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Yang-Mills theories with simple supersymmetry are constructed in 2, 4, 6, and 10 dimen- 
sions, and it is argued that these are essentially the only cases possible. The method of di- 
mensional reduction is then applied to obtain various Yang-Mills theories with extended 
supersymmetry in two and four dimensions. It is found that all possible four-dimensional 
Yang-Mills theories with extended supersymmetry are obtained in this way. 

1. Introduct ion  

Three types of supersymmetric Yang-Mills theories in four dimensions are known. 
In the first one that was found [1] the infinitesimal parameter of the supersymmetry 
transformation is a Majorana spinor ("simple" supersymmetry). In the second one [2] 
it is a Dirac spinor ("complex" supersymmetry). In the third case it consists of four 
Majorana (or Weyl) spinors [3]. This last model was obtained recently by applying 
the method of dimensional reduction to a supersymmetric Yang-Mills theory in ten- 
dimensional space-time. 

The goal of this paper is to classify all the possible supersymmetric Yang-Mills 
theories in both two and four dimensions. The interest in four dimensions is obvious, 
of course, as one of these schemes may be part of a correct theory. The two-dimen- 
sional cases are also emphasized because of the possibility of coupling such Yang- 
Mills multiplets to a corresponding two-dimensional supergravity theory [4] in order 
to get a modified string theory. Our technique consists of two stages. In the first 
stage Yang-Mills theories with simple supersymmetry are constructed for all space- 
time dimensions in which it is possible. Then in the second stage each of the higher- 
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- Masses in 4D from reduction of non-abelian 

SYM in 10D

[ Brink, Scherk & Schwarz ’76 ]

Lower-dimensional masses from higher-dimensional deformations

KK reduction
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Notation and conventions

L10D = �1
4 F

2 + i
2 �̄ /D� (1)

L4D = �1
4 F

2 + i�̄ /D� � DµMDµM�1

� i
2 f M �̄ �+ c.c

� 1
4 f f M�1 M�1 M M

(2)

We will adopt the NorthWest-SouthEast (NW-SE) conventions of [?], e.g. UP = UQ ⌦QP .

In order to truncate from maximal to half-maximal supergravity we are making use of the

decomposition (branching) of di↵erent E7(7) representations under the SL(2) ⇥ SO(6, 6)

symmetry of half-maximal supergravity. Of special interest are

56 �! (2,12) + (1,32) , (3)

133 �! (1,66) + (3,1) + (2,32’) , (4)

912 �! (2,12) + (2,220) + (1,352’) + (3,32) , (5)

where 32 and 32’ respectively denote left- and right-handed Majorana-Weyl (M-W) spinorial

representations of SO(6, 6) and similarly for the other spinorial irrep’s1. The decomposition

of the 56 in (3) amounts to the index splitting M = (↵,M)� µ , where ↵ = ± is an electric-

magnetic SL(2) index, M = 1, . . . , 12 refers to an SO(6, 6) vector index and µ = 1, . . . , 32

denotes a M-W left-handed fermionic index. Analogously, an index µ̇ = 1, . . . , 32 will

denote a M-W right-handed spinor. To carry out the truncation one has to apply a discrete

Z2-projection2

Z2 : N = 8 �! N = 4

E7(7) �! SL(2)⇥ SO(6, 6)
(6)

under which di↵erent SL(2) ⇥ SO(6, 6) indices acquire a parity. In particular, the bosonic

indices ↵ and M are even whereas the fermionic indices µ and µ̇ become odd. Keeping only

states which are parity even will truncate from maximal to half-maximal supergravity [?].

As a result, the skew-symmetric ⌦MN matrix becomes block-diagonal with bosonic and

fermionic blocks

⌦MN =

0

@
⌦↵M�N 0

0 ⌦µ⌫

1

A =

0

@
✏↵� ⌘MN 0

0 Cµ⌫

1

A . (7)

1See the appendix in ref. [?] for conventions about M-W spinorial irrep’s of SO(6, 6) .
2In a string theory realisation of maximal supergravity, this Z2-projection corresponds to orientifolding

the theory.
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[ f = Lie algebra structure constants ]
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A generalized method of dimensional reduction, applicable to theories in curved space, 
is described. As in previous works by other authors, the extra dimensions are related to 
the manifold of a Lie group. The new feature of this work is to define and study a class 
of Lie groups, called “flat groups” , for which the resulting theory has no cosmological 
constant, a well-behaved potential, and a number of arbitrary mass parameters. In partic- 
ular, when the analysis is applied to the reduction of 1 l-dimensional supergravity to 
four dimensions it becomes possible to incorporate three arbitrary mass parameters in the 
resulting N = 8 theory. This shows that extended supersymmetry theories allow more 
possibilities for spontaneous symmetry breaking than was previously believed to be the 
case. 

1. Introduction 

Dimensional reduction has been used to construct Yang-Mills theories [ 1,2] with 
extended supersymmetry [3] and the N = 8 supergravity theory [4]. In “ordinary”  
dimensional reduction, the coordinates of a D + E dimensional theory are divided 
into D space-time coordinates (xP) and E internal coordinates b”) that form a com- 
pact space. The fields and symmetry transformation laws that the theory possesses 
in D t E dimensions are taken to be y independent. This requirement for the fields 
and transformation laws implies in particular that an invariance of the D + E dimen- 
sional theory results in a corresponding one for the reduced theory in D dimensions. 
For example, from a theory with simple supersymmetry in D + E dimensions one 
deduces a theory with extended supersymmetry in D dimensions ??*. An obvious 
limitation of this approach is that starting from a massless theory (as is necessarily 
the case for supersymmetric theories in 10 or 11 dimensions [3,6]) the resulting 
reduced theory is also massless (aside from possible masses due to the Higgs mecha- 

* John Simon Guggenheim Fellow on leave of absence from the California Institute of Tech- 
nology. 

??* Laboratoire propre du CNRS, associ6 ?I 1’Ecole Normale Supbrieure et & l’Universit6 de Paris- 
Sud. Postal address: 24 rue Lhomond, 75231 Paris Cedex 05 (France). 

??** For a review of extended supergravity theories, see ref. [ 5 1. 
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Reduction of gravity theories in 10D/11D

- Masses in 4D from reduction of gravity theories 

in 10D/11D with non-trivial internal profiles

[ Scherk & Schwarz ’79 ]

Lower-dimensional masses from non-trivial internal dependence

SS reduction

4

L10D/11D = eR

�m(x, y) = U(y)m
n �n(x)

f = U�1 U�1@U = cte

[ f = Lie algebra structure constants ]

L4D = eR � 1
4 M F 2 � DµMDµM�1

� 2 f f M�1 � f f M M�1 M�1



After 40 years, a new framework where to 

jointly describe gravitational and gauge 

aspects of massless maximal supergravities in 

10D/11D has been constructed…
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- Space-time :  external ( 11-n ) + generalised internal  (        coordinates in En(n)  rep. )   

Exceptional Field Theory  (EFT) [ Hohm & Samtleben ’13 ]

Generalised diffs  =  ordinary internal diffs  +  internal gauge transfos

 Generalised Lie derivative built from an En(n)-invariant structure Y-tensor

Y PQ
MN @P ⌦ @Q = 0

Two maximal solutions :   M-theory  ( n dimensional )   &  Type IIB   ( n-1 dimensional )

- Closure requires a section constraint  :

Question :   Is there an exceptional story behind massive IIA too ?

yM

[ momentum, winding, … ]

6

[ specific for each n ]

[ massless theories ]

[ Romans ’86 ] 

[ Hohm & Kwak ’11 (non-geometric DFT) ]



1. Deformations of EFT    ( à la SYM ) 

2. Generalised Scherk-Schwarz reductions    ( à la gravity )

How to get masses from EFT

7

 arXiv:1604.08602 with Ciceri and Inverso 

work in progress

[ Motivation = Massive IIA ]

[ Motivation = fluxes and moduli stabilisation ]

Clues: 

[ Romans ’86 ] 

[ Behrndt & Cvetic ’04 ] 
[ Lüst & Tsimpis ’04 ] 
[ Kashani-Poor ’07 ] 
[ A.G. & Varela ’15 ] 

[ Schwarz ’04 ] 
[ Gaiotto & Tomasiello ’09 ] 
[ A.G., Jafferis & Varela ’15 ]



Overview
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1. Deformations of EFT and massive IIA 

2. Scherk-Schwarz reductions:   DFT at SL(2) angles 

3. What next ?



X deformation of EFT    (XFT)

- Generalised Lie derivative

L⇤UM = ⇤N@NUM � UN@N⇤M + Y MN
PQ @N⇤P UQ

in terms of an En(n)-invariant structure Y-tensor.  Closure requires sec. constraint

- Deformed generalised Lie derivative

in terms of an X deformation which is En(n)-algebra valued

- Closure & triviality of the Jacobiator require  ( together with sec. constraint )

XMN
P @P = 0 XMP

Q XNQ
R �XNP

Q XMQ
R +XMN

Q XQP
R = 0

X constraint Quadratic constraint   (gauged max. supergravity)

eL⇤UM = ⇤N@NUM � UN@N⇤M + Y MN
PQ @N⇤P UQ �XNP

M ⇤N UP

[ no density term ]

[ X deformation vs embedding tensor ]9

non-derivative



X deformation : background fluxes & Romans mass

XMN
P @P = 0

X constraint

section constraint

Y PQ
MN @P ⌦ @Q = 0 M-theory  ( n coords ) Type IIB  ( n-1 coords )

• SL(n) orbit 

• Freund-Rubin param. 
   ( n = 4 and n = 7 ) 

• massless IIA (subcase)

• SL(n-1) orbit 

• p-form fluxes 
   compatible with SL(n-1) 

• SL(2)-triplet of 1-form flux 
   ( includes compact SO(2) )

10

[ algebraic system ]

[ QC = flux-induced tadpoles ]



X deformation : background fluxes & Romans mass

XMN
P @P = 0

X constraint

section constraint

Y PQ
MN @P ⌦ @Q = 0 M-theory  ( n coords ) Type IIB  ( n-1 coords )

• SL(n) orbit 

• Freund-Rubin param. 
   ( n = 4 and n = 7 ) 

• massless IIA (subcase)

• SL(n-1) orbit 

• p-form fluxes 
   compatible with SL(n-1) 

• SL(2)-triplet of 1-form flux 
   ( includes compact SO(2) )

+

New massive Type IIA  ( n-1 coords )

• SL(n-1) orbit 

• p-form fluxes compatible with SL(n-1) 

• dilaton flux 

• Romans mass parameter  ( kills the M-theory coord )

Massive Type IIA described in a 
purely geometric manner !!

11

[ algebraic system ]

[ QC = flux-induced tadpoles ]



[        coords in the 56 of E7(7) ] 

EFT action    ( n=7  ,  D=4)

- E7(7)-EFT action   [                           ]

with field strengths & potential given by 

Dµ = @µ � LAµ

VEFT(M, g) = � 1
48 M

MN @MMKL @NMKL + 1
2 M

MN @MMKL @LMNK

� 1
2 g

�1@Mg @NMMN � 1
4 M

MN g�1@Mg g�1@N g � 1
4 M

MN @Mgµ⌫ @N gµ⌫

SEFT =

Z
d

4

x d

56

y e

⇥
R̂ + 1

48

g

µ⌫ DµMMN D⌫MMN � 1

8

MMN Fµ⌫MFµ⌫
N

+ e

�1 L
top

� VEFT(M, g)
⇤

- Two-derivative potential :   ungauged 4D max. sugra when  

Fµ⌫
M

= 2 @[µA⌫]
M �

⇥
Aµ, A⌫

⇤M
E

+ two-form terms

�(x, y) = �(x)

yM

12

( tensor hierarchy )

[ Hohm & Samtleben ’13 ]



- E7(7)-XFT action   [                           ]

- Two-One-Zero-derivative potential :  gauged 4D max. sugra when  �(x, y) = �(x)

Dµ = @µ � eLAµ

SXFT =

Z
d

4

x d

56

y e

⇥
R̂ + 1

48

g

µ⌫ DµMMN D⌫MMN � 1

8

MMN Fµ⌫MFµ⌫
N

+ e

�1 L
top

� VXFT(M, g)
⇤

Fµ⌫
M

= 2 @[µA⌫]
M

+X[PQ]
M Aµ

PA⌫
Q �

⇥
Aµ, A⌫

⇤M
E

+ two-form terms

VXFT(M, g,X) = VEFT(M, g) + 1
12 M

MNMKLXMK
P @NMPL + VSUGRA(M, X)

cross term gauged max. sugra

with field strengths & potential given by 

13

[        coords in the 56 of E7(7) ] yM

( deformed tensor hierarchy )

XFT action    ( n=7  ,  D=4)



Application :  massive IIA on Sn-1     ( 2 < n < 8 )

14

Massless IIA reductions on Sn-1 to gauged maximal sugra  :   EFT framework 

Massive IIA  reductions on Sn-1 to gauged maximal sugra  :   XFT framework

Procedure : 

a) Massless IIA :  generalised twist matrices valued in SL(n) 

b) Romans mass introduced as an XR deformation 

c) Consistency requires the stabiliser of  XR  in  En(n)  to contain SL(n)

Answer :  Only massive IIA on S6 works  (n=7) !!

Question :  when is a consistent reduction Ansatz for massless IIA  also consistent    
                   for massive IIA ?

[ Cvetic , Lü & Pope ’00 ]  
[ Lee, Strickland-Constable & Waldram ‘14 ] 

[ Hohm & Samtleben ’14 ]

[ A.G. & Varela ’15 ]



Overview
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1. Deformations of EFT and massive IIA 

2. Scherk-Schwarz reductions:   DFT at SL(2) angles 

3. What next ?



- Halving EFT with E7(7) symmetry to obtain SL(2)-DFT with SL(2) x SO(6,6) symmetry

From EFT to SL(2)-DFT

E7(7) ! SL(2)⇥ SO(6, 6)

56 ! (2,12) + (1,32)

yM ! y↵M + yA

α = ( + , - )  vector index of SL(2) 

M   vector index of SO(6,6) 
A    M-W spinor index of SO(6,6)

via a Z2 truncation  ( vector = +1 , spinor = -1 )  on coordinates, fields, etc.

EFT SL(2)-DFT
[ see Dibitetto, A.G. & Roest ’11 for sugra ]

- SL(2)-DFT section constraints : ⌘MN @↵M ⌦ @�N = 0 ✏↵� @↵[M | ⌦ @�|N ] = 0

⇥

- SL(2)-DFT generalised Lie derivative

,

L⇤U
↵M = ⇤�N@�NU↵M � U�N@�N⇤↵M + ⌘MN ⌘PQ @�N⇤�P U↵Q + 2 ✏↵� ✏�� @�N⇤�[M U |�|N ]

- SL(2)-DFT action extendable to SL(2) x SO(6,6+nv) and also X-deformable

[ DFT corresponds to an  α = +  orientation ]

16 [ additional deform. params]

[ Hull & Zwiebach ’09] [ Hohm, Hull & Zwiebach ’10]

[ see Hohm & Kwak ’11 for Het-DFT ]



- One maximal solution of sec. constraint :    it describes Type I/Heterotic

17

- Generalised SS reductions with SL(2) x O(6,6) twist matrices 

    yield N=4 gauging parameters

U↵M
�N = e� e↵

� UM
N

f↵MNP = �3 e�� e↵� ⌘Q[M UN
R UP ]

S @�RUS
Q

⇠↵M = 2UM
N@�N (e��e↵�)

- Moduli stabilisation requires gaugings  G = G1 x G2  at relative SL(2) angles

Section constraint & SL(2) angles 

f+

f�
G2 ( sec. constraint violated )

[ not possible in DFT ]

G1

[ as in DFT ]

✏↵� @↵[M | ⌦ @�|N ] 6= 0

[ de Roo & Wagemans ’85 ]
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Example : SO(4) x SO(4) gaugings and non-geometry

- SS with                              :  Half of the coords of  type +   &   half of  type - 

- SL(2)-superposition of two chains of non-geometric fluxes  ( H , ! , Q , R )±

Most general family (8 params) of SO(4) x SO(4) gaugings of N=4 sugra

-  SO(4) x SO(4) N=4 sugra :  AdS & dS vacua ( sphere/hyperboloid reductions )

- ``Hybrid ±” sources to cancel flux-induced tadpoles (QC) :    dual branes ?

f+abc = H(+)
abc , f+ijk = H(+)

ijk , f+abc̄ = !(+)
ab

c , f+ijk̄ = !(+)
ij

k

f+āb̄c = Q(+)ab
c , f+īj̄k = Q(+)ij

k , f+āb̄c̄ = R(+)abc , f+īj̄k̄ = R(+)ijk

f�ijk = H(-)
ijk , f�abc = H(-)

abc , f�ijk̄ = !(-)
ij

k , f�abc̄ = !(-)
ab

c

f�īj̄k = Q(-)ij
k , f�āb̄c = Q(-)ab

c , f�īj̄k̄ = R(-)ijk , f�āb̄c̄ = R(-)abc

f+

f�

[ de Roo, Westra, Panda & Trigiante ’03 ] 
[ Dibitetto, A.G. & Roest ’12 ]

[ Bergshoeff, de Roo, Kerstan, Ortín & Riccioni ’06  ]

U(y↵M ) 2 O(6, 6)
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1. Deformations of EFT and massive IIA 

2. Scherk-Schwarz reductions:   DFT at SL(2) angles 

3. What next ?



- X constraint                           and mutually BPS states  

- Connection of X deformation to other approaches  

- The role of the maximal compact subgroups 

- Flux formulation of SL(2)-DFT : sec. constraint, branes and non-geometry 

- SL(2)-DFT and massive IIA sphere reductions to half-maximal supergravity 

- Cosmological applications of SL(2)-DFT ( moduli stab, de Sitter, inflation, … )

20

Future directions
[ Bossard & Kleinschmidt ‘15 ] 

[ Bandos ‘15 ]
XMN

P @P = 0

[ du Bosque, Hassler, Lüst  ‘15 ]

[ Bandos & Ortín ‘15 ]    
[ Aldazabal, Andres, Cámara & Graña ‘15 ]

[ Aldazabal, Graña, Marqués & Rosabal ‘13 ]

[ Cassani, Felice, Petrini, Strickland-Constable & Waldram ’16 ]

[ Hassler, Lüst & Massai  ‘14 ]



Thank you !!
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