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Non-perturbative effects are important:

* in gauge theories: confinement, chiral symmetry breaking, ...
* in string theories: D-branes, duality, AdS/CFT, ...

They are essential to complete the perturbative expansion
and lead to results valid at all couplings

In supersymmetric theories, tremendous progress has been
possible thanks to the developement of localization
techniques

(Nekrasov ‘02, Nekrasov-Okounkov ‘03, Pestun ‘07, ..., Nekrasov-Pestun ‘13, ....)

In superconformal theories these methods allowed us to
compute exactly several quantities:

* Sphere partition function and free energy

* Wilson loops

e Correlation functions, amplitudes

* Cusp anomalous dimensions and bremsstrahlung function



We will focus on SYM theories in 4d with N=2
supersymmetry

* They are less constrained than the N=4 theories
* They are sufficiently constrained to be analyzed exactly

We will be interested in studying how S-duality on the
guantum effective couplings constrains the prepotential

and the observables of N=2 theories
(earlier work by Minahan et al. ’96, ‘97)

We will make use of these constraints to obtain exact
expressions valid at all couplings



N=4 SYM




N=4 SYM

= Consider N =4 SYM in d=4

* This theory is maximally supersymmetric (16 SUSY charges)
* The field content is

A 1 vector
A\ (a =1, 74) 4 Weyl spinors
X" (i=1,---,6) 6 real scalars

* All fields are in the adjoint repr. of the gauge group GG

* The p—function vanishes to all orders in perturbation theory

e If (X*) =0, the theory is superconformal (i.e. invariant
under SU(2,2|4) ) also at the quantum level



N=4 SYM

" The relevant ingredients of N =4 SYM are:

* The gauge group (G (or the gauge algebra g )
* The (complexified) coupling constant
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= Many exact results have been obtained using:

Explicit expressions of scattering amplitudes

Integrability

AdS/CFT correspondence

Duality



N=4 SYM

= N=4SYM is believed to possess an exact duality invariance

which contains the electro-magnetic duality S
(Montonen-Olive ‘77, Vafa-Witten ‘94, Sen ’94, ...)

= |f the gauge algebra g is simply laced (ADE)

* S maps the theory to itself but with electric and magnetic
states exchanged

* It is a weak/strong duality, acting on the coupling by
S(t)=—-1/7

* Togetherwith T'(7) =7+ 1 (6§ — 0 + 27), it generates
the modular group I' = SL(2,7Z) :

(0 -1 (1 Iy e 3
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N=4 SYM

= N=4SYM is believed to possess an exact duality invariance

which contains the electro-magnetic duality S
(Montonen-Olive ‘77, Vafa-Witten ‘94, Sen ’94, ...)

= |f the algebra g of the gauge group (G is non-simply laced
(BCFG) duality relation still exist, but they are more
involved... (see Billo et al. ‘15 and Ashok et al.“16)

= For simplicity | will only describe the case of simply laced
algebras g, but all the arguments can be generalized to
include also the non-simply laced cases




N=4 SYM as a N=2 theory

Let us decompose the N=4 multiplet into
* one N=2 vector multiplet

/ 2 Weyl fermions
I
1vector—/>14 , Y ¢<\

1 complex scalar

* one N=2 hypermultiplet

4 2 Weyl fermions
At X X
2 complex scalars



N=4 SYM as a N=2 theory

Let us decompose the N=4 multiplet into
* one N=2 vector multiplet

; / 2 Weyl fermions
—/>A y ¢ y ¢<\

1 vector 1 complex scalar

* one N=2 hypermultiplet

4 2 Weyl fermions
At X X
2 complex scalars

By introducing the v.e.v.
(¢p) = a = diag(ay, ..., an)
* we break the gauge group G — U(1)"
* we spontaneously break conformal invariance

 we can describe the dynamics in terms of a holomorphic
prepotential F'(a) , asin N=2 theories



N=4 SYM as a N=2 theory

 The prepotential of the N=4 theory is simply

F=inTa’

e The dual variables are defined as

e S-duality relates the electric variable a to the magnetic
variableap:

(@)=0 )()=(0)



N=4 SYM as a N=2 theory

e Let’s find the S-dual prepotential:

e S-duality exchanges the description based on a with its
Legendre-transform, based on ap :
OF 5

F)=F—a— =1
L(F) ao-=inTa

—2miaap



N=4 SYM as a N=2 theory
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N=4 SYM as a N=2 theory

Let’s find the S-dual prepotential:

S-duality exchanges the description based on g with its
Legendre-transform, based on ap :

OF

L(F) :F—a% —inTa’—2mTiaap
Thus
S(F) = L(F)

This structure is present also in N=2 theories and has
important consequences on their strong coupling dynamics!



N=2* SYM




The N=2* set-up

The N=2* theory is a mass deformation of the N=4 SYM

Field content:

* one N=2 vector multiplet for the algebra g

* one N=2 hypermultiplet in the adjoint rep. of 8 with

mass m

Half of the supercharges are broken, and we have N=2 SUSY

The B-function still vanishes, but the superconformal
invariance is explicitly broken by the mass m

N =27
m — 0

—

N =4 SYM

pure N =2 SYM

decoupling m — oo



Structure of the N=2* prepotential

= The N=2* prepotential contains classical, 1-loop and non-
perturbative terms

F=imTa®+ I with [ = fi_i0op + [rnon—pert

"= The 1-loop term reads /

LY [ aton (%0 (o mption (4 |

OéE g

* U, is the set of the roots a of the algebra 9
e «v - @ isthe mass of the W-boson associated to the root o

= The non-perturbative contributions come from all instanton
sectors and are proportional to ¢" and can be explicitly

computed using localization for all classical algebras
(Nekrasov ‘02, Nekrasov-Okounkov ‘03, ..., Billo et al 15, ...)



S-duality and the prepotential

= The dual variables are defined as

1 OF ( 1 af)
ap = =T7\|a+

271 Oa 2miT Oa

= Applying S-duality we get

S(F) = m(— %)a% +f( - %,aD)

= Computing the Legendre transform we get

L(IF)=F —2ira-ap
2
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S-duality and the prepotential

= The dual variables are defined as

1 OF ( 1 8f>
ap = =T7\|a+

271 Oa 2m1T Oa

= Applying S-duality we get

= Computing the Legendre transform we get
L(IF)=F —2ira-ap

- 1\ 1 of
—@77<— _)aD—|—f(7_7a)—|— ((‘M)

T AT




S-duality and the prepotential

= Requiring

implies

1 1 /Of\°
/ (T"”’) =fna)+ o (%)

Modular anomaly equation!

= This constraint has very deep implications!
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= Requiring

implies

1 1 /Of\°
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Modular anomaly equation!

= This constraint has very deep implications!

= The modular anomaly equation is related to the

holomorphic anomaly equation of the local CY topological
string description of the low-energy effective theory

(BCOV ‘93, Witten ‘93, ... Aganagic et al ‘06, Gunaydin et al ‘06, Huang et al 09, Huang ‘13, ...)



Modular anomaly equation

= We organize the quantum prepotential f in a mass
expansion

= an(T, a) with f, oc m*"
n=1

= From explicit calculations, one sees that:
* f1 isonly 1-loop and thus t-independent

- Zlog(a a)

aEg

e fn (n > 2) are both 1-loop and non-perturbative. They are
homogeneous functions

fo(t,Xa) = \*72" f,.(1,a)

(This is because the prepotential has mass dimension 2)



Modular anomaly equation

" The modular anomaly equation

f(-Len) =+ 2 (2) o= 2

implies
CRLEED




Modular anomaly equation

" The modular anomaly equation

1 0 6
f(=an) = fir, >+— —f o=
implies
= @
[ | n_
« Using fi(a = Z log cv a and
acWy

requiring that under S-duality A — 7 A, we have

filap) = fi(rat--)=fi(@+-



Modular anomaly equation

" nN=2

e Using the definition of the dual variable and the homogeneity
property, we have

f2<— %;CLD) =f2(— %77_(&_'_'")) :T_2f2(— ;CH-'“)

)

* In order to solve the equation, we must require that

/
fz(— %,a—i—---) :Tzfg(T,cH—-..) :7-2]“2(7-’&) 4.

* i.e. fa(7,a) should have modular weight 2 under S-duality !

= The only quantity with this property is the second Eisenstein
series E, (quasi-modular)



Modular anomaly equation

= Genericn

* The previous analysis can be easily generalized to arbitrary n.
* In order to be able to solve the equation, we must have

fu(= Lot ) = () 4

T

* Thus we must require that fﬁf depends on t through “modular”
functions with weight 2n — 2, i.e.

fu(7.0) = fu( Ba2(7), Ea(7), Eo(7).a)

where FEs(7), E4(7), Eg(T) are the Eisenstein series



Eisenstein series

The Eisenstein series are “modular” forms with a well-known

2T |

Fourier expansionin g =€ ;
Es(1) =1—24q — 72¢° — 96¢° — 168¢™* + - - -
E.(7) =1+ 240q + 2160¢> + 6720¢> + 17520¢" + - - -
Eg(1) = 1 — 504q — 16632¢” — 1229764 — 532728¢" + - - -

E, and E, are truly modular forms of weight 4 and 6

1 1

By(=2) =7 Eu(r) , Eo(- ) =7"Es(r)

E, is quasi-modular of weight 2 /
1 6
EQ(— ;) :7'2 [EQ(’T)"_(S] , 52%
Thus a modular form of weight w is mapped under S into a
form of weight w times 7", up to shifts induced by E,



Recursion relation

= S-duality
1 1 ! !
f(— ;,CLD) =f (Ez(—;%E‘l(_;)’EG(_;)’T
o 0
— f (EQ -+ 5, E47E67 (CL + Ea—i:))

:f(T,CL)‘|—5

OFf N 1 /0f\°
(9E2 12 da

L (%)

= Modular anomaly equation

f(— %,aD) = f(r,a) 4+ 0

+ O(6%)



Recursion relation

= S-duality

f(_ %’aD) =/ (E2(_%)’E‘l(_%)’E(ﬁ(_l)’T(a+ E%))

T

5 Of

— f (EZ —|_57 E47E67 (CL—l— E%))

B of 1 [Of
f(T,CL)-F@lQ (0a) + O(6%)

= Modular anomaly equation \

e )




Recursion relation

= \We thus obtain
2
3E2 24 Ja

which implies the following recursion relation

(Minahan et al '97)

Ofn 1 <= 0f Ofns

oFE, 24 v da Oa

* This allows us to determine Jn from the lower coefficients up to E,-
independent terms. These are fixed by comparison with the
perturbative expressions (or the first instanton corrections).

 The modular anomaly equation is a symmetry requirement; it does
not eliminate the need of a dynamical input

= Once this is done, the result is valid to all instanton orders.




Exploiting the recursion

= Using this recursive procedure we find

4
m
fo=——;7E2C3

24
m?® 2 g m?® 2 g
f3 — —m (5E2 T E4)02 o % (Ez — E4)02;1,1

where C§ and C3., ,are root lattice sums of g defined as

g 1
Gy = Z (o - )2

acV

. 1
Cong = Z Z (a-a)*(B1-a)(B2a)

acVy B1#B2eV 4 ()

with ¥y(a) ={B€ ¥, : a-B=1}



Exploiting the recursion

= For example

1
CU(Z) _
? (a1 — az)?
1 1 1
UG _
2 (a1 — &2)2 * (CLl — CL2)2 + (CLQ — CL3>2
and thus U2 m? U(2
2 = _gE2(7) 02( )
4
U(3 m u(3
2 @ = _gE2(T) 02< )

" From the Fourier expansion of E, we get the perturbative and
all non-perturbative contributions to the prepotential at

order m* |
= There are no free parameters |



Checks on the results

For the classical algebras A, B, Cand D
 the ADHM construction of the k instanton moduli spaces is avaliable

* the integration of the moduli action over the instanton moduli
spaces can be performed a la Nekrasov using localization techniques

In principle straightforward; in practice computationally
rather intense. Not many explicit results for the N=2*
theories in the literature.

We worked it out:
e for A, and D, with n<6, up to 5 instantons;
* for C, with n<6, up to 4 instantons;
* for B, with n<6, up to 2 instantons.

The results match the g-expansion of those obtained above

For the exceptional algebras our results are predictions!



Generalizations

= These results can be extended to non-flat space-times by
turning-on the so-called €2 background

0 €1 0 0

—e1 O 0 0
0 0 0 €2 (Nekrasov ‘02)
0 0 —e O

which actually was already present in the localization

calculations

» For €1,€9 # 0 one finds that the generalized prepotential
F=inta®+ f(a,e)
obeys a generalized modular anomaly equation

of 1 (f\°  eex OPf
OE, 24 (aa) 91 922 0




Generalizations

= These results can be extended to non-flat space-times by
turning-on the so-called €2 background

0 €1 0 0

—e1 O 0 0
0 0 0 €2 (Nekrasov ‘02)
0 0 —e O

which actually was already present in the localization

calculations

» For €1,€9 # 0 one finds that the generalized prepotential
F=inta®+ f(a,e)
obeys a generalized modular anomaly equation

af 1 (Of\° ferex O*°f \
OE, 24 (aa) 21 922 /"




Generalizations

= |n the ADE case, this equation can be used to prove that S-
duality acts on the prepotential as a Fourier transform

o (087) = G e ()

(Billo et al “13)

= This is consistent with viewing
e aand @p as canonically conjugate variables
e S-duality as a canonical transformation and

Z(a,€) = exp ( -~ Fe(lc:;))

as a wave-function in this space with €1€9 as Planck’s
constant, in agreement with the topological string

(BCOV ‘93, Witten ‘93,Aganagic et al ‘06, Gunaydin et al ‘06 ...)



Applications

= Using Pestun’s localization formula

Zs4 — /dnCC

and our modular anomaly equation, one can easily prove

2

M)

€1€2

o ( -

=

A=1 T;E]1—=€o=

that the partition function on the sphere Zq4 is modular
invariant (a result that was expected on general grounds)

" From Zg2 one can compute (by simply doing gaussian
integrations) several interesting observables

* Wilson loops

* Zamolodchikov metric (Pestun 07, ..., o
Baggio, Papadodimas et al ‘14, ‘16
e Correlation functions Fiol et al ’15,

Gerchkovitz, Gomis, Komargodski et al ‘16)



Applications

= Using Pestun’s localization formula

Zs4 — /dnCC

and our modular anomaly equation, one can easily prove

2

F(a,e))

o ( -
€1€2

a=1 x;G]_:EQ:%

that the partition function on the sphere Zq4 is modular
invariant (a result that was expected on general grounds)

" From Zg2 one can compute (by simply doing gaussian
integrations) several interesting observables

= Qur S-duality results could be used to promote these
calculations to the fully non-perturbative regime



Chiral correlators

= Other observables of the theory are the chiral correlators
N
< Tro" >:Za?—|—---
i=1

= They can be computed using equivariant localization

(Bruzzo et al. 03, Losev et al. 03, Flume et al. 04, Billo et al. ’12)

= The results can be expressed in terms of modular functions
and lattice sums (Ashok et al. ‘16)



Chiral correlators

= Using the explicit results for < T'r ¢" >, it is possible to
change basis and find the quantum symmetric polynomials
in the a’s

An(Tya’): Z a”ila’i2°°°a’in+°°°

11<12<-<1p
that transform as modular form of weight n S(A4,) = 7" A,

Al = Zail

15

N\ m? m?
Ag = ) aiai, + (2>EE2+2_%(E§_E4)CQ+”'

1, <19



Chiral correlators

= These expressions

Al = Zail

5

N\ m? m?
A = Z Ai, Ajy T (2)EE2+2—88(E§—E4)C'2—|—---

14 <12
coincide with the solution of the modular anomaly equation
satisfied by the A,'s

0A,, N 1 0A, 0f
OFEs 24 Oa Oa

that can be obtained directly from their S-duality properties!

0



Conclusions




Conclusions

= The requirement that the duality group acts simply as in the
N=4 theories also in the mass-deformed cases leads to a
modular anomaly equation

= This allows one to efficiently reconstruct the mass-expansion
of the prepotential and the chiral correlators resumming all

instanton corrections into (quasi-)modular forms of the
duality group

= The existence of such modular anomaly equations seems to
be a general feature for many observables!



Conclusions

= The requirement that the duality group acts simply as in the
N=4 theories also in the mass-deformed cases leads to a
modular anomaly equation

= This allows one to efficiently reconstruct the mass-expansion
of the prepotential and the chiral correlators resumming all
instanton corrections into (quasi-)modular forms of the
duality group

= Asimilar pattern (although a bit more intricate) arises in N=2
SQCD theories with N=2N_fundamental flavours, where it
has been possible to describe the structure of the low
energy effective theory at the special vacuum

(Ashok et al. ’15 and ‘16)



Conclusions

= This approach can be profitably used in other contexts to
study the consequences of S-duality on:

* theories formulated in curved spaces (e.g. S%)
e correlation functions of chiral and anti-chiral operators
e other observables (e.g. Wilson loops, cusp anomaly, ... )

* more general extended observables (surface operators, ...)

with the goal of studying the strong-coupling regime
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Thank you for your attention
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Happy birthday to Supergravity !!

Happy birthday to GGI !!




