + m̃iε
ijkZ̃iZjZk

]
+ i

2R tr
(

m1Z 2
1 + m2Z 2

2 + m3Z 2
3 + m̃1Z̃1

2 + m̃2Z̃2
2 + m̃3Z̃3

2
)
.

15 (real) relevant operators in the Lagrangian + 1 complex gaugino vev + 1
complexified gauge coupling. Only 18 of these operators are visible as modes in
IIB supergravity.

For m3 = m̃3 = 0, m1 = m2 ≡ m and m̃1 = m̃2 ≡ m̃ we get the N = 2∗
theory.
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Results from localization for N = 2∗

After supersymmetric localization the path integral for the theory on S4

reduces to a finite dimensional integral over the Coulomb branch moduli. [Pestun]

Russo and Zarembo solved (numerically) this matrix model at large N . They
found an infinite number of (quantum) phase transitions as a function of λ.

The result for N , λ� 1 is

FS4 = − logZ = −N 2

2 (1 + (mR)2) log λ(1 + (mR)2)e2γ+ 1
2

16π2 .

This answer depends on the regularization scheme! (a.k.a. γ cannot be
measured in the lab)

The scheme independent quantity is

d3FS4

d(mR)3 = −2N 2 mR((mR)2 + 3)
((mR)2 + 1)2

This is the unambiguous result one can aim to compute holographically.
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The supergravity dual



Supergravity setup
Use 5d N = 8 SO(6) gauged supergravity to construct the holographic dual.

Why is this justified?
I It is a consistent truncation of IIB supergravity on S5 with fields dual to

the lowest dimension operators in N = 4 SYM. [Lee-Strickland-Constable-Waldram],

[Baguet-Hohm-Samtleben]

I The gravity dual of N = 1∗ and N = 2∗ on R4 was constructed first in
5d. [Girardello-Petrini-Porrati-Zaffaroni], [Pilch-Warner]

The dual of N = 1∗ on S4 is captured by a 5d N = 2 gauged supergravity
with 2 vector and 4 hyper multiplets and a scalar coset

O(1, 1)×O(1, 1)× SO(4, 4)
SO(4)× SO(4) .

This model is a consistent truncation of type IIB supergravity.
There are special cases which allow for an explicit analysis. We fix m̃j = mj

I m1 = m2 and m3 = 0 - on R4 this is the Leigh-Strassler flow.
[Freedman-Gubser-Pilch-Warner] On S4 we need 3 scalars.

I m1 = m2 = m3 - on R4 this is the GPPZ/PS flow.
[Girardello-Petrini-Porrati-Zaffaroni], [Polchinski-Strassler]. On S4 we need 4 scalars.

I m2 = m3 = 0 - on R4 this is the N = 2∗ PW flow. [Pilch-Warner] On S4 we
need 3 scalars.
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The gravity dual of N = 2∗ on S4

The Euclidean Lagrangian is

L = 1
2κ2

[
−R+ 12∂µη∂

µη

η2 + 4 ∂µz∂µz̃
(1− zz̃)2 + V

]
,

V ≡ − 4
L2

(
1
η4 + 2η2 1 + zz̃

1− zz̃ + η8

4
(z − z̃)2

(1− zz̃)2

)
.

To preserve the isometries of S4 take the “domain-wall” Ansatz

ds2 = L2e2A(r)ds2
S4 + dr2 , η = η(r) , z = z(r) , z̃ = z̃(r) .

It is convenient to use

η = eφ/
√

6 , z = 1√
2
(
χ+ iψ

)
, z̃ = 1√

2
(
χ− iψ

)
.

The masses of the scalars around the AdS5 vacuum are
m2
φL2 = m2

χL2 = −4 , m2
ψL2 = −3 .

The 3 scalars, {φ, ψ, χ}, are dual to 3 relevant operators
Oφ , ∆Oφ = 2 ; Oψ , ∆Oψ = 3 ; Oχ , ∆Oχ = 2 .

For χ = 0 recover the truncation for N = 2∗ on R4. [Pilch-Warner]
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The BPS equations

Plug the Ansatz in the supersymmetry variations of the 5d N = 8 theory and
use the “conformal Killing spinors” on S4

∇̂µζ = 1
2γ5γµζ ,

to derive the BPS equations (arising from δλα = δψµα = 0)

z ′=
3η′(zz̃ − 1)

[
2(z + z̃) + η6(z − z̃)

]
2η [η6 (z̃2 − 1) + z̃2 + 1] ,

z̃ ′=
3η′(zz̃ − 1)

[
2(z + z̃)− η6(z − z̃)

]
2η [η6 (z2 − 1) + z2 + 1] ,

(η′)2=
[
η6 (z2 − 1

)
+ z2 + 1

] [
η6 (z̃2 − 1

)
+ z̃2 + 1

]
9L2η2(zz̃ − 1)2 ,

e2A =
(zz̃ − 1)2 [η6 (z2 − 1

)
+ z2 + 1

] [
η6 (z̃2 − 1

)
+ z̃2 + 1

]
η8 (z2 − z̃2)2 .
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UV and IR expansion

The (constant curvature) metric on H5 is

ds2
5 = dr2 + L2 sinh2

( r
L

)
ds2

S4 .

Solving the BPS equations iteratively, order by order in the asymptotic
expansion as r →∞ (UV), we find that the expansion is fully controlled by two
integration constants µ and v which can be thought of as the “source” and
“vev” for the operator Oχ. Compare to field theory to identify µ = imR.

Impose that at r = r∗ (IR) the S4 shrinks to zero size. Solve the BPS
equations close to r = r∗, and require that the solution is smooth. There is
only one free parameter, η0, controlling this expansion.
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Numerical solutions
One can find numerical solutions by “shooting” from the IR to the UV. There
is a one (complex) parameter family parametrized by η0, so

v = v(η0) , and µ = µ(η0) .
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Numerical solutions

For real η0 one finds the following results for v(µ)
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v
h0>1

2 4 6 8 m/i
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-10

vêi h0<1

From the numerical results one can extract the following dependence

v(µ) = −2µ− µ log(1− µ2)
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Holographic calculations



Calculating FN=1∗

S4 from supergravity

I By the holographic dictionary the partition function of the field theory is
mapped to the on-shell action of the supergravity dual. [Maldacena], [GKP],

[Witten]

I The on-shell action diverges and one has to regularize it using
holographic renormalization. [Skenderis], ...

I There is a subtlety here. If we insist on using a supersymmetric
regularization scheme there is a particular finite counterterm that has to
be added. Only with it one can successfully compare d3F

dµ3 with the field
theory result.

I Without knowing this finite counterterm we can only hope to match d5F
dµ5

with field theory.
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Calculating FN=2∗

S4 from supergravity
The full renormalized 5d action is

Sren = S5D + Sct + Sfinite .

Differentiate the renormalized action w.r.t. µ to find

dFSUGRA

dµ = N 2

2π2 vol(S4)
(

4µ− 12v(µ)
)

= N 2
( 1

3µ− v(µ)
)
.

Finally we arrive at the supergravity result

d3FSUGRA

dµ3 = −N 2 v′′(µ) = −2N 2 µ (3− µ2)
(1− µ2)2 .

Set µ = imR and compare this to field theory

d3FN=2∗

S4

d(mR)3 = −2N 2 mR((mR)2 + 3)
((mR)2 + 1)2 .

Lo and behold!
d3FN=2∗

S4

d(mR)3 =
d3FSUGRA

S4

dµ3
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Holography for N = 1∗

For the N = 1∗ theory (and more general massive N = 1 theories) we have
performed a counterterm analysis (in “old minimal” rigid 4d supergravity) and
showed that there is an ambiguity in FS4

FS4 → FS4 + f1(τ, τ̄) + f2(τ, τ̄)
3∑

j=1

mjm̃jR2 .

The analysis is similar to recent work on N = 1 SCFTs. [Gerkhovitz-Gomis-Komargodski]

At order m4
j the dependence of FS4 for small mi must be

FS4 ≈ N 2

[
A

3∑
j=1

m4
j + B

(
3∑

j=1

m2
j

)2]
.

We can aim at computing the constants A and B holographically.

No results from localization to guide us!
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Holography for N = 1∗

We have constructed regular BPS 5d supergravity solutions for to the 1-mass
and equal mass models of N = 1∗. In addition we performed careful
holographic renormalization to extract field theory quantities.

From the numerical analysis for the three special limits of N = 1∗ we find

FN=2∗ ≈ −m4N 2

4 , F1-mass ≈ −0.235m4N 2 , Fm1=m2=m3 ≈ −0.043m4N 2 .

These 3 results are compatible with A ≈ −0.346 and B ≈ 0.111 and we have
A + 2B = − 1

8 .

For the equal mass model the supergravity results predict that the gaugino
condensate is

〈Tr(λλ+ λ̃λ̃)〉 = 4
π2 m3N 2 → 〈Tr(λλ+ λ̃λ̃)〉 = 4

π2 m1m2m3N 2 .

This is just a glimpse of the detailed holographic results we have extracted
from our supergravity solutions!
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Summary

I We found a 5d supegravity dual of N = 2∗ SYM on S4.

I After careful holographic renormalization we computed the universal part
of the free energy of this theory.

I The result is in exact agreement with the supersymmetric localization
calculation in field theory.

I This is a precision test of holography in a non-conformal Euclidean
setting.

I Extension of these results to N = 1∗ SYM where our results can be
viewed as supergravity “lessons” for the dynamics of the gauge theory.

I The results generalize readily to N = 2∗ mass deformations of quiver
gauge theories obtained by Zk orbifolds of N = 4 SYM.
[Azeyanagi-Hanada-Honda-Matsuo-Shiba]



Outlook

I Uplift of the N = 1∗ solutions to IIB supergravity. Relation to
Polchinski-Strassler? Holographic calculation of Wilson or ’t Hooft line
vevs. Study probe D3- and D7-branes. [in progress]

I Holography for N = 1∗ on other 4-manifolds. [Cassani-Martelli], ...

I Extensions to other N = 2 theories in 4d with holographic duals, e.g.
pure N = 2 SYM? [Gauntlett-Kim-Martelli-Waldram], [in progress]

I Extensions to other dimensions.



Outlook

I Can we see some of the large N phase transitions argued to exist by
Russo-Zarembo in IIB string theory?

I Revisit supersymmetric localization for N = 1 theories on S4. Can one
find the exact partition function (modulo ambiguities)?

I For 4d N = 2 conformal theories ZS4 leads to the Zamolodchikov metric.
What is the “meaning” of ZS4 for “gapped” theories?

I Understand the role of SL(2,Z) in N = 1∗? [Vafa-Witten], [Donagi-Witten], [Dorey],

[Aharony-Dorey-Kumar]

I Systematic understanding of supersymmetric finite counterterms in
holographic renormalization? [Assel-Cassani-Martelli], ...

I Broader lessons for holography from localization?



Happy Birthday Supergravity!
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