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[ f = Lie algebra structure constants |

Yang-Mills theories with simple supersymmetry are constructed in 2, 4, 6, and 10 dimen-
sions, and it is argued that these are essentially the only cases possible. The method of di-
mensional reduction is then applied to obtain various Yang-Mills theories with extended
supersymmetry in two and four dimensions. It is found that all possible four-dimensional
Y ang-Mills theories with extended supersymmetry are obtained in this way.

S —

[ Brink, Scherk & Schwarz ‘76 |
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Lower-dimensional masses from higher-dimensional deformations




Reduction of gravity theories in 10D/11D

- Masses in 4D from reduction of gravity theories ~ HoWTo GETMassEs FROM EXTRA DIMENSIONS
J. SCHERK and John H. SCHWARZ *

Laboratoire de Physique Théorique de I’Ecole Normale Supérieure **, France

in 10D/11D with non-trivial internal profiles

Received 19 February 1979

f A generalized method of dimensional reduction, applicable to theories in curved space,
@ ( T ) _ U ( ) n @ ( 33) is described. As in previous works by other authors, the extra dimensions are related to
m 9 y - y ™m mn the manifold of a Lie group. The new feature of this work is to define and study a class
of Lie groups, called “flat groups”, for which the resulting theory has no cosmological
constant, a well-behaved potential, and a number of arbitrary mass parameters. In partic-
_ 1 _ ]_ ular, when the analysis is applied to the reduction of 11-dimensional supergravity to
f — U U 8 U — Cte four dimensions it becomes possible to incorporate three arbitrary mass parameters in the
\ J resulting N = 8 theory. This shows that extended supersymmetry theories allow more
possibilities for spontaneous symmetry breaking than was previously believed to be the
case.

[ f = Lie algebra structure constants ] [ Scherk & Schwarz 79 |

SS reduction

Lyop/1ip = e 2 * Lyp = eR - :MF? — D,MD+M™!
2 ffM T — fFMM M

Lower-dimensional masses from non-trivial internal dependence




After 40 years, a new framework where to
jointly describe gravitational and gauge

aspects of massless maximal supergravities in

10D/11D has been constructed...



Exceptional Field Theory (EFT)  (tonm s sarmteben 13

- Space-time : external ( 11-n) + generalised internal ( 4! coordinates in Eq rep. )

[ momentum, winding, ... ]

[Generalised diffts = ordinary internal diffs + internal gauge transfos}

Generalised Lie derivative built from an E,-invariant structure Y-tensor

[ specific for each n ]

- Closure requires a section constraint : [YPQMN Op ® Og = O}

Two maximal solutions : M-theory (n dimensional) & Type lIB (n-1 dimensional )

[ massless theories |

Question : Is there an exceptional story behind massive IIA too ?
[ Romans ‘86 ]

[ Hohm & Kwak "11 (non-geometric DFT) ]



How to get masses from EFT

Clues:
[ Romans ‘86 ]

[ Behrndt & Cvetic '04 |
[ LUst & Tsimpis ‘04 |
[ Kashani-Poor ‘07 ]

1. Deformations of EFT (ala SYM) [A.G. &Varela 15

[ Schwarz ‘04 |
[ Gaiotto & Tomasiello ‘09 ]
[ A.G., Jafferis & Varela 15 ]

[ Motivation = Massive |IA ]

arXiv:1604.08602 with Ciceri and Inverso

2. Generalised Scherk-Schwarz reductions ( a la gravity )

[ Motivation = fluxes and moduli stabilisation ]

work in progress



Overview

1. Deformations of EFT and massive IIA

2. Scherk-Schwarz reductions: DFT at SL(2) angles

3. What next ?



X detormation of EFT  (XFT)

- Generalised Lie derijvative [ no density term ]

LAUM = ANoNUM —UNONAM + Y MN 55 OAT U

in terms of an Epy-invariant structure Y-tensor. Closure requires sec. constraint

- Deformed generalised Lie derivative

LAUM = ANONUM — UNOAM + YMN 56 OAT U2 — X pM AN UP

in terms of an X deformation which is Enp-algebra valued non-derivative

- Closure & triviality of the Jacobiator require ( together with sec. constraint)

& ) - )
Xpmn” 0p =0 Xmp2 Xno® — Xnp 2 X + X © Xop® =0

X constraint Quaderatic constraint (gauged max. supergravity)
- J -

[ X deformation vs embedding tensor ]



X deformation : background fluxes & Romans mass

YPQM/\/‘ Op ® 0o =0

section constraint
\_ J

Y
Xmn" 0p =0

X constraint

j

[ algebraic system ]

~

[ QC = flux-induced tadpoles ]
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X deformation : background fluxes & Romans mass

YPQM/\/‘ Op ® 0o =0

section constraint
\_ J

Y
Xmn" 0p =0

X constraint

~

j

[ algebraic system ]

Massive Type IIA described in a

purely geometric manner !!

[ QC = flux-induced tadpoles ]
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EFT action (n=7 , D=4)
- Eyp¢EFT action [ D, =8, —La, | [ ™" coords in the 56 of Eyg)]

Serr = /d4az %y e [}A% + ﬁg”” DMMMNDVMM_/\/’ — %MMN}_“’/M]:WN

+ e ! Etop — VEFT(M7 g) }
[ Hohm & Samtleben 13 ]

with field strengths & potential given by

Fu = 20,AM - [A,, A,,}/E\/l + two-form terms ( tensor hierarchy )

Verr(M,g) = —2 MMNONMEEL O Micp + & MMN O\ ML G Miprxc
—1 g7 Omg ONMMN — L MMN 719,19 g7 g — 2 MMV 09" O gy

- Two-derivative potential : ungauged 4D max. sugra when ®(z,y) = ®(x)
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XFT action (n=7 , D=4)

E70-XFT action [ D, =8, —La, ] [ 4™ coords in the 56 of Eyp)]

SXFT — /d43j d56y€ [R + ﬁ g,uz/ D,uMMN DVMMN — %MMN Jr'LWMJT"MVN
+e™! Liop — Vier(M, 9) |

with field strengths & potential given by

( deformed tensor hierarchy )

FuM = 20, A0M + Xipo™M 4,7 4,2 — [A,, A,]%" + two-form terms
VXFT(Mv 9, X) — VEFT(M7 g) T 1_12 MMNMKLXMKP 8NMPL + VSUGRA(M> X)
cross term gauged max. sugra

- Two-One-Zero-derivative potential : gauged 4D max. sugra when ®(z,y) = ®(x)
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Application : massive IAon S™ (2<n<8)

e

-

Massless IlA reductions on S™' to gauged maximal sugra :

Massive IIA reductions on S™' to gauged maximal sugra :

EFT framework

XFT framework

N

J

Question : when is a consistent reduction Ansatz for massless I|A also consistent

for massive l|A ?

Procedure :

a)

o)

Massless ||A : generalised twist matrices valued in SL(n)

Romans mass introduced as an Xt deformation

[ Cvetic, LU & Pope 00 ]
[ Lee, Strickland-Constable & Waldram ‘14 ]
[ Hohm & Samtleben 14 ]

c) Consistency requires the stabiliser of X® in Epp) to contain SL(n)

Answer : Only massive llA on S°® works (n=7) !!

14

[ A.G. & Varela '15 ]



Overview

1. Deformations of EFT and massive IIA

2. Scherk-Schwarz reductions: DFT at SL(2) angles

3. What next ?
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From EFT to SL(2)-DFT

- Halving EFT with E7z symmetry to obtain SL(2)-DFT with SL(2) x SO(6,6) symmetry

E7(7) —  SL(2) x SO(6,6) o =(+,-) vectorindex of SL(2)
56 — (27 12) + (17 32) M vector index of SO(6,6)
yM N yaM 4 Xél A M-W spinor index of SO(6,6)

[ see Dibitetto, A.G. & Roest '11 for sugra ]
EFT SL(2)-DFT
via a Z3 truncation ( vector = +1, spinor=-1) on coordinates, fields, etc.

[ Hull & Zwiebach ‘09] [ Hohm, Hull & Zwiebach 10]
- SL(Z)—DFT generalised Lie derivative [ DFT corresponds to an o = + orientation ]

[ ]LAUaM _ ABN@ﬂNUaM _ UBNaBNAaM 4 77MN nPQ 65NAﬂP U@ 9B €5 8BNA'7[M {710V }

- SL(2)-DFT section constraints : [nMN Oart ®0sn =0+ € Dupar) ® Oy = O}

- SL(2)-DFT action extendable to SL(2) x SO(6,6+n,) and also X-deformable

[ see Hohm & Kwak ‘11 for Het-DFT ] 16 [ additional deform. params]



Section constraint & SL(2) angles

- One maximal solution of sec. constraint : it describes Type I/Heterotic ~ [asin DFT]

- Generalised SS reductions with SL(2) x O(6,6) twist matrices U, Y = et e’ Uy

yield N=4 gauging parameters

famunp = —3e e’ nom Un"Up)® 03rUs¥
Eamt = 2UnN0sn(e redP)

[ de Roo & Wagemans ‘85 ]

- Moduli stabilisation requires gaugings G = G; x G2 at relative SL(2) angles

G2 ( sec. constraint violated )

f

Gy

o>

{6“5 Oafar) ® Fpi) # 0]
>

17
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[ not possible in DFT ]
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Example : SO(4) x SO(4) gaugings and non-geometry

- SS with U(y*™) € O(6,6) : Half of the coords of type + & half of type -

- SL(2)-superposition of two chains of non-geometricfluxes ( H , w, @, R )+

f Frave=HMupe , Frgp=HDr  frae=oMut | frop=w®y*
Jrabe = Q(+)ab ,  Jiae = QU Frane = R(Habe Fige = R(t)igk

f f—ijk — H(_)ijk ) f—abc — H(_)abc ) f—ijl_c — w(_) ) 'k ) f—abé — w(_)abc
) fmr=Q0u, | fg.=Q0, | fop=ROUk | o — ROabe

Most general family (8 params) of SO(4) x SO(4) gaugings of N=4 sugra

SO(4) x SO(4) N=4 sugra : AdS & dS vacua ( sphere/hyperboloid reductions )

[ de Roo, Westra, Panda & Trigiante ‘03 |
[ Dibitetto, A.G. & Roest 12 ]

“Hybrid £" sources to cancel flux-induced tadpoles (QC) :  dual branes ?

[ Bergshoeff, de Roo, Kerstan, Ortin & Riccioni ‘06 |
18



Overview

1. Deformations of EFT and massive IIA

2. Scherk-Schwarz reductions: DFT at SL(2) angles

3. What next ?
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Future directions

[ Bossard & Kleinschmidt ‘15 ]

: Pa. _
X constraint X, n" 0p =0 and mutually BPS states  Bandos ‘15 |

Connection of X deformation to other approaches [ du Bosque, Hassler, List 15 ]

[ Bandos & Ortin ‘15 |

The role of the maximal compact subgroups ' Aldazabal. Andres, Cémara & Grana ‘15 ]

Flux formulation of SL(2)-DFT : sec. constraint, branes and non-geometry

[ Aldazabal, Grafa, Marqués & Rosabal ‘13 ]

SL(2)-DFT and massive IIA sphere reductions to half-maximal supergravity

[ Cassani, Felice, Petrini, Strickland-Constable & Waldram 16 ]

Cosmological applications of SL(2)-DFT ( moduli stab, de Sitter, inflation, ... )

[ Hassler, List & Massai ‘14 |
20



Thank you !

21



