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§  Non-perturbaWve	effects	are	important:	

•  in	gauge	theories:	confinement,	chiral	symmetry	breaking,	...	
•  in	string	theories:	D-branes,	duality,	AdS/CFT,	...	

§  They	 are	 essenWal	 to	 complete	 the	 perturbaWve	 expansion	
and	lead	to	results	valid	at	all	couplings	

§  In	 supersymmetric	 theories,	 tremendous	 progress	 has	 been	
possible	 thanks	 to	 the	 developement	 of	 localizaWon	
techniques		

(Nekrasov	‘02,	Nekrasov-Okounkov	’03,	Pestun	‘07,	…,	Nekrasov-Pestun	‘13,	….)	

§  In	 superconformal	 theories	 these	 methods	 allowed	 us	 to	
compute	exactly	several	quanWWes:	

•  Sphere	parWWon	funcWon	and	free	energy	
•  Wilson	loops	
•  CorrelaWon	funcWons,	amplitudes	
•  Cusp	anomalous	dimensions	and	bremsstrahlung	funcWon		

	



•  We	 will	 focus	 on	 SYM	 theories	 in	 4d	 with	 N=2	
supersymmetry	

•  They	are	less	constrained	than	the	N=4	theories	
•  They	are	sufficiently	constrained	to	be	analyzed	exactly	

	

•  We	will	 be	 interested	 in	 studying	 how	 S-duality	 on	 the	
quantum	effecWve	couplings	 constrains	 the	prepotenWal	
and	the	observables	of	N=2	theories																																																																		

																																																																																																								(earlier	work	by	Minahan	et	al.	’96,	‘97)	

•  We	 will	 make	 use	 of	 these	 constraints	 to	 obtain	 exact	
expressions	valid	at	all	couplings	



N=4	SYM	



§  Consider	N	=4	SYM	in	d=4		

•  This	theory	is	maximally	supersymmetric			(16	SUSY	charges)	
•  The	field	content	is	

	

•  All	fields	are	in	the	adjoint	repr.	of	the	gauge	group							
•  The	β–funcWon	vanishes	to	all	orders	in	perturbaWon	theory	
•  If																			,	the	theory	is	superconformal		(i.e.	invariant	
under																						)	also	at	the	quantum	level	

N=4		SYM	

1	vector	
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§  The	relevant	ingredients	of	N	=4	SYM	are:		

•  The	gauge	group								(or	the	gauge	algebra					)	
•  The	(complexified)	coupling	constant	
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§  The	relevant	ingredients	of	N	=4	SYM	are:		

•  The	gauge	group								(or	the	gauge	algebra					)	
•  The	(complexified)	coupling	constant	

	

§  Many	exact	results	have	been	obtained	using:	
•  Explicit	expressions	of	scarering	amplitudes	
•  Integrability	
•  AdS/CFT	correspondence	
•  Duality	
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§  N	=4	SYM	is	believed	to	possess	an	exact	duality	invariance	
which	contains	the	electro-magneWc	duality		

(Montonen-Olive	‘77,	Vafa-Wiren	‘94,	Sen	’94,	...)	
	

§  If	the	gauge	algebra				is	simply	laced	(ADE)	
•  				maps	the	theory	to	itself	but	with	electric	and	magneWc	
states	exchanged		

•  It	is	a	weak/strong	duality,	acWng	on	the	coupling	by	

•  Together	with																													(																							),	it	generates	
the	modular	group																											:		
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§  N	=4	SYM	is	believed	to	possess	an	exact	duality	invariance	
which	contains	the	electro-magneWc	duality		

(Montonen-Olive	‘77,	Vafa-Wiren	‘94,	Sen	’94,	...)	
	

§  If	the	algebra				of	the	gauge	group							is	non-simply	laced	
(BCFG)	duality	relaWon	sWll	exist,	but	they	are	more	
involved…																																												(see	Billò	et	al.	‘15	and	Ashok	et	al.‘16)	

§  For		simplicity	I	will	only	describe	the	case	of	simply	laced		
algebras					,	but	all	the	arguments	can	be	generalized	to	
include	also	the	non-simply	laced	cases		
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Let	us	decompose	the	N=4	mulWplet	into		
•  one	N=2	vector	mulWplet	

•  one	N=2	hypermulWplet	
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Let	us	decompose	the	N=4	mulWplet	into		
•  one	N=2	vector	mulWplet	

•  one	N=2	hypermulWplet	

	

By	introducing	the	v.e.v.		
	
	

•  we	break	the	gauge	group		
•  we	spontaneously	break	conformal	invariance		
•  we	can	describe	the	dynamics	in	terms	of	a	holomorphic	

prepotenWal														,	as	in	N=2	theories	
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2	Weyl	fermions	

1	complex	scalar	
A ,  I , �1	vector	

q , q̃ , � , �̃
2	Weyl	fermions	

2	complex	scalars	

h�i = a = diag(a1, ..., an)

G ! U(1)n

F (a)



•  The	prepotenWal	of	the	N=4	theory	is	simply	

•  The	dual	variables	are	defined	as	

•  S-duality	relates	the	electric	variable					to	the	magneWc	
variable							:	
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•  Let’s	find	the	S-dual	prepotenWal:	

•  S-duality	exchanges	the	descripWon	based	on					with	its	
Legendre-transform,	based	on								:	
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•  Let’s	find	the	S-dual	prepotenWal:	

•  S-duality	exchanges	the	descripWon	based	on					with	its	
Legendre-transform,	based	on								:	

•  Thus		
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•  Let’s	find	the	S-dual	prepotenWal:	

•  S-duality	exchanges	the	descripWon	based	on					with	its	
Legendre-transform,	based	on								:	

•  Thus		

•  This	structure	is	present	also	in	N=2	theories	and	has	
important	consequences	on	their	strong	coupling	dynamics!	
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N=2*	SYM	



§  The	N=2*	theory	is	a	mass	deformaWon	of	the	N=4	SYM		
§  Field	content:	

•  one	N=2	vector	mulWplet	for	the	algebra		
•  one	N=2	hypermulWplet	in	the	adjoint	rep.	of					with		
				mass	m	

§  Half	of	the	supercharges	are	broken,	and	we	have	N=2	SUSY	
§  The	β-funcWon	sWll	vanishes,	but	the	superconformal	

invariance	is	explicitly	broken	by	the	mass	m	

The	N=2*	set-up	

g
g

m ! 0
N = 2⇤

pure N = 2 SYM

N = 4 SYM

decoupling m ! 1



§  The	N=2*	prepotenWal	contains	classical,	1-loop	and	non-
perturbaWve	terms	

	
	
§  The	1-loop	term	reads	

•  						is	the	set	of	the	roots	α	of	the	algebra		
•  													is	the	mass	of	the	W-boson	associated	to	the	root	α

§  The	non-perturbaWve	contribuWons	come	from	all	instanton	
sectors	and	are	proporWonal	to							and	can	be	explicitly	
computed	using	localizaWon	for	all	classical	algebras													

(Nekrasov	‘02,	Nekrasov-Okounkov	‘03,	…,	Billò	et	al	15,	...)	
	

§  By	decoupling	the	massive	hypermulWplet	with																										
				
	

					one	recovers	the	pure	N=2	SYM	theory	where	
•  							is	the	dual	Coxeter	number	for		
•  																						is	the	instanton	counWng	parameter		
•  										is	the	β-funcWon	coefficient	of	the	pure	N=2	SYM	

Structure	of	the	N=2*	prepoten@al	
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§  The	dual	variables	are	defined	as		
	
	
§  Applying	S-duality	we	get	
	

			
§  CompuWng	the	Legendre	transform	we	get	

S-duality	and	the	prepoten@al	
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§  The	dual	variables	are	defined	as		
	
	
§  Applying	S-duality	we	get	
	

			
§  CompuWng	the	Legendre	transform	we	get	

S-duality	and	the	prepoten@al	
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§  Requiring	
	
					implies	

	
																							Modular	anomaly	equaWon!	
	

§  This	constraint	has	very	deep	implicaWons!	
	

						
	
	
	

	
	
				

S-duality	and	the	prepoten@al	
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§  Requiring	
	
					implies	

	
																							Modular	anomaly	equaWon!	
	

§  This	constraint	has	very	deep	implicaWons!	
§  The	modular	anomaly	equaWon	is	related	to	the	

holomorphic	anomaly	equaWon	of	the	local	CY	topological	
string	descripWon	of	the	low-energy	effecWve	theory	
			(BCOV	‘93,	Wiren	‘93,	…	Aganagic	et	al	’06,	Gunaydin	et	al	‘06,	Huang	et	al	09,	Huang	‘13,	…	)	
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§  We	organize	the	quantum	prepotenWal							in	a	mass	
expansion	

§  From	explicit	calculaWons,	one	sees	that:		
•  							is	only	1-loop	and	thus	τ-independent	

•  																					are	both	1-loop	and	non-perturbaWve.	They	are	
homogeneous	funcWons	

			(This	is	because	the	prepotenWal	has	mass	dimension	2)	
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§  The	modular	anomaly	equaWon	

						
				implies	
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§  The	modular	anomaly	equaWon	

						
				implies	
	

§  n	=	1	
	

•  Using																																																																			and		
	
				requiring	that	under	S-duality																								,	we	have	
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§  n	=	2	

	

•  Using	the	definiWon	of	the	dual	variable	and	the	homogeneity	
property,	we	have	

•  In	order	to	solve	the	equaWon,	we	must	require	that	

•  i.e.																						should	have	modular	weight	2	under	S-duality	!				

§  The	only	quanWty	with	this	property	is	the	second	Eisenstein	
series	E2	(quasi-modular)	
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§  Generic	n		

	

•  The	previous	analysis	can	be	easily	generalized	to	arbitrary	n.		
•  In	order	to	be	able	to	solve	the	equaWon,	we	must	have		

	
•  Thus	we	must	require	that							depends	on	τ	through	“modular”	
funcWons	with	weight																,	i.e.		

					where																																											are	the	Eisenstein	series	
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§  The	Eisenstein	series	are	“modular”	forms	with	a	well-known	

Fourier	expansion	in																		:		

	
	

§  	E4	and	E6	are	truly	modular	forms	of	weight	4	and	6	

	

§  E2	is	quasi-modular	of	weight	2	
	
	

§  Thus	a	modular	form	of	weight						is	mapped	under	S	into	a	
form	of	weight						Wmes							,	up	to	shivs	induced	by	E2	
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§  S-duality	

§  Modular	anomaly	equaWon		
	

•  In	order	to	be	able	to	solve	the	equaWon,	we	must	have		

	
•  Thus	we	must	require	that							depends	on	τ	through	“modular”	
funcWons	with	weight																,	i.e.		

					where																																											are	the	Eisenstein	series	
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§  S-duality	

§  Modular	anomaly	equaWon		
	

•  In	order	to	be	able	to	solve	the	equaWon,	we	must	have		

	
•  Thus	we	must	require	that							depends	on	τ	through	“modular”	
funcWons	with	weight																,	i.e.		

					where																																											are	the	Eisenstein	series	
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§  We	thus	obtain	

					which	implies	the	following	recursion	relaWon	
			(Minahan	et	al	’97)		

	

	
	

•  This	allows	us	to	determine							from	the	lower	coefficients	up	to	E2-
independent	terms.	These	are	fixed	by	comparison	with	the	
perturbaWve	expressions	(or	the	first	instanton	correcWons).		

•  The	modular	anomaly	equaWon	is	a	symmetry	requirement;	it	does	
not	eliminate	the	need	of	a	dynamical	input	

§  Once	this	is	done,	the	result	is	valid	to	all	instanton	orders.	
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§  Using	this	recursive	procedure	we	find	

	
	

where								and											are	root	laxce	sums	of				defined	as	
	

with		
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§  For	example	

						
	
	
					and	thus		
	
	

	

§  From	the	Fourier	expansion	of	E2	we	get	the	perturbaWve	and	
all	non-perturbaWve	contribuWons	to	the	prepotenWal	at	
order	m4	!	

§  There	are	no	free	parameters	!		
	

•  We	This	allows	us	to	determine						from	the	lower	coefficients	up	to	
E2-independent	terms.	These	are	fixed	by	comparison	with	the	
perturbaWve	expressions	(or	the	first	instanton	correcWons).		

•  The	modular	anomaly	equaWon	is	a	symmetry	requirement;	it	does	
not	eliminate	the	need	of	a	dynamical	input	

§  Once	this	is	done,	the	result	is	valid	to	all	instanton	orders.	
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§  For	the	classical	algebras	A,	B,	C	and	D	

•  the	ADHM	construcWon	of	the	k	instanton	moduli	spaces	is	avaliable	
•  the	integraWon	of	the	moduli	acWon	over	the	instanton	moduli	
spaces	can	be	performed	à	la	Nekrasov	using	localizaWon	techniques	

§  In	principle	straighyorward;	in	pracWce	computaWonally	
rather	intense.	Not	many	explicit	results	for	the	N=2*	
theories	in	the	literature.	

§  We	worked	it	out:		
•  for	An	and	Dn	with	n<6,	up	to	5	instantons;	
•  for	Cn	with	n<6,	up	to	4	instantons;		
•  for	Bn	with	n<6,	up	to	2	instantons.	

§  The	results	match	the	q-expansion	of	those	obtained	above	
§  For	the	excepWonal	algebras	our	results	are	predicWons!	

	

Checks	on	the	results	



	
§  These	results	can	be	extended	to	non-flat	space-Wmes	by	

turning-on	the	so-called						background	

				which	actually	was	already	present	in	the	localizaWon				
				calculaWons	

§  For																					one	finds	that	the	generalized	prepotenWal		

					obeys	a	generalized	modular	anomaly	equaWon											
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§  In	the	ADE	case,	this	equaWon	can	be	used	to	prove	that	S-

duality	acts	on	the	prepotenWal	as	a	Fourier	transform	

	
	
§  This	is	consistent	with	viewing	

•  				and									as	canonically	conjugate	variables	
•  	S-duality	as	a	canonical	transformaWon		and	

								
				as	a	wave-funcWon	in	this	space	with											as	Planck’s		
				constant,	in	agreement	with	the	topological	string	
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§  Using	Pestun’s	localizaWon	formula		

	

					and	our	modular	anomaly	equaWon,	one	can	easily	prove		
					that	the	parWWon	funcWon	on	the	sphere									is	modular		
					invariant	(a	result	that	was	expected	on	general	grounds)	

§  From									one	can	compute	(by	simply	doing	gaussian	
integraWons)	several	interesWng	observables		

•  Wilson	loops	
•  Zamolodchikov	metric		
•  CorrelaWon	funcWons		
•  …	
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§  Using	Pestun’s	localizaWon	formula		

	

					and	our	modular	anomaly	equaWon,	one	can	easily	prove		
					that	the	parWWon	funcWon	on	the	sphere									is	modular		
					invariant	(a	result	that	was	expected	on	general	grounds)	

§  From									one	can	compute	(by	simply	doing	gaussian	
integraWons)	several	interesWng	observables		

§  Our	S-duality	results	could	be	used	to	promote	these	
calculaWons	to	the	fully	non-perturbaWve	regime	
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§  Other	observables	of	the	theory	are	the	chiral	correlators	

§  They	can	be	computed	using	equivariant	localizaWon																																						

§  The	results	can	be	expressed	in	terms	of	modular	funcWons	
and	laxce	sums	

Chiral	correlators	

(Bruzzo	et	al.	03,	Losev	et	al.	03,		Flume	et	al.	04,	Billò	et	al.	’12)	
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§  Using	the	explicit	results	for																							,	it	is	possible	to	
change	basis	and	find	the	quantum	symmetric	polynomials	
in	the	a’s	

that	transform	as	modular	form	of	weight	n																												

Chiral	correlators	
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§  These	expressions	

	
	
	
	

					coincide	with	the	soluWon	of	the	modular	anomaly	equaWon										
saWsfied	by	the						’s	

					that	can	be	obtained	directly	from	their	S-duality	properWes!		
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Conclusions	



	

§  The	requirement	that	the	duality	group	acts	simply	as	in	the	
N=4	theories	also	in	the	mass-deformed	cases	leads	to	a	
modular	anomaly	equaWon	

§  This	allows	one	to	efficiently	reconstruct	the	mass-expansion	
of	the	prepotenWal	and	the	chiral	correlators	resumming	all	
instanton	correcWons	into	(quasi-)modular	forms	of	the	
duality	group	

§  The	existence	of	such	modular	anomaly	equaWons	seems	to	
be	a	general	feature	for	many	observables!	

Conclusions	



	

§  The	requirement	that	the	duality	group	acts	simply	as	in	the	
N=4	theories	also	in	the	mass-deformed	cases	leads	to	a	
modular	anomaly	equaWon	

§  This	allows	one	to	efficiently	reconstruct	the	mass-expansion	
of	the	prepotenWal	and	the	chiral	correlators	resumming	all	
instanton	correcWons	into	(quasi-)modular	forms	of	the	
duality	group	

§  A	similar	parern	(although	a	bit	more	intricate)	arises	in	N=2	
SQCD	theories	with	Nf=2Nc	fundamental	flavours,	where	it	
has	been	possible	to	describe	the	structure	of	the	low	
energy	effecWve	theory	at	the	special	vacuum	

Conclusions	

(Ashok	et	al.	’15	and		‘16)	



	

§  This	approach	can	be	profitably	used	in	other	contexts	to	
study	the	consequences	of	S-duality	on:	

•  theories	formulated	in	curved	spaces	(e.g.	S4)	
•  correlaWon	funcWons	of	chiral	and	anW-chiral	operators	
•  other	observables	(e.g.	Wilson	loops,	cusp	anomaly,	…	)	
•  more	general	extended	observables	(surface	operators,	...)		
•  …	

						with	the	goal	of	studying	the	strong-coupling	regime	
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study	the	consequences	of	S-duality	on:	

•  theories	formulated	in	curved	spaces	(e.g.	S4)	
•  correlaWon	funcWons	of	chiral	and	anW-chiral	operators	
•  other	observables	(e.g.	Wilson	loops,	cusp	anomaly,	…	)	
•  more	general	extended	observables	(surface	operators,	...		
•  …	

						with	the	goal	of	studying	the	strong-coupling	regime	
	

Thank	you	for	your	arenWon		
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In May 2016 we celebrated the 10th anniversary of the GGI: 
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Happy	birthday	to	Supergravity	!!	

Happy	birthday	to	GGI	!!	


