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C Total Higgs production cross sections at the LHC )

Vector boson fusion is an important ingredient in Higgs search at the LHC
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C Higgs Search in Vector Boson Fusion )

W
r D H{ mp > 120 GeV
ff .
H< mp < 140 GeV
;

- J -HQW my < 150 GeV

[Eboli, Hagiwara, Kauer, Plehn, Rainwater, D.Z. .. .]

Most measurements can be performed at the LHC with statistical accuracies on the measured

cross sections times decay branching ratios, o x BR, of order 10% (sometimes even better).
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C VBF signature )
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Characteristics:

e energetic jets in the forward and backward directions (pr > 20 GeV)
e Higgs decay products between tagging jets

e Little gluon radiation in the central-rapidity region, due to colorless W/Z exchange
(central jet veto: no extra jets with pr > 20 GeV and |n| < 2.5)
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C Statistical and systematic errors at LHC )
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Some of the lowest errors are achievable in VBF production of the Higgs boson



C VBF processes at LHC )

q q —>q q H Han, Valencia, Willenbrock (1992); Figy, Oleari, DZ: hep-ph/0306109; Campbell, Ellis, Berger (2004)

e Higgs coupling measurements
q9—qqZ and qq—qqW Oleari, DZ: hep-ph/0310156
e Z— 1T as background for H—17

e measure central jet veto acceptance at LHC

qq—4qq WW, qq—aqq /7, qq—4qq W Z  jiger, Oleari, Bozzi, DZ: hep-ph/0603177,

hep-ph /0604200, hep-ph /0701105

e gqWW is background to H—WW in VBF

e underlying process is weak boson scattering:
WW—-WW, WIN—=ZZ, WZ—WZ etc.
— measure weak boson scattering

Precise predictions require QCD corrections
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C Generic features of QCD corrections to VBF )

t-channel color singlet exchange == QCD corrections to different quark lines are independent

real emission contributions: upper line

gy

Born and vertex corrections to upper line 700 20

\

Q

No t-channel gluon exchange at NLO

(d)

Features are generic for all VBF processes
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C Real emission )

Calculation is done using Catani-Seymour subtraction method

Consider q(p,)Q—g(p1)q(p2) QH. Subtracted real emission term

C 2 2 . .
L L ’MBorn’2 with1l—x = 1 P2 l—z= P1 P

Q> (1-x)(1-2z)

is integrable = do by Monte Carlo

(p1+p2)-pa’ (p1+p2) - Pa

Integral of subtracted term over d°p, can be done analytically and gives

€
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after factorization of splitting function terms (yielding additional “finite collinear terms”)

The divergence must be canceled by virtual corrections for all VBF processes
only variation: meaning of Born amplitude Mgy,
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C Higgs production )

Most trivial case: Higgs production virtual amplitude proportional to Born

Virtual correction is vertex correction only

% 4T
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e Divergent piece canceled via Catani

Seymour algorithm

Remaining virtual corrections are accounted for by trivial factor multiplying Born cross section

Cr
‘MBorn‘z (1 + 20, Zrcvirt>

e Factor 2 for corrections to upper and lower quark line

@ Same factor to Born cross section absorbs most of the virtual corrections for other VBF
processes



( Results for Higgs production )

Small QCD corrections of
Figy, Oleari, DZ: hep-ph /0306109
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W and Z production )

e 10 - - - 24 Feynman graphs

e — use amplitude techniques, i.e. nu-

\Wi +
|
W merical evaluation of helicity ampli-
V
v.Z tudes
C
(@ e However: numerical evaluation

works in d=4 dimensions only
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C Virtual contributions )

Vertex corrections: same as for Higgs case

v + + A_>_ + ...
% —

New: Box type graphs (plus gauge related

diagrams)

R

For each individual pure vertex graph
M) the vertex correction is proportional
to the corresponding Born graph

471 Q2
2 3
2 3. 7
[62 e 3 ]

Vector boson propagators plus attached
quark currents are effective polarization
vectors

build a program to calculate the finite part
of the sum of the graphs
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C Handling of IR and collinear divergences )

Use tensor decomposition a la Passarino-Veltman
Split By --- D;; functions into divergent and finite parts

With s = (g1 + q2)%, t = (ko + 2)? = (k1 — q1)* we get, for example,

o T4e) 1, . ¢*4i0"
BO(q) - (—S)e _€+2 In S +0(€>
Nl+e) 1 =~
= ((_S)e) g+Bo(q2)+0(€)]
C Ml4e (1,1 1 ABy =
Do(ko,q2,91) = (3¢ §<€—2+Elnt—2>+D0(k2,q2,q1)+(’)(e)
v M1+ 1 v v ULV
D¥¥(kz, 42, 1) = E—S)? (g(k'fhdz((ﬁ/f)+k§kzd2((ﬁ/f)>+D” (kz,Q2/071)+(9(€)>

withda (g2, 1) = 1/(s(% — %) [tIn(q?/t) — (¢? — )]

Finite D; j have standard PV recursion relations —> determine them numerically
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C Boxline corrections )

Virtual corrections for quark line with 2 EW
gauge bosons
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The external vector bosons correspond to
V—Iyl; decay currents or quark currents

Divergent terms in 4 Feynman graphs
combine to multiple of corresponding

Born graph
Ml()lo)xline — M](BI)F(Q>
2 3 7
a2 et
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with F(Q) = %) Cp (*Z55 )T (1 + ¢)
/\7T(q1,q2) = ZSWGQLGE” is universal vir-
tual gqVV amplitude: use like HELAS
calls in MadGraph
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C Virtual corrections )

Born sub-amplitude is multiplied by same factor as found for pure vertex corrections
= when summing all Feynman graphs the divergent terms multiply the complete Mp

Complete virtual corrections

2 3 72 —
My = Mg F(Q) [——2——+——7] + My
€ € 3
where My is finite, and is calculated with amplitude techniques.
The interference contribution in the cross-section calculation is then given by

2 3 7 ~
2 Re [MyM3] = |Mp2F(Q) [—? T 7] +2Re [MyMj]
The divergent term, proportional to | Mp|?, cancels against the subtraction terms
just like in the Higgs case.
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C Most recent: qq—qqWW, qqZ27Z, gqqWZ at NLO )

e example: WW production via VBF with Ve W rg e
leptonic decays: pp — e veu v, + 2] ﬁvﬂ<eﬁv’<vu vﬁﬁ@ﬁ

e Spin correlations of the final state leptons g,,z
e All resonant and non-resonant Feynman : @ ’ ) (b) ’
diagrams included
Ty u u
e NC — 181 Feynman diagrams at LO | VXPF<V“ vz o g
¢ CC — 92 Feynman diagrams at LO . W T <

Use modular structure, e.g. leptonic tensor

W+ W+ W+
VL‘/‘/\/L—%\) VL‘/‘/‘/L%—F? e ;
H¢<u )
e L~ v, Ve W- _ VA/FF< +
) Vv , e
y,ZJ\I\I\I\I\(ra) ZJ\I\I\I\I\(rb) v.Z (© u Wt t-u u W - u
- Ty v T, "
Calculate once, reuse in different processes e bz
c ' c c ' c
Speedup factor ~ 70 compared to MadGraph © 0

for real emission corrections
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( New for virtual: pentline corrections )

Virtual corrections involve up to pen-

tagons
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The external vector bosons correspond to
V—I;l, decay currents or quark currents

The sum of all QCD corrections to a single quark

line is simple

€

Mg) Mg) A7 F Q2
2 3
_z — E + Cvirt

+ M%vz\@ (91,92, 93) + O(e€)

e Divergent pieces sum to Born amplitude:

N1+e€)

e Use amplitude techniques to calculate finite

canceled via Catani Seymour algorithm

remainder of virtual amplitudes

Pentagon

tensor

reduction with Denner-

Dittmaier is stable at 0.1% level
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C Gauge invariance tests )

Numerical problems flagged by gauge invariance test: use Ward identities for pentline and
boxline contributions

75> E sy (K1, 91,92,93) = Dysyus (k1,491,492 + 43) — Dygyis (K1, 1 + G2, 43)

With Denner-Dittmaier recursion relations for E;; functions the ratios of the two expressions
agree with unity (to 10% or better) at more than 99.8% of all phase space points.

Ward identities reduce importance of computationally slow pentagon contributions when
contracting with W= polarization vectors
Ji=xeqy +rh

choose x4+ such as to minimize pentagon contribution from remainders 4 in all terms like

~

JE ] guluzug (k1,9+,9-,q0) = ' "2 Ei s (K1, 9+, 9, qo) + box contributions

Resulting true pentagon piece contributes to the cross section at permille level = totally
negligible for phenomenology
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C Phenomenology )

Study LHC cross sections within typical VBF cuts
e Identify two or more jets with kr-algorithm (D = 0.8)

e Identify two highest pr jets as tagging jets with wide rapidity separation and large dijet
invariant mass
ijj:‘yjl_yj2’>4/ M]']->6OOGeV

e Charged decay leptons (¢ = e, u) of W and/or Z must satisfy

Pre > 20 GeV, ’T]g’ < 2.5, AR]g > 0.4,
myy > 15 GeV, ARy > 0.2

and leptons must lie between the tagging jets
Yi,min <1y < Yimax
For scale dependence studies we have considered

u==~&my fixed scale u==£&Q; weak boson virtuality : Qiz = 2kg, - kg,



C WW production: pp—jje™v.u~ v,X @ LHC )

Stabilization of scale dependence at NLO

Jager, Oleari, DZ hep-ph/0603177
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(WZ production in VBE WZ—e™v, [.i+},L_)

Transverse momentum distribution of the softer

tagging jet
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e Shape comparison LO vs. NLO
depends on scale

e Scale choice p = Q pro-

duces approximately constant
K-factor

e Ratio of NLO curves for differ-
ent scales is unity to better than

2%: scale choice matters very
little at NLO

Use ur = Q at LO to best approxi-
mate the NLO results
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4-lepton invariant mass distribution without/with Higgs resonance

do/dMg; [fb/GeV]

Good agreement of LO and NLO due to low scale choice u = my. Alternative choice u = my or

C Z7 production in VBE, ZZ—ete u u~ )
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C Conclusions )

e LHC will observe a SM-like Higgs boson in multiple channels,
with 5...20% statistical errors
— great source of information on Higgs couplings

e Whether or not a light Higgs is observed, weak boson scattering,
i.e. VVjjproduction by VBF, is an important testing ground for the
physics underlying SU(2) x U(1) breaking

e NLO QCD corrections and improved simulation tools are
crucial for precise measurements with full LHC data.

NLO QCD correction for VBF now available in VBENLO:
parton level Monte Carlo for Hjj, Wjj, Zjj, W™ W~ jj, ZZjj production
by Bozzi, Figy, Hankele, Jager, Klamke, Oleari, Worek, DZ, ...

http:/ /www-itp.physik.uni-karlsruhe.de/~vbfnloweb /
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