Conformal Anomalies and Gravitational Waves

Hermann Nicolai
MPI für Gravitationsphysik, Potsdam
(Albert Einstein Institut)

Work based on:

K. Meissner and H.N.: arXiv:1607.07312

H. Godazgar, K. Meissner and H.N.: in progress

Executive Summary

Is the cancellation of conformal anomalies required

• Quantum mechanically: to ensure quantum consistency of perturbative quantum gravity?

... in analogy with cancellation of gauge anomalies for Standard Model (where they are required to maintain renormalizability), and/or

• already at classical level: corrections from induced anomalous non-local action to Einstein Field Equations may potentially overwhelm smallness of Planck scale $\ell_{PL} \Rightarrow$ huge corrections to any solution?

If so, cancellation requirement could lead to *very strong* restrictions on admissible theories!

Conformal Symmetry

Conformal symmetry comes in two versions:

- 1. Global conformal symmetry = extension of Poincaré group by dilatations D and conformal boosts K^{μ}
- 2. Local dilatations = Weyl transformations

$$g_{\mu\nu}(x) \rightarrow e^{2\sigma(x)}g_{\mu\nu}(x)$$

Important consequence: flat space limit of Weyl and diffeomorphism invariant theories exhibits full (global) conformal symmetry (via conformal Killing vectors)

 \rightarrow important restrictions on effective actions $\Gamma = \Gamma[g]$.

Conformal Anomaly \equiv Trace Anomaly

Conformal anomaly (= trace anomaly) [Deser, Duff, Isham(1976)]

$$T_{\mu}^{\mu}(x) = a \mathbf{E}_2(x) \equiv aR(x) \qquad (D=2)$$

$$T_{\mu}^{\mu}(x) = \mathcal{A}(x) \equiv a \mathbf{E}_4(x) + c C_{\mu\nu\rho\sigma} C^{\mu\nu\rho\sigma}(x) \quad (D=4)$$

where $E_4(x) \equiv Euler$ number density

$$\mathbf{E}_4 \equiv R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma} - 4R_{\mu\nu}R^{\mu\nu} + R^2$$

$$C_{\mu\nu\rho\sigma}C^{\mu\nu\rho\sigma} = R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma} - 2R_{\mu\nu}R^{\mu\nu} + \frac{1}{3}R^2$$

Coefficients c_s and a_s for fields of spin s (with $s \leq 2$) were computed already long ago.

```
[Duff(1977); Christenses, Duff(1978); Fradkin, Tseytlin(1982); Tseytlin(2013); see also: Eguchi, Gilkey, Hanson, Phys. Rep. 66(1980)213]
```

Anomalous Effective Action

Anomaly can be obtained by varying anomalous effective action $\Gamma_{\text{anom}} = \Gamma_{\text{anom}}[g]$

$$\mathcal{A}(x) = -\frac{2}{\sqrt{-g(x)}} g_{\mu\nu}(x) \frac{\delta \Gamma_{\text{anom}}[g]}{\delta g_{\mu\nu}(x)}$$

but this effective action is necessarily non-local.

Simplest example: string theory in *non-critical* dimension has a trace anomaly $T^{\mu}_{\mu} \propto R \Rightarrow \text{leads to anomalous effective action} = \text{Liouville theory.}$ [Polyakov(1981)]

$$\Gamma_{\rm anom}^{D=2} \propto \int d^2x \sqrt{-g} R \, \Box_g^{-1} R$$

- new propagating degree of freedom (longitudinal mode of world sheet metric = Liouville field)
 - \Rightarrow changes physics in dramatic ways!

Analog for gravity in D=4: non-local actions that give anomaly *exactly* are known, for instance [Riegert(1984)]

$$\Gamma_{\text{anom}}[g] = \int d^4x d^4y \sqrt{-g(x)} \sqrt{-g(y)} \left(\mathbf{E}_4 - \frac{2}{3} \Box_g R \right) (x) G^P(x, y) \left(\mathbf{E}_4 - \frac{2}{3} \Box_g R \right) (y)$$

with $\triangle^P G^P(x) = \delta^{(4)}(x)$, and the 4th order operator

$$\triangle^{P} \equiv \Box_{g} \Box_{g} + 2\nabla_{\mu} \left(R^{\mu\nu} - \frac{1}{3} g^{\mu\nu} R \right) \nabla_{\nu}$$

However, no closed form actions are known that have the correct conformal properties (as would be obtained from Feynman diagrams), despite many efforts.

[Deser, Schwimmer(1993); Erdmenger, Osborn(1998); Deser(2000); Barvinsky et al.(1998); Mazur, Mottola(2001);...]

In lowest order

$$\Gamma_{\text{anom}}^{D=4} \propto \int d^4x \sqrt{-g} \mathbf{E}_4 \, \Box_g^{-1} R + \cdots$$

where \cdots stands for *infinitely many* (non-local) terms.

While

$$\mathcal{A}(x) = -\frac{2}{\sqrt{-g(x)}} g_{\mu\nu}(x) \frac{\delta \Gamma_{\text{anom}}[g]}{\delta g_{\mu\nu}(x)}$$

is local, contribution to Einstein equations

$$\ell_{PL}^{-2} \left[R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R \right] = -\frac{2}{\sqrt{-g(x)}} \frac{\delta \Gamma_{\text{anom}}[g]}{\delta g^{\mu\nu}(x)} + \cdots$$

in general remains non-local for non-scalar modes.

Claim: non-localities from \Box_g^{-1} in $\Gamma_{\text{anom}}[g]$ can 'overwhelm' smallness of Planck scale and produce observable deviations for Einstein's equations!

Typical correction is (symmetrized traceless part of)

$$\propto \nabla_{\mu} (G^{\mathrm{ret}} \star \mathbf{E}_4) \nabla_{\nu} (G^{\mathrm{ret}} \star R) + \cdots$$

with retarded propagator G^{ret} in space-time background given by metric $g_{\mu\nu}$ solving classical Einstein equations.

For order of magnitude estimate, evaluate this integral for a (conformally flat) cosmological background

$$ds^2 = a(\eta)^2(-d\eta^2 + d\mathbf{x}^2)$$

by integrating from end of radiation era (= $t_{\rm rad}$) back to $t_0 = n_* \ell_{\rm PL}$, with $a(\eta) = \eta/(2t_{\rm rad})$ and $\eta = 2\sqrt{tt_{\rm rad}}$ and with retarded Green's function [Waylen(1978)]

$$G^{\text{ret}}(\eta, \mathbf{x}; \eta', \mathbf{y}) = \frac{1}{4\pi |\mathbf{x} - \mathbf{y}|} \cdot \frac{\delta(\eta - \eta' - |\mathbf{x} - \mathbf{y}|)}{a(\eta)a(\eta')}$$

Resulting correction on r.h.s. of Einstein's equations

$$T_{00}^{\text{anom}} \sim 10^{-5} t_{\text{rad}}^{-1} (n_* \ell_{\text{PL}})^{-3}$$

'beats' factor $\sim (t_{\rm rad}\ell_{\rm PL})^{-2}$ on l.h.s. even for $n_* \sim 10^8\,!$

Similar results from evaluating contribution of Riegert action \rightarrow could be a generic phenomenon, and thus affect any solution of Einstein equations. [Godazgar, Meissner, HN]

Cancelling conformal anomalies

	massless		massive	
	C_S	a_s	$ar{c}_s$	\bar{a}_s
0(0*)	$\frac{3}{2}(\frac{3}{2})$	$-\frac{1}{2}(\frac{179}{2})$	$\frac{3}{2}(\varnothing)$	$-\frac{1}{2}(\varnothing)$
$\frac{1}{2}$	$\frac{9}{2}$	$-\frac{11}{4}$	$\frac{9}{2}$	$-\frac{11}{4}$
1	18	-31	$\frac{39}{2}$	$-\frac{63}{2}$
$\frac{3}{2}$	$-\frac{411}{2}$	<u>589</u> 4	-201	289 2
2	783	-571	$\frac{1605}{2}$	$-\frac{1205}{2}$

- \bar{c}_s and \bar{a}_s include lower helicities: $\bar{c}_1 = c_1 + c_0$, etc.
- Gravitinos and supergravity needed for cancellation
- No cancellation possible for $N \le 4$ supergravities

NB: gravitino contribution may evade positivity properties because there does not exist a gauge invariant traceless energy momentum tensor for $s = \frac{3}{2}$. [A.Schwimmer]

$$c_{2} + 5c_{\frac{3}{2}} + 10c_{1} + 11c_{\frac{1}{2}} + 10c_{0} = 0 (N = 5)$$

$$c_{2} + 6c_{\frac{3}{2}} + 16c_{1} + 26c_{\frac{1}{2}} + 30c_{0} = 0 (N = 6)$$

$$c_{2} + 8c_{\frac{3}{2}} + 28c_{1} + 56c_{\frac{1}{2}} + 70c_{0} = 0 (N = 8)$$

Old result: combined contribution $\sum_s (c_s + a_s)$ vanishes for all $N \geq 3$ theories with appropriate choice of field representations for spin zero fields [Townsend, HN(1981)].

Thus: conformal anomalies for $\sum_s a_s$ and $\sum_s c_s$ cancel only for $N \geq 5$ supergravities! [Meissner, HN]

... as they do for 'composite' U(5), U(6) and SU(8) R-symmetry anomalies. [Marcus(1985)]

Implications for finiteness of $N \geq 5$ supergravities?

[Cf. Carrasco, Kallosh, Roiban, Tseytlin(2013); Bern, Davies, Dennen(2014)]

Idem for D=11 SUGRA compactified $AdS_4 \times S^7$

	SO(8) representations		
0	$[n+2\ 0\ 0\ 0],\ [n\ 0\ 2\ 0],\ [n-2\ 2\ 0\ 0],$		
	$[n-2\ 0\ 0\ 2],\ [n-2\ 0\ 0\ 0]$		
$\frac{1}{2}$	$[n+1 \ 0 \ 1 \ 0], \ n-1 \ 1 \ 1 \ 0],$		
	$[n-2\ 1\ 0\ 1]\ ,\ [n-2\ 0\ 0\ 1]$		
1	$[n\ 1\ 0\ 0],[n-1\ 0\ 1\ 1],[n-2\ 1\ 0\ 0]$		
$\frac{3}{2}$	$[n\ 0\ 0\ 1]\ ,\ [n-1\ 0\ 1\ 0]$		
2	$[n \ 0 \ 0 \ 0]$		

'Floor-by-floor' cancellation [Cf.Gibbons,HN(1985)]: for all n

$$\bar{c}_2 f_2(n) + \bar{c}_{\frac{3}{2}} f_{\frac{3}{2}}(n) + \bar{c}_1 f_1(n) + \bar{c}_{\frac{1}{2}} f_{\frac{1}{2}}(n) + \bar{c}_0 f_0(n) = 0$$

where $f_s(n) \equiv \sum$ (dimensions of SO(8) spin-s irreps) at Kaluza-Klein level n (no anomalies for odd D).

Conceptual Issues

Why worry about conformal anomalies in theories that are not even classically conformally invariant?

HOWEVER: recall axial anomaly and anomalous conservation of axial current

$$\partial^{\mu}J_{\mu}^{A} = 2im\bar{\psi}\gamma^{5}\psi + \frac{\alpha}{8\pi}F^{\mu\nu}\tilde{F}_{\mu\nu}$$

 \rightarrow anomaly is crucial even in presence of explicitly broken axial symmetry $(m \neq 0)$.

Idem for gauge anomalies in Standard Model: these must cancel even when quarks and leptons acquire masses via spontaneous symmetry breaking.

Is there a hidden conformal structure behind $N \geq 5$ supergravities (and M Theory)? But cannot be conformal supergravity in any conventional sense...

Outlook

V. Mukhanov: "You cannot figure out the fundamental theory by simply looking at the sky!"

But maybe there is a way...