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ntroduction: IR-singularities of massive n-point functions

~

We collected some experience in using Mellin-Barnes (MB) representations for
massive loop diagrams

They have proven very useful for the separation — and also evaluation — of the poles
in € = (4 —d)/2 even for very complicated diagrams

often quoted: V. Smirnov (and G. Heinrich) and B. Tausk, planar and non-planar
massive double boxes.

An interesting simpler application — with a potential of automatization — is
demonstrated here:

One-loop n-point functions with both virtual and real massless particles.

They produce both 1/¢-poles from the virtual massless lines and the so-called
end-point singularities from the phase space integrals with [ dFE/E — oo from E =0

The MB-approach might be an ideal tools for the treatment of that at the
amplitude level.

The mathematica packages MB.m (Czakon, CPC 2005) and AMBRE.m (Gluza,
Kajda, Riemann, arXiv:0704.2423, CPC) are well-suited for that.

The result is not only numerical.

We present here a representation in terms of inverse binomial sums and HPL'’s. /
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Example since now: The 5-point function of Bhabha scattering

Radiative loop diagrams contribute to the NNLO corrections by interfering with
radiative Born diagrams:

D1 —D2

—P3

—P4
D5

Figure 1: A pentagon topology and a Born topology
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/Five of the invariants are independent, e.g.:

s = (p1+ps)°

t = (pa+ps),

' = (p1+p2)°,
Vo = 2paps ~ LB,
Vi = 2p4ps ~ E,

The invariants V; = 2p;p; appear also in the Born diagrams and produce the so-called
endpoint singularities:

1 1 1 1 1

(p2 +p3)2—m2  2pops + [p3 —m?] +[p3 —0] Vo 2E,E>(1—fBacosd) E,

The photon phase space integral is typically:

d3 1 w
/ 25; VoV ~ /o dE/E = In(E)[§ =In(w) — In(0) = divergent
w B 1 diw w2€ _0 o
— /O dE/E® d _ d_4Ed 4’0 —— _ finite

We have to safely control the dependence on V5, V, as part of the mixed infrared

\problem due to the common existence of virtual and real IR-sources.

—~~ ~ ~~
S~ W N
~— ~— ~— —

(5)

/
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Consider now only the scalar 5-point function.
the massless propagators are ds = k? and dy = (k + p; + ps)>.
The leading singularity is easily found algebraically:

1 1 [2k(k+pr+p) 1 1
didadsdsds s dydadsdyds didadsdy  dydsdyds

The two IR-divergent 4-point functions trace to one IR-div. 3-point f. each, e.g.

1 1 [2k(k+pr+pstps) 1 1
dydzdsds Vs didzdads didzds  didads
and the resulting IR-part is:
/ddk _1/ddk+1/ddk+
d1d2d3d4d5 B SV2 d1d4d5 SV4 d1d2d3
L [F( F(t
_ L[EW)  FO]
€ SV2 SV4

Evidently, one separates only a leading singularity, while we expect an expression like

dk Ay As B By Cy Oy
= In(Va) + —= In(V;
/ d1d2d3d4d5 SV2€ + SV4€ + SV2 Il( 2) + SV4 Il( 4) + SVQ + SV4 +

-

(6)
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Mellin-Barnes representation for the QED pentagon

The chords ¢; are defined from the propagators: d; = [(k — q;)* — m?]

BlAw) = e [ Hdaw( sz>3—§f€3<q>,

with B(1) =1, B(¢") = Q", B(¢"¢") = Q"Q" — 1g""F(z)/(2+¢€), and Q" = ;4"

The diagram depends on five variables and the I'-form is:

F(z) = m2(xo+ a4+ 25)° + [—s|r123 + [~ Vi]zsxs + [—t]woxs + [t |xoxs + [~ Va]z124.
(7)

Henceforth, m. = 1. Photon momentum is ps.

The MB-representation,

1 1 T By - IR+ 2)I'(—=2)

is used several times for replacing in F(z) the sum over z;z; by products of monomials
in the z;x;, thus allowing the subsequent z-integrations in a simple manner.

- /
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Why the Mellin-Barnes integrals?

We want to apply a simple formula for integrating over the z;:

1 N
a;—1 (o) T'(an)
. ,‘7 1— O S p— f—

with coefficients «; dependent on F

For this, we have to apply several MB-integrals here:

F(zx) = mg(ajg + x4 + :C5)2 + [=s]zix3 + [ Vi]xsws + [—tlwoxy + [—tw2x5 + [ Vo]T124.
(8)

For each of the +-sign one MB-integral , so arrive at a 7-dimensional path integral.

- /
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/ d2[A(s)a! P[B(s)z ] M2 DA+ 2)D(—2)

— 100

1 1
[A(s)2% + B(s)zb ab2)r 2w T(A)

The integration path has to separate the chains of poles of ['(\ + z) and I'(—2):

! Im:2
(" I 2

N S 1\—:
° o o )\
—

Re
Fe
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(~1)n A

ResF[z]['(A +2)|,=—n = mF[—n], n=—-A-A-1,---
ResFIAT(1 +2)2|,—, = r[;]z (2F|—n]PolyGammaln] + F'[—n])
ResF[z]T[1 4 z]PolyGammal[l + z]|,—_, = <;[2]n F'[—n]

with the definitions

N
i=1

and
S1|N] = HarmonicNumber[n-1] - EulerGamma = PolyGamma|n]

-
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e N. Usyukina, 1975: "ON A REPRESENTATION FOR THREE POINT FUNCTION", Teor.

~

little history

Mat. Fiz. 22;
a finite massless off-shell 3-point 1-loop function represented by 2-dimensional MB-integral

E. Boos, A. Davydychev, 1990: "A Method of evaluating massive Feynman integrals”,
Theor. Math. Phys. 89 (1991);
N-point 1-loop functions represented by n-dimensional MB-integral

V. Smirnov, 1999: " Analytical result for dimensionally regularized massless on-shell double
box", Phys. Lett. B460 (1999);

treat UV and IR divergencies by analytical continuation: shifting contours and taking
residues 'in an appropriate way’

B. Tausk, 1999: "Non-planar massless two-loop Feynman diagrams with four on-shell legs”,
Phys. Lett. B469 (1999);

nice algorithmic approach to that, starting from search for some unphysical space-time
dimension d for which the MB-integral is finite and well-defined

M. Czakon, 2005 (with experience from common work with J. Gluza and TR): " Automatized
analytic continuation of Mellin-Barnes integrals”, Comput. Phys. Commun. (2006);

Tausk's approach realized in Mathematica program MB.m, published and available for use/
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We derive MB-representations with AMBRE, a publicly available Mathematica package
J. Gluza, K. Kajda, T. Riemann, arXiv:0704.2423 [hep-ph], to appear in CPC

AMBRE - Automatic Mellin-Barnes Representations for Feynman diagrams

For the Mathematica package AMBRE, many examples, and the program description,
see:

http://prac.us.edu.pl/~gluza/ambre/
http://www-zeuthen.desy.de/theory/research /CAS.html

See also here:

http://www-zeuthen.desy.de/~riemann/Talks/capp07/

with additional material presented at the CAPP — School on Computer Algebra in
Particle Physics, DESY, Zeuthen, March 2007

- /




-

T. Riemann, RADCOR, Oct 1-5, 2007, GGI, Florence
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A AMBRE functions list

The basic functions of AMBRE are:

e Fullintegral[{numerator},{propagators},{internal momenta}] — is the basic
function for input Feynman integrals

e invariants — is a list of invariants, e.g. invariants = {p1*pl — s}

e IntPart[iteration] — prepares a subintegral for a given internal momentum by collect-
ing the related numerator, propagators, integration momentum

e Subloop|integral] — determines for the selected subintegral the U and F polynomials
and an MB-representation

e ARint[result,i | — displays the MB-representation number i for Feynman integrals
with numerators

e Fauto[0] — allows user specified modifications of the F' polynomial fupc

e BarnesLemmalrepr,1,Shifts->True] — function tries to apply Barnes’ first lemma
to a given MB-representation; when Shifts->True is set, AMBRE will try a simplifying
shift of variables
BarnesLemma|repr,2,Shifts->True] — function tries to apply Barnes’ second lemma
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AMBRE.m examples http://prac.us.edu.pl/~gluza/ambre/

1von2

AMBRE - Automatic Mellin-Barnes REpresentation
(arXiv:0704.2423)

To download 'right click' and 'save target as'.

© The package AMBRE.m
© Kinematics generator for 4- 5- and 6- point functions with any external legs KinematicsGen.m
O Tarball with examples given below examples.tar.gz

= examplel.nb, example2.nb - Massive QED pentagon diagram.

L

= example3.nb - Massive QED one-loop box diagram.

il

= example4.nb - General one-loop vertex.

i} = Mj
=y P i
— my
m3
B=Ms
= example5.nb - Six-point scalar functions;
left: massless case,
right: massive case.
,-‘\ 4 ///
- ~ [ P
\\\ r~ N

= example6.nb - left, example7.nb - right
Massive two-loop planar QED box.
iy &

Pt Ps
®(ky + pL+ g+ pa)

P Py

= example8.nb - The loop-by-loop iterative procedure.

22.04.2007 13:15
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2
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/IVIB—representation for the scalar massive QED pentagon \

In our example we get a seven-fold MB-representation, reduce to a four-fold
representations after three times applying Barnes’ lemma in order to eliminate 2
spurious integrations from the mass term. and one from setting ¢’ = ¢ (Born kinematics
assumed here).

4

+i00+u; :
—eE / reoTd Hj:l..12 L;

]5 — dzi(—s)z2 (_t)z4 (_V2>z3 (_V4)—3—e—z1—z2—z3—z4

(2mi)* - J o tus INIRTINVEN

with a normalization 'y = I'|—1 — 2¢|, and the other I'-functions are:

Fl = F[—Zl], FQ—F[—ZQ], F3:F[—Z3], F4:F[1—|—23],
F5 = F[1—|—Z2—|—23], FGZF[—Z4], F7:F[1—|—Z4], ngF[—l—e—zl—z2],
Fg = F[—Z—G—Zl—ZQ—Zg—Z4], Flozr[—2—€—21—23—Z4],
Fll = F[—€+Zl—22—|—24], F12 :F[3—|—6—|—Zl—|—22—|—23—|—24],
and
F13 = F[—1—6—21—22—Z4], F14:F[—€—21—22+Z4].

This is a finite integral if all I'-functions in the numerator have positive real parts of the

\arguments. /
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May be fulfilled with:
e=—3/4

The real shifts u; of the integration strips r; are:

up = -—5H/8
uy = -—7/8
us = —1/16
ug = —5H/8
us = —1/32
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Analytical continuation in ¢ and deformation of integration contours

A well-defined MB-integral was found with the finite parameter ¢ and the strips parallel
to the imaginary axis.

Now look at the real parts of arguments of ['-functions (in the numerator only) and find
out, which of them change sign (become negative) when ¢ — 0

Rule:

Moving ¢ — 0 corresponds to a step-wise analytical continuation of the contour integral
(dimension = n) and so we have to add or subtract the residues at these values of the
integration varables.

The residues have the dimension of integration n —1,n —2,---.

This procedure may be automatized "easily” and it is done in the publicly available
Mathematica package MB.m (M. Czakon, hep-ph/0511200, CPC)

- /
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Analytical continuation, 0 # ¢ <<1
After the analytical continuation in ¢, the scalar pentagon function is represented by 11

MB-integrals.
The IR-non-save parts are contained in only few and relatively simple of them:
B3R = I3R(V%) + I5F (W),
I_
I5IR(V2) — 71 + Iy
I 4 e€VE /—i—ioo5/8d (—t)_l_zl F[—z1]31“[1+z1]
L .
¢ 271 J —ioo—5/8 ' 2esVs ['[—22]
Iy = Fi[z1]T[1 Fyz1|T[L + 2P 1
° 27i /ioo5/8 28‘/2[ 12111 + 21] + Fa[z1]T'[1 + 21]PolyGamma[l + z;]
QG’YE +'i00—7/8 .\ ; 1
d dz(—s)?2 (—t) " Art22(_V,) 2722 (Y, ) 1%
+(27Ti)2 /—ioo—7/8 Z2/ z1(—s)** (1) (—V5) (=V4)

F[—zl]F[—l — ZQ]F[—l — 21 — ZQ]F[Zl — Zg]F[—ZgPF[l + ZQ]F[Z + Z2]F[1 — 21+ 22]
F[—Zzl]F[—l — 222]

- /




doUa40[{ ‘|9 'L00C ‘G-T PO HODOAVY ‘uuewsiy |

0¢

-

~

Before taking sums of residua by closing contours to the left (anti-clockwise), look at
powers of (—V1%).

Its real part gives (—V3)~%/8, this would be not integrable for small V5.

Shift the contour 2z, by a unit to the left.
This changes: (—13)7%/8 — (—=15)7!/® and after that, the 2-dim.integral is IR-safe.

One residue is crossed and has to be added to the resulting 2-dim. contour integral.

So take here instead of the original 2-dim. integral only the residue as the contribution

of interest:
eeny —|—’LOO—5/8 le
I() = ; / [(FQ + F4)F[1 + Zl] + (F1 + F5>[21]F[1 + zl]PolyGamma[l + Zl]
211 —ico—5/8 28V2
1 F[—Zl]g
F o= () a2
! ( ) F[—2Zl]
Fy, = Fi(yg —2In[—s] —In[—t] + 2In[—V4])
Fy = 2F (=g + In[—s] + In[—t] — In[—V5] — In[—V}])
P, — —2F (9)
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-divergencies as inverse binomial sums

Now take the residues and get:

Iy 1 1 Ficotu C[—r]°T[1 + 7]

— T dr(—t —1—r
: 25Voe 271 | inoin r(=1) T[—2r]

With Mathematica or using Kalmykov et al., Huber and Maitre:

Iy 1 i ()" _ daresin(y/t/2)  2yln(y)
e 25V — (o VAt 1—y2’
(2n+1)
n
with
1—4/t—1
y = y(t) A
V1—4/t+1
and for the constant term in e:
1 < ()"
Iy = > [—21n[— V5] — 351 [n] + 251 [2n]]
28V2 0 m
(2n+1)
n
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Rewrite into Polylogs and/or Harmonic PolyLogs

The inverse binomial sums may be summed:

See Davyvdychev,Kalmykov and quite recently also Huber,Maitre.
Here, the following question is of some interest:

— Why these harmonic numbers?

Look at intermediate 11 MB-integrals, e.g.:

One of the 4 contributing MB-integrals — out of the 11 — is Int07:

Int07 = Sum of residues
e”Eeﬁ(—s)_l_ze(—Vg)%
226V4
['[3/2 4 €]['[—2¢]|T'[2€]T[1 + 2€]
['[3/2 + €]
HypergeometricPFQI[1, 1 + 2¢], [3/2 + €], t /4]
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Without taking the sum:

Int07 = Sum of residues
EYE(_o\—1—2¢(__ 2e€
S ) N el C VS N EP S TED
Vi

o0

['[2€ + 2n]

n=1
The well-known formula (Weinzierl 0402131 eq. 35 and maybe many others)
—e)k .
I’[n + 1+ 6] — 1"[1 T G]F[l 4 n]e— Dory %HarmonlcNumber[n,k]

shows why we meet the inverse harmonic sums with the harmonic numbers S;[n| and
Sl [271]

-

Zt_HnF[e—i—n]F[Qe—l—n] (10)

/




doUa40[{ ‘|9 'L00C ‘G-T PO HODOAVY ‘uuewsiy |

vC

Summary

We present a general algorithm for the evaluation of mixed IR-divergencies from virtual and

real emission in terms of inverse binomial sums.

With AMBRE.m (May 2007) and MB.m (2005) and maybe in more complicated situations

also with HypExp 2 on Expanding Hypergeometric Functions about Half-Integer
Parameters, arXiv:0708.2443 [hep-ph]| this may be automatized.

The cases of more masses or more legs or more loops or of tensor integrals should not get
much more complicated.

For relatively simple applications like IR-divergent parts, an analytical treatment with
MB-integrals may be quite useful.




