# Electroweak corrections to hadronic production of gauge bosons at large transverse momentum

Anna Kulesza



in collaboration with J. H. Kühn, S. Pozzorini and M. Schulze

Phys. Lett. B 609 (2005) 277 Nucl. Phys. B727 (2005) 368 JHEP 0603 (2006) 059 Phys.Lett. B 651 (2007) 160 arXiv:0708.0476, submitted to Nucl. Phys. B

RADCOR2007: Application of Quantum Field Theory to Phenomenology 01.10.2007, Florence

### Introduction

#### LHC:

- $\square$  W/Z production: benchmark process
- Expected cross sections large
   At low luminosity 10<sup>33</sup> cm<sup>-2</sup> s<sup>-1</sup>
   estimate

200 W bosons50 Z bosonsper second!

⇒ LHC will be a W/Z factory (→ parton luminosity monitor) [Dittmar, Pauss, Zürcher,'97]



- $\checkmark$  Probe of the hard-scattering dynamics  $\rightarrow$  important test of the SM physics
  - clean signatures: direct  $\gamma$ , W/Z-boson ( $\rightarrow$  leptons)

- $\checkmark$  Probe of the hard-scattering dynamics  $\rightarrow$  important test of the SM physics
  - clean signatures: direct  $\gamma$ , W/Z-boson ( $\rightarrow$  leptons)
- Information on quark and gluon parton densities

- $\checkmark$  Probe of the hard-scattering dynamics  $\rightarrow$  important test of the SM physics
  - clean signatures: direct  $\gamma$ , W/Z-boson ( $\rightarrow$  leptons)
- Information on quark and gluon parton densities
- $\checkmark$   $\gamma$  + jet and Z + jet used for jet energy scale calibration

- $\checkmark$  Probe of the hard-scattering dynamics  $\rightarrow$  important test of the SM physics
  - clean signatures: direct  $\gamma$ , W/Z-boson ( $\rightarrow$  leptons)
- Information on quark and gluon parton densities
- $\checkmark$   $\gamma$  + jet and Z + jet used for jet energy scale calibration
- Background to Higgs production

 $(H \to \gamma \gamma, H \to WW^* \to l\nu l\nu, H \to ZZ \to ll\nu\nu, \ldots)$ 

and SUSY searches at the LHC

(typical signature  $E_T^{\text{miss}} + \text{jet} [+ l]$ )

### Introduction

#### LO $\ensuremath{p_{T}}$ distribution at the LHC



**Solution** Large cross sections at LO  $\Rightarrow$  good statistics;

Reducing theoretical error requires calculation of radiative corrections: here EW

### Gauge boson production at large $p_{\rm T}$

#### Theoretical status of higher order corrections

- $\mathcal{O}(\alpha_{\rm S})$  QCD corrections [Ellis, Martinelli, Petronzio'81] [Arnold, Reno'89][Arnold, Ellis, Reno'89] [Gonsalves, Pawłowski, Wai'89] [Giele, Glover, Kosower'93] [Melnikov, Petriello'06]
  - Implementations exist (DYRAD [Giele, Glover, Kosower'93], MCFM [Campbell, Ellis'02], FEWZ [Melnikov, Petriello'06], JETPHOX [Aurenche, Binoth, Fontannaz, Guillet, Heinrich, Pilon, Werlen]...)

### Gauge boson production at large $p_{\rm T}$

#### Theoretical status of higher order corrections

- $\mathcal{O}(\alpha_{\rm S})$  QCD corrections [Ellis, Martinelli, Petronzio'81] [Arnold, Reno'89][Arnold, Ellis, Reno'89] [Gonsalves, Pawłowski, Wai'89] [Giele, Glover, Kosower'93] [Melnikov, Petriello'06]
  - Implementations exist (DYRAD [Giele, Glover, Kosower'93], MCFM [Campbell, Ellis'02], FEWZ [Melnikov, Petriello'06], JETPHOX [Aurenche, Binoth, Fontannaz, Guillet, Heinrich, Pilon, Werlen]...)
- - $\gamma/Z$  production [Maina, Moretti, Ross'04]
  - $\gamma/Z/W^{\pm}$  production [*Kühn, A.K., Pozzorini,Schulze'05-07*] (analytic results and numerical predictions)
  - $W^{\pm}$  production [Hollik, Kasprzik, Kniehl '07]

 $\rightarrow$  see S. Pozzorini's talk

Solution: EW corrections: naively expected to be small  $[\mathcal{O}(\alpha) \sim \mathcal{O}(\alpha_s^2)]$ 

### Introduction

 $\rightarrow$  see S. Pozzorini's talk

- Solution: Section 2 EW corrections: naively expected to be small  $[\mathcal{O}(\alpha) \sim \mathcal{O}(\alpha_s^2)]$
- Systematic enhancements due to logarithmic (Sudakov) terms of the structure

 $\mathcal{O}(\alpha) \qquad \mathcal{O}(\alpha^2)$   $\alpha \log^2 \left(\frac{\hat{s}}{M_W^2}\right) \qquad \alpha^2 \log^4 \left(\frac{\hat{s}}{M_W^2}\right) \qquad \text{leading log (LL)}$   $\alpha \log \left(\frac{\hat{s}}{M_W^2}\right) \qquad \alpha \log^3 \left(\frac{\hat{s}}{M_W^2}\right) \qquad \text{next} - \text{to} - \text{leading log (NLL)}$ 

Typically, at  $\sqrt{\hat{s}} \sim 1$  TeV, one-loop corrections of  $\mathcal{O}(10\%)$ 

 $\rightarrow$  see S. Pozzorini's talk

- Solution: Section 2 ( $\alpha_s^2$ )
  Sector 2 ( $\alpha_s^2$ )
  EW corrections: naively expected to be small [ $\mathcal{O}(\alpha) \sim \mathcal{O}(\alpha_s^2)$ ]
- Systematic enhancements due to logarithmic (Sudakov) terms of the structure

 $\mathcal{O}(\alpha) \qquad \mathcal{O}(\alpha^2)$   $\alpha \log^2 \left(\frac{\hat{s}}{M_W^2}\right) \qquad \alpha^2 \log^4 \left(\frac{\hat{s}}{M_W^2}\right) \qquad \text{leading log (LL)}$   $\alpha \log \left(\frac{\hat{s}}{M_W^2}\right) \qquad \alpha \log^3 \left(\frac{\hat{s}}{M_W^2}\right) \qquad \text{next} - \text{to} - \text{leading log (NLL)}$ 

Typically, at  $\sqrt{\hat{s}} \sim 1$  TeV, one-loop corrections of  $\mathcal{O}(10\%)$ 

- Solution Origin: soft/collinear emission of virtual massive gauge bosons (W, Z)
  - real radiation possible to observe \Rightarrow no compensation of virtual emission by real radiation
  - finite logarithmic corrections => different from massless gauge theories such as QCD or QED

 $\mathcal{O}(\alpha)$  corrections to  $q^{(-)} \to Vg$ 



#### Loop corrections: IR-finite

**Solution** Real corrections: W, Z emission assumed possible to be observed  $\rightarrow$  not calculated

# $\mathcal{O}(\alpha)$ corrections to $q^{(-)} \to Vg$

 $W^{\pm}$  production [Kühn, A.K., Pozzorini, Schulze'05-07]  $(V_1, V_2) = (V'', W^{\pm})$  with  $V'' = (\gamma, Z), V' = (\gamma, Z, W^{\pm})$  or  $V' = (\gamma, Z)$  $\sim$ 000000 V' $V' \leq V$  $V' \leq$ V' 5 000000 (s1)(v1)(s2)(v2)000000 000000  $\int V_2$ VY V' $\int \sum_{V_1} V_1$ (v3)(v4)(v5)(v6) $\sim$ 000  $V_2$ 000 (b1) (b2)(b3)

Loop corrections: IR-singular (photons)

A. Kulesza, EW corrections to hadronic gauge boson production at large  $p_{\rm T}$  – p. 6/23

# $\mathcal{O}(\alpha)$ corrections to $q^{(-)} \to Vg$



Loop corrections: IR-singular (photons)

Seal corrections: W, Z emission assumed possible to be observed  $\rightarrow$  not calculated photon emission IR-singular  $\rightarrow$  needs to be calculated

Results for  $\mathcal{O}(\alpha)$  corrections to  $q(q) \to Vg$ 

[Kühn, A.K., Pozzorini, Schulze'05-07]

Analytical one-loop result (Passarino - Veltman tensor reduction)

Schematically

$$\overline{\sum} |\mathcal{M}_{1,\mathbf{v}}^{q_i q_j \to Vg}|^2 \sim \sum_{i=1}^{N_V} \sum_{V'=A,Z,W^{\pm}} C_i^{V \ V'} H_V^i(M_{V'})$$

$$N_V = 2$$
 for  $V = A, Z,$   $N_V = 4$  for  $V = W^{\pm}$ 

$$H_{V}^{i}(M_{V'}^{2}) = \operatorname{Re}\left[\sum_{j=0}^{i} K_{V,j}^{i}(M_{V'}^{2}) J_{j}(M_{V'}^{2})\right]$$

Basis of 14 scalar integrals

 $J_0(M_{V'}^2) = 1 \qquad J_2(M_{V'}^2) \dots J_6(M_{V'}^2) = B_0(\dots) \qquad J_{12}(M_{V'}^2) \dots J_{14}(M_{V'}^2) = J_1(M_{V'}^2) = A_0(M_{V'}^2) \qquad J_7(M_{V'}^2) \dots J_{11}(M_{V'}^2) = C_0(\dots) \qquad \text{comb. of } C_0(\dots) \& D_0(\dots)$ 

• Compact expressions for coefficients  $K_{V,j}^i$  (rational functions of kin. variables)

# Results for $\mathcal{O}(\alpha)$ corrections to $q \stackrel{(-)}{q} \to V g$

[Kühn, A.K., Pozzorini, Schulze'05-07]

Analytical one-loop result (Passarino - Veltman tensor reduction)

 $\checkmark$  UV divergencies  $\rightarrow$  dim. reg., renormalization : add CTs

# Results for $\mathcal{O}(\alpha)$ corrections to $q^{(-)} \to Vg$

[Kühn, A.K., Pozzorini, Schulze'05-07]

Analytical one-loop result (Passarino - Veltman tensor reduction)

- $\checkmark$  UV divergencies  $\rightarrow$  dim. reg., renormalization : add CTs
- For  $W^{\pm}$  production: IR singularities (photons in the loops)

regularized in two schemes

- $\Rightarrow$  mass regularization: small quark mass m and photon mass  $\lambda$
- $\Rightarrow$  dim. reg.

# Results for $\mathcal{O}(\alpha)$ corrections to $q^{(-)} \to Vg$

[Kühn, A.K., Pozzorini, Schulze'05-07]

Analytical one-loop result (Passarino - Veltman tensor reduction)

- $\checkmark$  UV divergencies  $\rightarrow$  dim. reg., renormalization : add CTs
- For  $W^{\pm}$  production: IR singularities (photons in the loops)

regularized in two schemes

- $\Rightarrow$  mass regularization: small quark mass m and photon mass  $\lambda$
- $\Rightarrow$  dim. reg.

# Results for $\mathcal{O}(\alpha)$ corrections to $q \stackrel{(-)}{q} \to V g$

- **Solution** Real corrrections for  $W^{\pm}$  production
  - Subtraction formalism

$$\sigma^{\mathsf{NLO}} = \int_{m+1} \left( d\sigma^{\mathsf{R}} - d\sigma^{\mathsf{A}} \right) + \int_{m} \left( d\sigma^{\mathsf{V}} + \int_{1} d\sigma^{\mathsf{A}} \right)$$

# Results for $\mathcal{O}(\alpha)$ corrections to $q^{(-)} \rightarrow Vg$

- **Solution** Real corrrections for  $W^{\pm}$  production
  - Subtraction formalism

$$\sigma^{\mathsf{NLO}} = \int_{m+1} \left( d\sigma^{\mathsf{R}} - d\sigma^{\mathsf{A}} \right) + \int_{m} \left( d\sigma^{\mathsf{V}} + \int_{1} d\sigma^{\mathsf{A}} \right)$$

- Dipole subtraction method
  - $\Rightarrow$  photon radiation off massless or massive fermions: mass regularization [*Dittmaier '00*]
  - ⇒ QCD radiation off massless or massive partons: dimensional regularization, easily adopted to QED radiation [*Catani, Seymour '97; Catani, Dittmaier, Seymour, Trócsanyi '02*]

# Results for $\mathcal{O}(\alpha)$ corrections to $q^{(-)} \to Vg$

- **Solution** Real corrrections for  $W^{\pm}$  production
  - Subtraction formalism

$$\sigma^{\mathsf{NLO}} = \int_{m+1} \left( d\sigma^{\mathsf{R}} - d\sigma^{\mathsf{A}} \right) + \int_{m} \left( d\sigma^{\mathsf{V}} + \int_{1} d\sigma^{\mathsf{A}} \right)$$

- Dipole subtraction method
  - $\Rightarrow$  photon radiation off massless or massive fermions: mass regularization [*Dittmaier '00*]
  - ⇒ QCD radiation off massless or massive partons: dimensional regularization, easily adopted to QED radiation [*Catani, Seymour '97; Catani, Dittmaier, Seymour, Trócsanyi '02*]

Results always obtained with two independent codes within the collaboration

# Results for $\mathcal{O}(\alpha)$ corrections to $q^{(-)} \to Vg$

- Similar Final state W + jet with  $p_T^{\text{jet}} > p_T^{\text{jet,c}}$ Collinear singularity ( $q\gamma W$  state)
  - Here: recombination of momenta for collinear  $q\gamma$  configurations if  $R(q, \gamma) = \sqrt{(n_q - n_\gamma)^2 + (\phi_q - \phi_\gamma)^2} < R_{sep}$  then  $p_{jet} = p_q + p_\gamma$

# Results for $\mathcal{O}(\alpha)$ corrections to $q^{(-)} \rightarrow Vg$

- Similar Final state W + jet with  $p_T^{\text{jet}} > p_T^{\text{jet,c}}$ Collinear singularity ( $q\gamma W$  state)
  - Here: recombination of momenta for collinear  $q\gamma$  configurations if  $R(q,\gamma) = \sqrt{(n_q - n_\gamma)^2 + (\phi_q - \phi_\gamma)^2} < R_{sep}$  then  $p_{jet} = p_q + p_\gamma$
  - In [Hollik, Kasprzik, Kniehl '07] instead of W+jet production, high  $p_T W$  production considered (more inclusive quantity, LO +  $O(\alpha_s)$  correction to  $W\gamma$  production calculated)

# Results for $\mathcal{O}(\alpha)$ corrections to $q^{(-)} \to Vg$

- Solution Final state W + jet with  $p_T^{\text{jet}} > p_T^{\text{jet,c}}$ Collinear singularity ( $q\gamma W$  state)
  - Here: recombination of momenta for collinear  $q\gamma$  configurations if  $R(q,\gamma) = \sqrt{(n_q - n_\gamma)^2 + (\phi_q - \phi_\gamma)^2} < R_{sep}$  then  $p_{jet} = p_q + p_\gamma$
  - In [Hollik, Kasprzik, Kniehl '07] instead of W+jet production, high  $p_T W$  production considered (more inclusive quantity, LO +  $O(\alpha_s)$  correction to  $W\gamma$  production calculated)
- Initial state collinear singularities absorbed in the pdfs
  - **●**  $O(\alpha)$  effects in MRST2004QED (NLO QCD evolution)
  - $\checkmark$  This is a LO calculation in QCD  $\rightarrow$  MRST2001 LO pdfs
  - $\mathcal{O}(\alpha)$  effects known to be small [Roth, Weinzierl '04]
  - Photon-induced contributions suppressed by  $\alpha/\alpha_s$  wrt  $\mathcal{O}(\alpha^2\alpha_s) \Rightarrow$  not included here; found to be non-negligible numerically [Hollik, Kasprzik, Kniehl '07]

### $\mathcal{O}(\alpha)$ corrections to $pp \rightarrow W^+ + 1$ jet at the LHC



Corrections negative; range from -15% at 500 GeV up to -42% at 2 TeV

LO MRST2001 pdf's,  $R_{sep} = 0.4$ ,  $p_T^{jet,c}$ =100 GeV, $\alpha_s(M_Z) = 0.13$ ,  $\mu_F^{QCD} = \mu_R^{QCD} = p_T$ ,  $\mu_F^{QED} = M_W$ ,  $G_\mu$  scheme,  $\alpha(M_Z)$ =1/127.9,  ${s_W}^2 = 0.231$ ,  $M_Z$ = 91.19 GeV,  $M_W = c_W M_Z$ ,  $m_t = 175$  GeV,  $m_H = 130$  GeV

A. Kulesza, EW corrections to hadronic gauge boson production at large  $p_{\rm T}$  – p. 10/23

### $\mathcal{O}(\alpha)$ corrections to $pp \rightarrow W^+ + 1$ jet at the LHC

Integrated  $\Delta \sigma(p_{\rm T}^{\rm cut})$  vs.  $\Delta \sigma_{\rm stat} = \frac{\sigma}{\sqrt{N}}$   $N = \mathcal{L} \times {\rm BR}(Z \rightarrow l, \nu_l) \times \sigma_{\rm LO}$  ${\rm BR}(W^+ \rightarrow l, \nu_l) = 30.6\%, \mathcal{L} = 300 \text{ fb}^{-1}$ 



- Corrections negative; range from -15% at 500 GeV up to -42% at 2 TeV
- Size of the integrated corrections much bigger than the statistical error!

### $\mathcal{O}(\alpha)$ corrections to $pp \rightarrow W^- + 1$ jet at the LHC

Integrated  $\Delta \sigma(p_{\rm T}^{\rm cut})$  vs.  $\Delta \sigma_{\rm stat} = \frac{\sigma}{\sqrt{N}}$   $N = \mathcal{L} \times {\rm BR}(Z \rightarrow l, \nu_l) \times \sigma_{\rm LO}$  ${\rm BR}(W^+ \rightarrow l, \nu_l) = 30.6\%, \mathcal{L} = 300 \text{ fb}^{-1}$ 



**Source** Corrections negative; behaviour quantitatively very similar to  $W^+$ 

Size of the integrated corrections much bigger than the statistical error!

### $\mathcal{O}(\alpha)$ corrections to $pp \rightarrow Z + 1$ jet at the LHC



Corrections negative; range from -13% at 500 GeV up to -37 % at 2 TeV

LO MRST2001 pdf's,  $\alpha_s(M_Z) = 0.13$ ,  $\mu_F = \mu_R = p_T$ ,  $\overline{MS}$  scheme,  $\alpha(M_Z)$ =1/127.9,  $s_W^2 = 0.231$ ,  $M_Z$ = 91.19 GeV,  $M_W = c_W M_Z$ ,  $m_t = 175$  GeV,  $m_H = 130$  GeV

### $\mathcal{O}(\alpha)$ corrections to $pp \rightarrow Z + 1$ jet at the LHC

Integrated  $\Delta \sigma(p_{\rm T}^{\rm cut})$  vs.  $\Delta \sigma_{\rm stat} = \frac{\sigma}{\sqrt{N}}$   $N = \mathcal{L} \times {\rm BR}(Z \rightarrow l, \nu_l) \times \sigma_{\rm LO}$  ${\rm BR}(Z \rightarrow l, \nu_l) = 30.6\%, \mathcal{L} = 300 \,{\rm fb}^{-1}$ 



Corrections negative; range from -13% at 500 GeV up to -37 % at 2 TeV

Size of the integrated corrections much bigger than the statistical error!

### $\mathcal{O}(\alpha)$ corrections to $pp \rightarrow \gamma + 1$ jet at the LHC



Corrections negative; range from -6% at 500 GeV up to -17 % at 2 TeV

LO MRST2001 pdf's,  $\alpha_s(M_Z^2) = 0.13$ ,  $\mu_F = \mu_R = p_T$ OS scheme,  $\alpha(0) = 1/137$ ,  $s_W^2 = 1 - M_W^2/M_Z^2$ ,  $M_Z = 91.19$  GeV,  $M_W = 80.39$  GeV

### $\mathcal{O}(\alpha)$ corrections to $pp \rightarrow \gamma + 1$ jet at the LHC





- Corrections negative; range from -6% at 500 GeV up to -17 % at 2 TeV
- Size of the integrated corrections much bigger than the statistical error!

#### High-energy approximation of the one-loop result

NNLL approximation: high energy limit of the NLO result for  $\overline{\sum} |\mathcal{M}^{q_i q_j}|^2$  $M_W^2/\hat{s} \rightarrow 0$  (  $\hat{t}/\hat{s}, \, \hat{u}/\hat{s}$  constant) [Roth, Denner'96] terms with  $\alpha \ln^2(\frac{\hat{s}}{M_W^2})$ ,  $\alpha \ln(\frac{\hat{s}}{M_W^2})$  and constants NNLL  $(V = \gamma, Z)$ NEL  $H_1^{V,A/N}(M_{V'}^2) \stackrel{\text{NNLL}}{=} \text{Re} \left[ g_0^{V,A/N}(M_{V'}^2) \frac{t^2 + \hat{u}^2}{\hat{t}\hat{\omega}} + g_1^{V,A/N}(M_{V'}^2) \frac{t^2 - \hat{u}^2}{\hat{t}\hat{\omega}} + g_2^{V,A/N}(M_{V'}^2) \right]$  $g_0^{V,A}(M_{V'}^2) = -\log^2\left(\frac{-\hat{s}}{M_{V'}^2}\right) + 3\log\left(\frac{-\hat{s}}{M_{V'}^2}\right) + \frac{3}{2}\left|\log^2\left(\frac{t}{\hat{s}}\right) + \log^2\left(\frac{\hat{u}}{\hat{s}}\right) + \log\left(\frac{t}{\hat{s}}\right) + \log\left(\frac{\hat{u}}{\hat{s}}\right)\right| + \frac{7\pi^2}{3} - \frac{5}{2}$  $g_0^{V,N}(M_W^2) = 2\left[2/(4-D) - \gamma_E + \log\left(\frac{4\pi\mu^2}{M_Z^2}\right) - \delta_{V\gamma}\log\left(\frac{M_W^2}{M_Z^2}\right)\right] + \log^2\left(\frac{-\hat{s}}{M_W^2}\right) - \log^2\left(\frac{-\hat{t}}{M_W^2}\right) - \log^2\left(\frac{-\hat{u}}{M_W^2}\right)\right]$  $+\log^2\left(\frac{\hat{t}}{\hat{u}}\right) - \frac{3}{2}\left[\log^2\left(\frac{\hat{t}}{\hat{s}}\right) + \log^2\left(\frac{\hat{u}}{\hat{s}}\right)\right] - 2\pi^2 + 2\delta_{VZ}\left(-\frac{\pi^2}{9} - \frac{\pi}{\sqrt{3}} + 2\right)$  $g_1^{V,N}(M_{V'}^2) = -g_1^{V,A}(M_{V'}^2) + \frac{3}{2} \left[ \log\left(\frac{\hat{u}}{\hat{s}}\right) - \log\left(\frac{\hat{t}}{\hat{s}}\right) \right] = \frac{1}{2} \left[ \log^2\left(\frac{\hat{u}}{\hat{s}}\right) - \log^2\left(\frac{\hat{t}}{\hat{s}}\right) \right]$  $g_2^{V,N}(M_{V'}^2) = -g_2^{V,A}(M_{V'}^2) = -2\left[\log^2\left(\frac{\hat{t}}{\hat{s}}\right) + \log^2\left(\frac{\hat{u}}{\hat{s}}\right) + \log\left(\frac{\hat{t}}{\hat{s}}\right) + \log\left(\frac{\hat{u}}{\hat{s}}\right)\right] - 4\pi^2$  $q_i^{\gamma, A} = q_i^{Z, A}$  for i = 0, 1, 2  $q_i^{\gamma, N} = q_i^{Z, N}$  for j = 1, 2

 $\rightarrow$  extremely compact analytic formulae for NNLL approximation (also for  $W^{\pm}$ )

A. Kulesza, EW corrections to hadronic gauge boson production at large  $p_{\rm T}$  – p. 14/23

### High-energy approximation of the one-loop result





NLL approximation: percent (or better) level

 $\sim$  1% deviation from NLO at low  $p_T$ 

 $\sim$  0.2% deviation from NLO at  $p_T=2~{
m TeV}$ 

- NNLL approximation: permille level
- **Similar behaviour for**  $W^{\pm}$  and  $\gamma$  production

### **NLL** approximation at two loops

Phys. Lett. B 609 (2005) 277, JHEP 0603 (2006) 059, Phys. Lett B 651 (2007) 160

### NLL approximation at two loops

#### Phys. Lett. B 609 (2005) 277, JHEP 0603 (2006) 059, Phys. Lett B 651 (2007) 160

- Solution Electroweak corrections in the high energy region:  $|\hat{r}| \gg M_W^2 \sim M_Z^2$  for  $\hat{r} = \hat{s}, \ \hat{t}, \ \hat{u}$
- $\rightarrow$  Calculations based on results available in the literature:

#### 1-loop

factorization and universality of 1-loop EW corrections at the LL and NLL level  $\alpha \log^2 \left(\frac{|\hat{r}|}{M_W^2}\right)$ ,  $\alpha \log \left(\frac{\hat{s}}{M_W^2}\right)$  for arbitrary processes [*Denner, Pozzorini'01*] 2- loop

LL  $\alpha^2 \log^4 \left(\frac{\hat{s}}{M_W^2}\right)$  and NLL "angular"  $\alpha^2 \log^3 \left(\frac{\hat{s}}{M_W^2}\right) \left(\frac{|\hat{r}|}{M_W^2}\right)$  terms for arbitrary processes [*Denner, Melles, Pozzorini'03*] + remaining NLL terms with  $\alpha^2 \log^3 \left(\frac{\hat{s}}{M_W^2}\right)$  from general resummation formula [*Melles'02,'03*]

[Denner, Janzen, Pozzorini'06]

### **NLL** approximation

#### W production

$$\overline{\sum} |\mathcal{M}_{2}^{\bar{q}q' \to W^{\sigma}g}|^{2} \stackrel{NLL}{=} \overline{\sum} |\mathcal{M}_{0}^{\bar{q}q' \to W^{\sigma}g}|^{2} \left[ 1 + \left(\frac{\alpha}{2\pi}\right) A^{(1)} + \left(\frac{\alpha}{2\pi}\right)^{2} A^{(2)} \right]$$
$$A^{(1)} = -\left[ C_{qL}^{\text{ew}} \left( L_{\hat{s}}^{2} - 3L_{\hat{s}} \right) + \frac{1}{s_{W}^{2}} \left( L_{\hat{t}}^{2} + L_{\hat{u}}^{2} - L_{\hat{s}}^{2} \right) \right]$$
$$L_{\hat{r}} = \log \left( \frac{|\hat{r}|}{M_{W}^{2}} \right), \ \hat{r} = \hat{s}, \hat{t}, \hat{u}; \qquad C_{qL}^{\text{ew}} = \frac{Y_{qL}^{2}}{4c_{W}^{2}} + \frac{3}{(4s_{W}^{2})}$$

 $\Rightarrow$  agreement with the NLL limit of the full one-loop result

# **NLL** approximation

#### W production

$$\begin{split} \overline{\sum} |\mathcal{M}_{2}^{\bar{q}q' \to W^{\sigma}g}|^{2} \stackrel{NLL}{=} \overline{\sum} |\mathcal{M}_{0}^{\bar{q}q' \to W^{\sigma}g}|^{2} \left[ 1 + \left(\frac{\alpha}{2\pi}\right) A^{(1)} + \left(\frac{\alpha}{2\pi}\right)^{2} A^{(2)} \right] \\ A^{(1)} &= - \left[ C_{qL}^{\text{ew}} \left( L_{\hat{s}}^{2} - 3L_{\hat{s}} \right) + \frac{1}{s_{W}^{2}} \left( L_{\hat{t}}^{2} + L_{\hat{u}}^{2} - L_{\hat{s}}^{2} \right) \right] \\ A^{(2)} &= \left\{ \frac{1}{2} \left( C_{qL}^{\text{ew}} + \frac{1}{s_{W}^{2}} \right) \left[ \left( L_{\hat{s}}^{4} - 6L_{\hat{s}}^{3} \right) + \frac{1}{s_{W}^{2}} \left( L_{\hat{t}}^{4} + L_{\hat{u}}^{4} - L_{\hat{s}}^{4} \right) \right] \\ &+ \frac{1}{6} \left[ \frac{b_{1}}{c_{W}^{2}} \left( \frac{Y_{qL}}{2} \right)^{2} + \frac{7}{8} \frac{b_{2}}{s_{W}^{2}} \right] L_{\hat{s}}^{3} \end{split}$$

$$L_{\hat{r}} = \log\left(\frac{|\hat{r}|}{M_W^2}\right), \ \hat{r} = \hat{s}, \hat{t}, \hat{u}; \qquad C_{q_L}^{\text{ew}} = \frac{Y_{q_L}^2}{4c_W^2} + \frac{3}{4s_W^2}, \qquad b_1 = -\frac{41}{6c_W^2}, \qquad b_2 = \frac{19}{6s_W^2}$$

 $\rightarrow$  similar analytic results for neutral gauge boson production

#### **NLL approximation: 2-loop results**

Large  $p_T W^+$ -boson production at the LHC



### **NLL approximation: 2-loop results**

Large  $p_T W^+$ -boson production at the LHC



- NLL 2-loop terms positive, up to 10% contribution (at 2 TeV)
- 1-loop + 2-loop NLL amount to up to -33% correction (at 2 TeV)
- **Solution** For large range of  $p_T$  values 2-loop effects comparable with statistical error!
- ${}$  very similar numbers for  $W^-$ , qualitatively similar behaviour for Z and  $\gamma$

#### Ratio of the $p_T$ distributions: $\gamma$ to Z

- Solution of theoretical uncertainties (PDFs,  $\alpha_{\rm S}$ )
- Stability wrt. QCD corrections



- **Solution** Ratio of the LO distributions:  $\frac{d\sigma^{\gamma}}{dp_T} / \frac{d\sigma^Z}{dp_T} \sim 0.7 0.8$
- Solution EW corrections modify the ratio; strongest effect at large  $p_T$ NLO:  $\frac{d\sigma^{\gamma}}{dp_T} / \frac{d\sigma^Z}{dp_T} \sim 0.75 - 1$ , NNLO:  $\frac{d\sigma^{\gamma}}{dp_T} / \frac{d\sigma^Z}{dp_T} \sim 0.75 - 0.95$

A. Kulesza, EW corrections to hadronic gauge boson production at large  $p_{\rm T}$  – p. 19/23

#### Ratio of the $p_T$ distributions: $W^+$ to $W^-$ , $W^+$ to Z



#### A. Kulesza, EW corrections to hadronic gauge boson production at large $p_{\rm T}$ – p. 20/23

#### Gauge boson production at the Tevatron



- $L = 11 \mathrm{fb}^{-1}$
- NLO corrections bigger than stat. error
- NLL 2-loop corrections small





- No real corrections for exclusive processes
- Effects from real weak boson emission for inclusive processes
- Violation of Bloch-Nordsieck theorem for non-abelian gauge theories  $\implies$  logarithmic terms survive

[Catani, M.Ciafaloni, P. Ciafaloni, Comelli]

Moderate effects at the LHC



A. Kulesza, EW corrections to hadronic gauge boson production at large  $p_{\rm T}$  – p. 22/23

### Summary

- Analytic results for the full  $\mathcal{O}(\alpha)$  correction to the  $p_T$  distribution of W-bosons, Z-bosons and direct photons
- INNLL approximation of the NLO: compact expression, excellent approximation
- NLL approximation: 1-loop and 2-loop corrections
- Source Conclusion: EW corrections important for the precise knowledge of the production cross sections at large  $p_T$  (large logs at TeV scales!)
  - Negative 1-loop corrections of the order of tens of percent at high  $p_{\rm T}$  at the LHC
  - Positive 2-loop NLL corrections of the order of several percent at high  $p_T$  at the LHC ⇒ relevant for the analysis!
  - Solution Ratio  $\frac{d\sigma^{\gamma}}{dp_{T}} / \frac{d\sigma^{Z}}{dp_{T}}$  and  $\frac{d\sigma^{W^{\pm}}}{dp_{T}} / \frac{d\sigma^{Z}}{dp_{T}}$ : significant effects due to EW corrections at large  $p_{T}$
  - Same study for the Tevatron: corrections less significant numerically

# Backup: High-energy approximation of the one-loop



#### $W^+$ production at the LHC

NLL approximation: percent (or better) level

 $\sim$  1% deviation from NLO at low  $p_T$ 

 $\sim$  0.2% deviation from NLO at  $p_T=2~{
m TeV}$ 

- NNLL approximation: permille level
- **Similar behaviour for**  $W^-$  production

### **Backup: NLL approximation: 2-loop results**

Large  $p_T$  Z-boson production at the LHC



- NLL 2-loop terms positive, up to 8% contribution (at 2 TeV)
- 1-loop + 2-loop NLL amount to up to -30% correction (at 2 TeV)
- **Solution** For large range of  $p_T$  values 2-loop effects comparable with statistical error!

### **Backup: NLL approximation: 2-loop results**

#### Large $p_T$ photon production at the LHC



- NLL 2-loop terms positive, up to 3% contribution (at 2 TeV)
- 1-loop + 2-loop NLL amount to up to -14% correction (at 2 TeV)
- **Solution** For large range of  $p_T$  values 2-loop effects comparable with statistical error!