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It has inspired many important developments in theoretical physics over the
past 40 years!
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> Powerful exact results for supersymmetric field theories on curved
manifolds using equivariant localization [witten], [Nekrasov], [Pestun], ...

> Supersymmetric localization (sometimes) reduces the path integral of a
gauge theory to a finite dimensional matrix integral. Still hard to evaluate
explicitly in general!

> Make progress by taking the planar limit for specific 4d N' = 2
(non-conformal) gauge theories. [Russo], [Russo-Zarembo], [Buchel-Russo-Zarembo]

» Evaluation of the partition function of planar SU(N), N/ = 2* SYM on
S*. An infinite number of quantum phase transitions as a function of
A= gg/MN [Russo-Zarembo]

> Apply gauge/gravity duality to this setup and test holography in a
non-conformal setup.

» Study the dynamics of N' = 1 theories holographically. Localization on
S* has not been successful (so far!) for these theories!
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deformation of AV = 4 SYM. There is a unique supersymmetric
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For N'= 1% hard to calculate the partition function in the field theory.
» The goal is to calculate FQZ:Q* and Fﬁ:ﬁ holographically.

> Precision test of holography! In AdSs/CFTy one typically compares
numbers. Here we have a whole function to match.

> Previous results from holography for N = 1* and N = 2* on R*.
[Freedman-Gubser-Pilch-Warner], [Girardello-Petrini-Porrati-Zaffaroni], [Pilch-Warner],
[Buchel-Peet-Polchinski], [Evans-Johnson-Petrini], [Polchinski-Strassler], ... On S4 the
holographic construction is more involved.
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The field content of N =4 SYM is

A, X1,2,3,4,5,6 » A1,2,3,4 -
Organize this into an N = 1 vector multiplet

Ay, Y1 = A,
and 3 chiral multiplets

1 } .
Xi=Xi,  Zi=—= (X +iXs), =123

V2
Only SU(3) x U(1)r of the SO(6) R-symmetry is manifest.

The N = 1" theory is obtained by turning on (independent) mass terms for the
chiral multiplets.
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N =1* SYM on $*
The theory is no longer conformal so it is not obvious how to put it on S*.

When there is a will there is a way! [Pestun], [Festuccia-Seiberg], ...

5/5\/4:1* = 5/5\?:4
2 - - -
+ = tr(Z1Z1 + Z2Zy + Z3Z3)
+ tr (m1 m1Z1 Zl + maome Zs Zg + mamsZs Zg)
1 o . .
~3 tr (mixix: + mexaxz + maxaxs + miX1X1 + maXe X2 + M3X3X3)

1 o o
— ﬁ tr [miezijiZjZk + mie”kZz-ZjZk]

Z' _ ~ ~ ~ ~ ~
+ ﬁ tr <m1Z12 + m2Z22 + 7773Z3? + 777,1Z12 + TTYQZ22 + m3Z32) .

15 (real) relevant operators in the Lagrangian + 1 complex gaugino vev + 1

complexified gauge coupling. Only 18 of these operators are visible as modes in
I1B supergravity.

For ms = m3 = 0, m1 = ma = m and 7y = M2 = ™ we get the N/ = 2*
theory.
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Results from localization for N/ = 2*

After supersymmetric localization the path integral for the theory on S4
reduces to a finite dimensional integral over the Coulomb branch moduli. [Pestun]

Russo and Zarembo solved (numerically) this matrix model at large N. They
found an infinite number of (quantum) phase transitions as a function of A.

The result for N, > 1 is

_ _ " 2y AL+ (mR)%) e
FS4——logZ——7(1+(mR) ) log T6m2 .

This answer depends on the regularization scheme! (a.k.a. -y cannot be
measured in the lab)

The scheme independent quantity is

d*Fga __ >mR((mR)*+3)
amrye =~ 2N e 112

This is the unambiguous result one can aim to compute holographically.
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Use 5d N = 8 SO(6) gauged supergravity to construct the holographic dual.
Why is this justified?
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the lowest dimension operators in N = 4 SYM. [Lee Strickland-Constable-Waldram],
[Baguet-Hohm-Samtleben]
» The gravity dual of A" = 1* and A/ = 2" on R* was constructed first in
5d. [Girardello-Petrini-Porrati-Zaffaroni], [Pilch-Warner]

The dual of N = 1* on S* is captured by a 5d N = 2 gauged supergravity
with 2 vector and 4 hyper multiplets and a scalar coset

S0(4,4)
S0(4) x SO4) *

This model is a consistent truncation of type |IB supergravity.

0(1,1) x 0(1,1) x

There are special cases which allow for an explicit analysis. We fix /m; = m;
> my = mg and m3 = 0 - on R* this is the Leigh-Strassler flow.
[Freedman-Gubser-Pilch-Warner] On 9% we need 3 scalars.
> m; = mp = ms - on R* this is the GPPZ/PS flow.
[Girardello-Petrini-Porrati-Zaffaroni], [Polchinski-Strassler]. On S we need 4 scalars.
> my = ms =0 - on R* this is the /' = 2* PW flow. [Piich-warmer] On S* we
need 3 scalars.
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The gravity dual of V' = 2* on S*

The Euclidean Lagrangian is

w w
L:% _R+128“7’§ M 4 g Ou2d = +v|,
2k Ui (1—22)
_ 4 /(1 2l+2z2  1® (2—2)?
v L2<4+ 17z2+4(1fzz)2

To preserve the isometries of S take the “domain-wall” Ansatz
ds®> = L2 ds3a + dr®, n=n(r), z=2(r), z=3%(r).

It is convenient to use

=e , z2= — + 1 R Z=— —1 .
n ﬂ(x ) 7 (x — i)
The masses of the scalars around the AdSs vacuum are
miL2 = miL2 =—4, miL2 =-3.

The 3 scalars, {¢,, x}, are dual to 3 relevant operators

Oy, Ao¢=2; Oy, Ao, =3; Oy, Ao, =2.

For x = 0 recover the truncation for A' = 2* on R*. [Pilch-Warner]
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The BPS equations

Plug the Ansatz in the supersymmetry variations of the 5d N = 8 theory and
use the “conformal Killing spinors” on §*

,u< *'YS'YLLC )
to derive the BPS equations (arising from dAa = d9ua = 0)

,3(22—1) [2(2+ 2) +1°(2 — 7)]
T P E -2+

, 30 (22 1) [2(2+2) — n°(2 — )]

o 2n[n® (22 — 1) + 22 + 1] ’
2 [776(22—1)+Z —|—1}[ (22_1)+22+1]
(’/)* 9L2 (22—1)2 S
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UV and IR expansion

The (constant curvature) metric on H® is

ds§ = dr? + L% sinh?® (%) ds§4 .

Solving the BPS equations iteratively, order by order in the asymptotic
expansion as r — oo (UV), we find that the expansion is fully controlled by two
integration constants  and v which can be thought of as the “source” and
“vev" for the operator O,. Compare to field theory to identify ;. = imR.

Impose that at = r, (IR) the S* shrinks to zero size. Solve the BPS
equations close to » = 7., and require that the solution is smooth. There is
only one free parameter, 70, controlling this expansion.



Numerical solutions

One can find numerical solutions by “shooting” from the IR to the UV. There
is a one (complex) parameter family parametrized by 7, so

v=u(no), and  p=p(mp).

(z+2)/2 (z=2)/2

04

n gZA/eb

025

010

005




Numerical solutions

For real 7o one finds the following results for v()

no>1 no<l

+ pli




Numerical solutions

+ pli

For real 7o one finds the following results for v()

no>1
v
i'i -10
05 K
/ -0 \\
\\\\

02
08

From the numerical results one can extract the following dependence

‘ v(p) = —2p — pu log(1 — 1) ‘
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» By the holographic dictionary the partition function of the field theory is
mapped to the on-shell action of the supergravity dual. [Maldacena], [GKP],
[Witten]

» The on-shell action diverges and one has to regularize it using
holographic renormalization. [Skenderis], ...

» There is a subtlety here. If we insist on using a supersymmetric
regularization scheme there is a particular finite counterterm that has to
be added. Only with it one can successfully compare ‘;371; with the field

theory result.

> Without knowing this finite counterterm we can only hope to match (cilng
with field theory.
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Calculating F2=%" from supergravity
The full renormalized 5d action is
Sren = S5p + Sct + Stinite -
Differentiate the renormalized action w.r.t. u to find

dFSUGRA N2

= —2vo|(54) (4u — 121}(;1,)) = Nz(lu —v

du 27 3
Finally we arrive at the supergravity result
3 PSUGRA
dus
Set 1 = imR and compare this to field theory

AP RN » mR((mR)? + 3)

d(mR)> — ((mR)? +1)2
Lo and behold!

&= _ d3 FSYGRA
d(mR)3 dp’

3—u?)
N2 () = —oN B )

(u)) :



Holography for N' = 1*

For the A = 1* theory (and more general massive A/ = 1 theories) we have
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For the A = 1* theory (and more general massive A/ = 1 theories) we have
performed a counterterm analysis (in “old minimal” rigid 4d supergravity) and
showed that there is an ambiguity in Fga

3
Fso = Fu + fi(r,7) + (7, 7)Y myii; R®

=1

The analysis is similar to recent work on A" = 1 SCFTs. [Gerkhovitz-Gomis-Komargodski]

At order m;l the dependence of Fga for small m; must be

3 3 2
AZM?JrB(Zm_?) ]
j=1 j=1

We can aim at computing the constants A and B holographically.

Fga ~ N?

No results from localization to guide us!



Holography for N' = 1*

We have constructed regular BPS 5d supergravity solutions for to the 1-mass
and equal mass models of ' = 1*. In addition we performed careful
holographic renormalization to extract field theory quantities.
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Holography for N' = 1*

We have constructed regular BPS 5d supergravity solutions for to the 1-mass
and equal mass models of ' = 1*. In addition we performed careful
holographic renormalization to extract field theory quantities.

From the numerical analysis for the three special limits of N’ = 1* we find

472
Fr—oe & fm4N s Frmss ~ —0.235m*N? | Fo—mpems ~ —0.043m* N2 .
These 3 results are compatible with A &~ —0.346 and B ~ 0.111 and we have
A+2B=-4%.

For the equal mass model the supergravity results predict that the gaugino
condensate is

(TrOX+ V) = iQmSN2 — (TrAX+ AN)) = izmlmgmgN2 .
T T

This is just a glimpse of the detailed holographic results we have extracted
from our supergravity solutions!



Summary

> We found a 5d supegravity dual of N' = 2* SYM on §%.

> After careful holographic renormalization we computed the universal part
of the free energy of this theory.

» The result is in exact agreement with the supersymmetric localization
calculation in field theory.

> This is a precision test of holography in a non-conformal Euclidean
setting.

> Extension of these results to A/ = 1* SYM where our results can be
viewed as supergravity “lessons” for the dynamics of the gauge theory.

> The results generalize readily to A/ = 2* mass deformations of quiver
gauge theories obtained by Zj orbifolds of N' =4 SYM.

[Azeyanagi-Hanada-Honda-Matsuo-Shiba]



Outlook

» Uplift of the /' = 1* solutions to IIB supergravity. Relation to
Polchinski-Strassler? Holographic calculation of Wilson or 't Hooft line
vevs. Study probe D3- and D7-branes. [in progress]

» Holography for N’ = 1* on other 4-manifolds. [Cassani-Martelli], ...

» Extensions to other A/ = 2 theories in 4d with holographic duals, e.g.
pure N =2 SYM? [Gauntlett-Kim-Martelli-Waldram], [in progress]

» Extensions to other dimensions.



Outlook

» Can we see some of the large N phase transitions argued to exist by
Russo-Zarembo in IIB string theory?

> Revisit supersymmetric localization for N = 1 theories on S*. Can one
find the exact partition function (modulo ambiguities)?

» For 4d N = 2 conformal theories Zg1 leads to the Zamolodchikov metric.
What is the “meaning” of Zga for “gapped” theories?

» Understand the role of SL(2,Z) in N/ = 1*7? [Vafa-Witten], [Donagi-Witten], [Dorey],
[Aharony-Dorey-Kumar]

> Systematic understanding of supersymmetric finite counterterms in
holographic renormalization? [Assel-Cassani-Martell], ...

» Broader lessons for holography from localization?



Happy Birthday Supergravity!
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