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Recurrence relations (RR):

R(I−, I+, d)F (n1, ..., nk, d) = 0

Result of the reduction procedure:

F (n, d) = C1(n, d)F1 + ... + Ck(n, d)Fk

Ci(n, d) are rational in d and obey the RR:

R(I−, I+)Ci(n, d) = 0

Ci(n, d) = 0 if some ”hard” nl ≤ 0 (for lines in Fi)

Ci are much simpler then F

Can we calculate Ci directly (without reduction)?
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Expand Ci in 1/d → 0

Calculate sufficiently many coefficients

Reconstruct exact rational d dependence
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Expansion
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1-dimentional example

fn =
∞∫

−∞
(x2 + 2x + 2)d/xn dx

nfn+1 = (d + 1 − n)fn + (d + 1 − n/2)fn−1

Reduction is trivial, but let’s try 1/d

0 = (fn + fn−1)
︸ ︷︷ ︸

R(0)f

+ 1/d ((1 − n/2)fn−1 + (1 − n)fn − nfn+1)
︸ ︷︷ ︸

R(1)f

0 = R(0)f (0) = f (0)
n + f

(0)
n−1 ⇒ f (0)

n = (−1)n

0 = R(0)f (1) + R(1)f (0)

= f (1)
n + f

(1)
n−1 + n/2(−1)n ⇒ f (1)

n = 1/4(n2 + n)(−1)n
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R(I−)Ci = 0 can be solved in multi-dimentional case

Ci(n) = Πa r−na
a , where R(ra) = 0

R(I−
a ) Ci = R(ra) Ci = 0

R(I−) vs. R(I−, I+) like

algebraic vs. differential equations

It is convinient to choose R(0) = R(I−)

It can be done in case of Feynman integrals
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Feynman integrals

F (n, d) =
∫

ddp1..d
dpL/(E

n1
1 · · · Ena

a )

Ea = Aik
a (pipk) + m2

a

IBP:

0 =
∫

ddp1..d
dpL ∂pi(pk · · ·)

∂pi (pk ·) = d δi
k + pk(∂pi ·) = d δi

k + (AA)ab Ea (∂Eb
·)

RR:

0 = d δi
k F + (AA)ab Ea ∂Eb

F
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0 = d δi
k F + (AAi

k)
a
b Ea ∂Eb

F

R(0)? R(1)?

0 = R(0)C(0) = δi
k C(0)

n ⇒ C(0)
n = 0 ???

1/d does not work ?
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No solutions like Ci = C
(0)
i + 1

dC
(1)
i + ...

Indeed, Ck ≈ d−S(n), S(n) = Σ (”hard”ni)

We apply 1/d expansion to the subcase ”hard” ni = 1

ni > 1 can be reduced to ni = 1 by direct recursion
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Modified IBP

0 = ∫ ddp1..d
dpL ∂pi(pkΠik(Ea) · · ·)

With some polinomials Πik we come to diagonalized RR

0 = ∂Ea(P (E) F ) − (d − L − 1)/2 (∂EaP (E)) F

R(1) large R(0)

Equations with ”hard” ∂Ea: na → 1

Equations with ”soft” ∂Ea (”hard” Ea = 0)

0 = R(0)F (0) = (∂EaP (E))F (0) ⇒ F (0)(n) = Π rna
a

ra : ∂EaP (E)|Ea=ra = 0
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What is the optimal way to calculate C
(k)
i ?

One can to obtain C
(k)
i (n) as polinomials in n

One can construct recurrent procedure for C
(k)
i (n)

More efficient is to expand in 1/d → 0 auxiliary integrals

C
(k)
i (n) =

∫

dx1.. dxa/(x
n1
1 .. xna

a )P (x)(d−L−1)/2

In 1/d → 0 they expand to Gaussian type integrals

∫

dx1.. dxa x
k1
1 .. xka

a exp(−Aikxixk)
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Possible applications Pro and Contra

Massless 0-scale problems

1/d coefficients are pure numbers

Relatively small set of master integrals

Very convinient

4-loop propagators are fine

Few calendar months for R(s, Nf = 3)
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1-mass 0-scale problems (bubbles)

1/d coefficients are pure numbers

But many master integrals ⇒

Many contributions to calculate

Calculational efforts (setup + CPU)

comparable to other approaches

(Laporta, Smirnov’s, direct recursion)
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Multi-scale problems

1/d coefficients are multi-scale rationals ⇒

Reduction is possible, but difficult

Many master integrals, difficult to calculate
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Summary

When d is large RR for FI become ”algebraic”

⇒ systematic reduction is possible

1/d coefficients demands big amount of CPU

But massless 4-loop propagators are reachable
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