Mass effects in 4-particle amplitudes at the 2-loop level of QCD

M. Czakon Würzburg University

in collaboration with:

A.Mitov and S.Moch G.Chachamis and D.Eiras

RADCOR Florence, 2nd October 2007

Motivation

• NNLO priority list:

Motivation

CMS study on tops

• What to expect from experiment:

Channel	Selected events for
	$10 {\rm fb}^{-1}$
$t\bar{t} \rightarrow WbWb \rightarrow l\nu bbjj$	70K
$t\bar{t} \rightarrow WbWb \rightarrow l\nu bbjj \ high \ P_T \ sample$	3,6K
$t\bar{t} \rightarrow WbWb \rightarrow l\nu bl\nu b$	20K
$t\bar{t} \rightarrow WbWb \rightarrow jjbbjj~high~P_T$ sample	3,4K
Single top t channel	2,5K
Single top Wt channel	1,5K
Single top s channel	0,5K

- A Top mass measurement with a precision of the order or below 1 GeV.
- A *t*t production cross section measurement with a precision below 10%.
- Tests of the Top production and decay mechanisms with W polarisations (Top spin correlation) at the level of 1-2% (3-5%).
- Studies on the $\overline{t}t$ invariant mass.

Motivation

Status quo of the theory

- Until now:
- NLO QCD corrections with expected precision ~10-15%
- NLO QCD corrections to tt + jet (S.Dittmaier, P.Uwer, S.Weinzierl '07, see P.Uwer's talk)

Phys. Lett. B651 (2007) 147

- results for NNLO virtual corrections: (A.Mitov, S.Moch, M.C. '07)
- quark-antiquark annihilation (10% contribution to the X-section)
- gluon fusion (90% contribution to the X-section)
- both processes in the high energy limit

arxiv:0707.4139 [hep-ph] soon in NPB

$$\sum_{n=0}^{4} \log^{n} \left(\frac{m_{t}^{2}}{s}\right) f_{n} \left(-\frac{t}{s}\right)$$

- We computed color and spin averaged amplitudes (can be changed in the future)
- color decomposition for the annihilation channel

The leading color coefficient in quark annihilation

 $A = \frac{1}{\epsilon^4} \left\{ \frac{x^2}{2} - \frac{x}{2} + \frac{1}{4} \right\} + \frac{1}{\epsilon^3} \left\{ L_m \left[x^2 - x + \frac{1}{2} \right] + L_s \left[-x^2 + x - \frac{1}{2} \right] + \frac{21x^2}{4} - \frac{21x}{4} + L_x \left(-2x^2 + x - \frac{1}{2} \right) \right\}$ +2x-1 + $\frac{19}{8}$ + $\frac{1}{\epsilon^{2}}$ { $L_{m}L_{s} \left[-2x^{2}+2x-1\right] + L_{s}^{2} \left[x^{2}-x+\frac{1}{2}\right] + L_{m} \left[\frac{29x^{2}}{6}-\frac{29x}{6}\right]$ $+L_{x}(-2x^{2}+2x-1)+\frac{23}{12}+L_{s}\left[-\frac{19x^{2}}{6}+\frac{19x}{6}+L_{x}(4x^{2}-4x+2)-\frac{13}{12}\right]+(2x^{2}$ $-\frac{5x}{2}+\frac{5}{4}L_{x}^{2}+\left(-\frac{26x^{2}}{3}+\frac{55x}{6}-\frac{23}{6}L_{x}+\frac{173x^{2}}{72}-\frac{173x}{72}+\pi^{2}\left(-\frac{x^{2}}{6}+\frac{x}{6}-\frac{1}{12}\right)\right)$ $-\frac{205}{144} + \frac{1}{\epsilon} \left\{ L_m^3 \left[-\frac{x^2}{3} + \frac{x}{3} - \frac{1}{6} \right] + L_m L_s^2 \left[2x^2 - 2x + 1 \right] + L_s^3 \left[-\frac{2x^2}{3} + \frac{2x}{3} - \frac{1}{3} \right] \right\}$ $+L_{m}^{2}\left[-x^{2}+x+L_{x}\left(x^{2}-x+\frac{1}{2}\right)-\frac{1}{2}\right]+L_{m}L_{s}\left[-\frac{7x^{2}}{3}+\frac{7x}{3}+L_{x}\left(4x^{2}-4x+2\right)-\frac{1}{6}\right]$ $+L_{s}^{2}\left[-\frac{x^{2}}{2}+\frac{x}{2}+L_{x}\left(-4x^{2}+4x-2\right)-\frac{3}{4}\right]+L_{m}\left[\left(\frac{1}{4}-\frac{x}{2}\right)L_{x}^{2}+\left(\frac{3x}{2}-x^{2}\right)L_{x}-\frac{47x^{2}}{12}\right]$ $+\frac{47x}{12}-\frac{35}{8}+L_{s}\left[\left(-4x^{2}+5x-\frac{5}{2}\right)L_{x}^{2}+\left(\frac{8x^{2}}{3}-\frac{11x}{3}+\frac{1}{3}\right)L_{x}+\frac{487x^{2}}{36}-\frac{487x}{36}\right]$ $+\pi^{2}\left(\frac{x^{2}}{3}-\frac{x}{3}+\frac{1}{6}\right)+\frac{601}{72}+\left(\frac{x^{2}}{3}+x-\frac{1}{2}\right)L_{x}^{3}+\left(-\frac{5x}{2}+L_{y}\left(-x^{2}+\frac{x}{2}-\frac{1}{4}\right)+\frac{3}{4}\right)L_{x}^{2}$ $+\mathrm{Li}_{2}(x)\left(-2x^{2}+x-\frac{1}{2}\right)\mathrm{L}_{x}+\left(\frac{43x^{2}}{3}-\frac{151x}{12}+\pi^{2}\left(\frac{4x^{2}}{3}-\frac{5x}{6}+\frac{5}{12}\right)+10\right)\mathrm{L}_{x}$ $-\frac{9907x^2}{432} + \frac{9907x}{432} + \pi^2 \left(-\frac{23x^2}{72} + \frac{5x}{72} + \frac{25}{144} \right) + \text{Li}_3(x) \left(2x^2 - x + \frac{1}{2} \right) + \left(-\frac{23x^2}{6} + \frac{25}{144} \right)$ $+\frac{17x}{6}-\frac{17}{12}\zeta_{3}-\frac{10945}{864} + L_{m}^{4}\left[\frac{x^{2}}{4}-\frac{x}{4}+\frac{1}{8}\right] + L_{m}^{3}L_{s}\left[\frac{2x^{2}}{3}-\frac{2x}{3}+\frac{1}{3}\right] + L_{m}L_{s}^{3}\left[-\frac{4x^{2}}{3}-\frac{2x}{3}+\frac{1}{3}\right] + L_{m}L_{s}^{3}\left[-\frac{4x^{2}}{3}-\frac{2x^{2}}{3}-\frac{2x}{3}+\frac{1}{3}\right] + L_{m}L_{s}^{3}\left[-\frac{4x^{2}}{3}-\frac{2x}{3}+\frac{1}{3}\right] + L_{m}L_{s$ $+\frac{4x}{3}-\frac{2}{3}\Big]+L_{s}^{4}\left[\frac{x^{2}}{3}-\frac{x}{3}+\frac{1}{6}\right]+L_{m}^{3}\left[-\frac{11x^{2}}{18}+\frac{11x}{18}+L_{x}\left(-\frac{x^{2}}{3}+\frac{x}{3}-\frac{1}{6}\right)-\frac{5}{36}\right]$ $+L_{m}^{2}L_{s}\left[-\frac{5x^{2}}{3}+\frac{5x}{3}+L_{x}\left(-2x^{2}+2x-1\right)-\frac{5}{6}\right]+L_{m}L_{s}^{2}\left[-\frac{4x^{2}}{3}+\frac{4x}{3}+L_{x}\left(-4x^{2}+4x-2\right)-\frac{5}{6}\right]$ $-\frac{5}{3} + L_{s}^{3} \left[\frac{14x^{2}}{9} - \frac{14x}{9} + L_{x} \left(\frac{8x^{2}}{3} - \frac{8x}{3} + \frac{4}{3} \right) + \frac{10}{9} \right] + L_{m}^{2} \left[\left(\frac{x}{4} - \frac{1}{8} \right) L_{x}^{2} + \left(\frac{x^{2}}{2} - \frac{3x}{4} \right) L_{x} \right]$ $+\frac{247x^{2}}{36}-\frac{247x}{36}+\frac{283}{72}\right]+L_{m}L_{s}\left[\left(x-\frac{1}{2}\right)L_{x}^{2}+\left(2x^{2}-3x\right)L_{x}+\frac{23x^{2}}{2}-\frac{23x}{2}+\frac{83}{12}\right]$

$$\begin{split} + \mathrm{L}_{s}^{2} \left[\left(4x^{2} - 5x + \frac{5}{2} \right) \mathrm{L}_{x}^{2} + \left(\frac{14x^{2}}{3} - \frac{11x}{3} + \frac{10}{3} \right) \mathrm{L}_{x} - \frac{37x^{2}}{4} + \frac{37x}{4} + \pi^{2} \left(-\frac{x^{2}}{3} + \frac{x}{3} - \frac{1}{6} \right) \right. \\ & \left. - \frac{35}{8} \right] + \mathrm{L}_{m} \left[\frac{x^{2} \mathrm{L}_{x}^{3}}{3} + \left(-\frac{x}{2} + \mathrm{L}_{y} \left(-x^{2} + \frac{x}{2} - \frac{1}{4} \right) + \frac{1}{4} \right) \mathrm{L}_{x}^{2} + \mathrm{Li}_{2}(x) \left(-2x^{2} + x - \frac{1}{2} \right) \mathrm{L}_{x} \right. \\ & \left. + \left(-4x^{2} + \frac{19x}{4} + \pi^{2} \left(x^{2} - \frac{x}{2} + \frac{1}{4} \right) - 2 \right) \mathrm{L}_{x} - \frac{781x^{2}}{72} + \frac{781x}{72} + \pi^{2} \left(-\frac{7x^{2}}{12} + \frac{x}{3} - \frac{1}{24} \right) \right. \\ & \left. + \mathrm{Li}_{3}(x) \left(2x^{2} - x + \frac{1}{2} \right) + \left(\frac{7x^{2}}{3} - \frac{10x}{3} + \frac{5}{3} \right) \zeta_{3} - \frac{499}{144} \right] + \mathrm{L}_{s} \left[\left(-\frac{2x^{2}}{3} - 2x + 1 \right) \mathrm{L}_{x}^{3} \right. \\ & \left. + \left(\frac{4x}{3} + \mathrm{L}_{y} \left(2x^{2} - x + \frac{1}{2} \right) + \frac{1}{3} \right) \mathrm{L}_{x}^{2} + \mathrm{Li}_{2}(x) \left(4x^{2} - 2x + 1 \right) \mathrm{L}_{x} + \left(-\frac{86x^{2}}{3} + \frac{173x}{6} \right) \\ & \left. + \pi^{2} \left(-\frac{8x^{2}}{3} + \frac{5x}{3} - \frac{5}{6} \right) - \frac{49}{3} \right) \mathrm{L}_{x} + \frac{2003x^{2}}{216} - \frac{2003x}{216} + \mathrm{Li}_{3}(x) \left(-4x^{2} + 2x - 1 \right) \right. \\ & \left. + \pi^{2} \left(-\frac{43x^{2}}{36} + \frac{61x}{6} - \frac{91}{72} \right) + \left(\frac{23x^{2}}{3} - \frac{17x}{17} + \frac{17}{6} \right) \zeta_{3} - \frac{919}{432} \right] + \left(-x^{2} - \frac{x}{24} + \frac{1}{48} \right) \mathrm{L}_{x}^{4} \\ & \left. + \left(-\frac{7x^{2}}{18} + \frac{13x}{12} + \mathrm{L}_{y} \left(\frac{10x^{2}}{3} - 2x + 1 \right) - \frac{7}{12} \right) \mathrm{L}_{x}^{3} + \left(\left(-\frac{x^{2}}{2} - \frac{5x}{4} + \frac{11}{8} \right) \mathrm{L}_{y}^{2} + \left(\frac{7x^{2}}{6} \right) \\ & \left. + \frac{13x}{12} + \frac{13}{12} \right) \mathrm{L}_{y} + \frac{101x}{72} + \pi^{2} \left(-\frac{25x^{2}}{6} + \frac{25x}{12} - \frac{25}{24} \right) + \frac{3}{1 - x} - \frac{617}{144} \right) \mathrm{L}_{x}^{2} + \mathrm{S}_{1,2}(x) \left(-2x^{2} \right) \\ & \left. + \left(\frac{52x^{2}}{3} - \frac{31x}{3} + \frac{31}{6} \right) \zeta_{3} + \frac{1027}{12} \right) \mathrm{L}_{x} + \frac{17845x^{2}}{2592} - \frac{17845x}{36} - \frac{47}{18} \right) + \mathrm{L}_{y}\pi^{2} \left(-\frac{x^{2}}{3} + \frac{11x}{6} - \frac{17}{12} \right) \\ & \left. + \left(\frac{52x^{2}}{3} - \frac{31x}{3} + \frac{31}{6} \right) \zeta_{3} + \frac{1027}{12} \right) \mathrm{L}_{x} + \frac{17845x^{2}}{2592} - \frac{17845x}{2592} + \pi^{4} \left(-\frac{11x^{2}}{80} - \frac{x}{404} + \frac{1}{480} \right) \right) \\ \\ & + \mathrm{L}_{4}(x) \left(2x^{2} + 3x - \frac{3}{2} \right) + \mathrm{$$

Functional basis

 $log(ms), log(x), log(1-x), Li_{2}(x), Li_{3}(x), S_{12}(x), Li_{4}(x), S_{22}(x), S_{13}(x)$

The leading color coefficient in gluon fusion

 $A = \frac{1}{e^4} \left\{ -8x^2 + 8x + \frac{2}{1-x} - 8 + \frac{2}{x} \right\} + \frac{1}{e^3} \left\{ L_{ab} \left[-8x^2 + 8x + \frac{2}{1-x} - 8 + \frac{2}{x} \right] + L_{a} \left[16x^2 - 16x - \frac{4}{1-x} + \frac{2}{x^2} \right] \right\}$ $+16-\frac{4}{x}\Big]-\frac{154x^2}{3}+\frac{154x}{3}+L_y\left(8x^2-\frac{4}{1-x}+4\right)+L_x\left(8x^2-16x+12-\frac{4}{x}\right)+\frac{65}{6(1-x)}-\frac{142}{3}$ $+\frac{65}{6x}$ + $\frac{1}{e^2}$ $\left\{L_m^2\left[2x^2-2x-\frac{1}{2(1-x)}+2-\frac{1}{2x}\right]+L_mL_s\left[16x^2-16x-\frac{4}{1-x}+16-\frac{4}{x}\right]\right\}$ $+L_{s}^{2}\left[-16x^{2}+16x+\frac{4}{1-x}-16+\frac{4}{x}\right]+L_{m}\left[-22x^{2}+22x+L_{y}\left(4x^{2}-\frac{2}{1-x}+2\right)\right]$ $+L_x\left(4x^2-8x+6-\frac{2}{x}\right)+\frac{7}{2(1-x)}-18+\frac{7}{2x}+L_s\left[44x^2-44x+L_y\left(-16x^2+\frac{8}{1-x}-8\right)\right]$ $+L_x\left(-16x^2+32x-24+\frac{8}{x}\right)-\frac{7}{1-x}+36-\frac{7}{x}+\left(-4x^2+12x-9+\frac{3}{x}\right)L_x^2$ + $\left(18x^2 - 41x + 31 - \frac{8}{x}\right)L_x - \frac{104x^2}{9} + \frac{104x}{9} + L_y^2\left(-4x^2 - 4x + \frac{3}{1-x} - 1\right)$ $+\pi^2\left(8x^2-8x-\frac{2}{1-x}+8-\frac{2}{x}\right)+L_y\left(18x^2+5x-\frac{8}{1-x}+8\right)-\frac{161}{18(1-x)}-\frac{161}{18x}+\frac{100}{9}\right\}$ $+\frac{1}{\epsilon}\left\{L_{m}^{3}\left[\frac{2x^{2}}{3}-\frac{2x}{3}-\frac{1}{6(1-x)}+\frac{2}{3}-\frac{1}{6x}\right]+L_{m}^{2}L_{s}\left[-4x^{2}+4x+\frac{1}{1-x}-4+\frac{1}{x}\right]+L_{m}L_{s}^{2}\left[-16x^{2}-\frac{1}{2}+\frac{1}{2}$ $+16x + \frac{4}{1-x} - 16 + \frac{4}{x} + L_{3}^{5} \left[\frac{32x^{2}}{3} - \frac{32x}{3} - \frac{8}{3(1-x)} + \frac{32}{3} - \frac{8}{3x} \right] + L_{m}^{2} \left[\frac{22x^{2}}{3} - \frac{22x}{3} - \frac{22x}{3} - \frac{8}{3(1-x)} \right]$ $+L_{y}\left(-2x^{2}+\frac{1}{1-x}-1\right)+L_{x}\left(-2x^{2}+4x-3+\frac{1}{x}\right)-\frac{4}{3(1-x)}+\frac{19}{3}-\frac{4}{3x}+L_{y}L_{z}\left[\frac{44x^{2}}{3}-\frac{44x}{3}-\frac{44x}{3}-\frac{44x^{2}}{3}-\frac{44x}{3}-\frac{44x^{2}}{3}-\frac{44x^{$ $+L_{y}\left(-8x^{2}+\frac{4}{1-x}-4\right)+L_{x}\left(-8x^{2}+16x-12+\frac{4}{x}\right)+\frac{1}{3(1-x)}+\frac{20}{3}+\frac{1}{3x}+L_{x}^{2}\left[-\frac{44x^{2}}{3}+\frac{1}{$ $+\frac{44x}{3}+L_y\left(16x^2-\frac{8}{1-x}+8\right)+L_x\left(16x^2-32x+24-\frac{8}{x}\right)-\frac{1}{3(1-x)}-\frac{20}{3}-\frac{1}{3x}$ $+L_{m}\left[\left(2x-\frac{3}{2}+\frac{1}{2x}\right)L_{x}^{2}+\left(-2x^{2}+\frac{3x}{2}-1+\frac{3}{2x}\right)L_{x}+\frac{140x^{2}}{9}+L_{y}^{2}\left(-2x+\frac{1}{2(1-x)}+\frac{1}{2}\right)L_{x}^{2}+\frac{1}{2(1-x)}$ $-\frac{140x}{9} + L_y\left(-2x^2 + \frac{5x}{2} + \frac{3}{2(1-x)} - \frac{3}{2}\right) + \pi^2\left(2x^2 - 2x - \frac{1}{2(1-x)} + 2 - \frac{1}{2x}\right) - \frac{80}{9(1-x)} - \frac{80}{9x}$ $+\frac{451}{18}$ + $L_x \left[\left(8x^2 - 24x + 18 - \frac{6}{x} \right) L_x^2 + \left(-\frac{20x^2}{3} + \frac{70x}{3} - 18 + \frac{4}{3x} \right) L_x - \frac{496x^2}{9} + \frac{496x}{9} \right]$ $+\pi^{2}\left(-16x^{2}+16x+\frac{4}{1-x}-16+\frac{4}{x}\right)+L_{y}\left(-\frac{20x^{2}}{3}-10x+\frac{4}{3(1-x)}-\frac{4}{3}\right)$ $+L_y^2\left(8x^2+8x-\frac{6}{1-x}+2\right)+\frac{205}{9(1-x)}+\frac{205}{9x}-\frac{640}{9}+\left(-\frac{4x^2}{3}-4x+3-\frac{1}{x}\right)L_x^3$ + $\left(4x^{2} + \frac{29x}{6} + L_{y}\left(4x^{2} - 4x + 3 - \frac{1}{x}\right) - 10 + \frac{5}{6x}\right)L_{x}^{2} + L_{12}(x)\left(8x^{2} - 8x + 6 - \frac{2}{x}\right)L_{x}$ $+\left(-\frac{332x^2}{9}+\frac{514x}{9}+\pi^2\left(-\frac{34x^2}{3}+\frac{44x}{3}-11+\frac{11}{3x}\right)-\frac{116}{3}+\frac{166}{9x}\right)L_x+\frac{2584x^2}{27}-\frac{2584x^2}{27}$ $+Li_{3}(x)\left(-8x^{2}+8x-6+\frac{2}{x}\right)+L_{y}^{3}\left(-\frac{4x^{2}}{3}+\frac{20x}{3}-\frac{1}{1-x}-\frac{7}{3}\right)+L_{y}^{2}\left(4x^{2}-\frac{77x}{6}+\frac{5}{6(1-x)}-\frac{7}{6}\right)$ $+S_{1,2}(x)\left(8x^2-8x-\frac{2}{1-x}+6\right)+\pi^2\left(19x^2-19x+\frac{1}{4(1-x)}+4+\frac{1}{4x}\right)+L_y\left(-\frac{332x^2}{9}+\frac{50x}{3}$ $+\pi^2 \left(-\frac{34x^2}{3}+8x+\frac{11}{3(1-x)}-\frac{23}{3}\right)+\frac{166}{9(1-x)}-\frac{169}{9}\right)+\left(\frac{184x^2}{3}-\frac{184x}{3}-\frac{40}{3(1-x)}+\frac{178}{3}-\frac{184x}{3}-\frac{160}{3(1-x)}+\frac{178}{3}-\frac{184x}{3}-\frac{11}{3(1-x)}+\frac{11}{3}-\frac{11}{3(1-x)}\right)$ $-\frac{46}{3x}\Big)\zeta_{3} - \frac{625}{27(1-x)} - \frac{625}{27x} + \frac{2416}{277}\Big) + L_{m}^{4}\left[-\frac{5x^{2}}{5} + \frac{5x}{6} + \frac{5}{24(1-x)} - \frac{5}{5} + \frac{5}{24x}\right]$ $+L_{m}^{3}L_{s}\left[-\frac{4x^{2}}{3}+\frac{4x}{3}+\frac{1}{3(1-x)}-\frac{4}{3}+\frac{1}{3x}\right]+L_{m}^{2}L_{s}^{2}\left[4x^{2}-4x-\frac{1}{1-x}+4-\frac{1}{x}\right]$

 $+L_{m}L_{s}^{3}\left[\frac{32x^{2}}{3}-\frac{32x}{3}-\frac{8}{3(1-x)}+\frac{32}{3}-\frac{8}{3x}\right]+L_{s}^{4}\left[-\frac{16x^{2}}{3}+\frac{16x}{3}+\frac{4}{3(1-x)}-\frac{16}{3}+\frac{4}{3x}\right]$ $+L_{m}^{3}\left[L_{y}\left(\frac{2x^{2}}{3}-\frac{1}{3(1-x)}+\frac{1}{3}\right)+L_{x}\left(\frac{2x^{2}}{3}-\frac{4x}{3}+1-\frac{1}{3x}\right)+\frac{1}{6(1-x)}+\frac{1}{6x}-\frac{1}{3}\right]$ $+L_{m}^{2}L_{s}\left[L_{y}\left(4x^{2}-\frac{2}{1-x}+2\right)+L_{x}\left(4x^{2}-8x+6-\frac{2}{x}\right)-\frac{1}{1-x}-\frac{1}{x}+2\right]$ $+L_{m}L_{s}^{2}\left[L_{y}\left(8x^{2}-\frac{4}{1-x}+4\right)+L_{x}\left(8x^{2}-16x+12-\frac{4}{x}\right)-\frac{4}{1-x}-\frac{4}{x}+8\right]$ $+L_{s}^{3}\left[L_{y}\left(-\frac{32x^{2}}{3}+\frac{16}{3(1-x)}-\frac{16}{3}\right)+L_{x}\left(-\frac{32x^{2}}{3}+\frac{64x}{3}-16+\frac{16}{3x}\right)+\frac{8}{3(1-x)}+\frac{8}{3x}+\frac{8}{3}-\frac{16}{3}\right]$ $+L_{m}^{2}\left[\left(-x+\frac{3}{4}-\frac{1}{4x}\right)L_{x}^{2}+\left(x^{2}-\frac{3x}{4}+\frac{1}{2}-\frac{3}{4x}\right)L_{x}-\frac{391x^{2}}{18}+\frac{391x}{18}+L_{y}^{2}\left(x-\frac{1}{4(1-x)}-\frac{1}{4}\right)\right]$ $\begin{aligned} & +\pi^2 \left(-x^2 + x + \frac{1}{4(1-x)} - 1 + \frac{1}{4x} \right) + L_y \left(x^2 - \frac{5x}{4} - \frac{3}{4(1-x)} + \frac{3}{4} \right) + \frac{505}{72(1-x)} + \frac{505}{72x} - \frac{887}{36} \right] \\ & + L_m L_x \left[\left(-4x + 3 - \frac{1}{x} \right) L_x^2 + \left(4x^2 - 3x + 2 - \frac{3}{x} \right) L_x - \frac{148x^2}{9} + \frac{148}{9} + L_y^2 \left(4x - \frac{1}{1-x} - 1 \right) \right] \end{aligned}$ $+\pi^{2}\left(-4x^{2}+4x+\frac{1}{1-x}-4+\frac{1}{x}\right)+L_{y}\left(4x^{2}-5x-\frac{3}{1-x}+3\right)+\frac{61}{9(1-x)}+\frac{61}{9y}-\frac{187}{19}$ $+L_{s}^{2}\left[\left(-8x^{2}+24x-18+\frac{6}{\pi}\right)L_{x}^{2}+\left(-8x^{2}+6x-4+\frac{6}{\pi}\right)L_{x}+\frac{364x^{2}}{9}-\frac{364x}{9}\right]$ $+L_y^2\left(-8x^2-8x+\frac{6}{1-x}-2\right)+L_y\left(-8x^2+10x+\frac{6}{1-x}-6\right)+\pi^2\left(16x^2-16x-\frac{4}{1-x}+16-\frac{4}{x}\right)$ $-\frac{106}{9(1-x)} - \frac{106}{9x} + \frac{376}{9} + L_{ac} \left[-\frac{2}{3}x^2 L_x^3 + \left(\frac{x}{4} + L_y \left(2x^2 - 2x + \frac{3}{2} - \frac{1}{2x} \right) - \frac{9}{4} \right) L_x^2 \right]$ +Ll2(x) $\left(4x^2 - 4x + 3 - \frac{1}{x}\right)$ L_x + $\left(6x^2 - \frac{61x}{4} + \pi^2\left(-2x^2 + 2x - \frac{3}{2} + \frac{1}{2x}\right) + \frac{29}{2} - \frac{21}{4x}\right)$ L_x - $\frac{1165x^2}{54}$ $+L_y^2\left(-\frac{x}{4}-2\right)+\frac{1165x}{54}+Li_3(x)\left(-4x^2+4x-3+\frac{1}{x}\right)+L_y^3\left(-\frac{2x^2}{3}+\frac{4x}{3}-\frac{2}{3}\right)$ $+S_{1,2}(x)\left(4x^{2}-4x-\frac{1}{1-x}+3\right)+\pi^{2}\left(\frac{17x^{2}}{3}-\frac{17x}{3}-\frac{1}{6/1-x^{2}}+\frac{23}{12}-\frac{1}{6x}\right)+L_{y}\left(6x^{2}+\frac{13x}{4}\right)$ $+\pi^{2}\left(-2x^{2}+2x+\frac{1}{2(1-x)}-\frac{3}{2}\right)-\frac{21}{4(1-x)}+\frac{21}{4}\right)+\left(-\frac{8x^{2}}{3}+\frac{8x}{3}+\frac{5}{3(1-x)}-\frac{11}{3}+\frac{2}{3x}\right)\zeta_{3}$ $+\frac{2203}{216(1-x)}+\frac{2203}{216x}-\frac{3521}{108}\right]+L_{s}\left[\left(\frac{8x^{2}}{3}+8x-6+\frac{2}{x}\right)L_{x}^{3}+\left(-8x^{2}+5x\right)L_{x}^{3}+\left(-8x^$ $+L_y\left(-8x^2+8x-6+\frac{2}{x}\right)+9+\frac{2}{x}L_x^2+Li_2(x)\left(-16x^2+16x-12+\frac{4}{x}\right)L_x+\left(\frac{400x^2}{9}-\frac{665x}{9}+16x-12+\frac{4}{x}\right)L_x+\left(\frac{400x^2}{9}-\frac{665x}{9}+16x-12+\frac{4}{x}\right)L_x+\left(\frac{400x^2}{9}+16x-12+\frac{4}{x}\right)L_x+\left(\frac{400x^2}{9}+16x-12+\frac{4}{x}\right)L_x+\left(\frac{400x^2}{9}+16x-12+\frac{4}{x}\right)L_x+\left(\frac{400x^2}{9}+16x-12+\frac{4}{x}\right)L_x+\left(\frac{400x^2}{9}+16x-12+\frac{4}{x}\right)L_x+\left(\frac{400x^2}{9}+16x-12+\frac{4}{x}\right)L_x+\left(\frac{400x^2}{9}+16x-12+\frac{4}{x}\right)L_x+\left(\frac{400x^2}{9}+16x-12+\frac{4}{x}\right)L_x+\left(\frac{400x^2}{9}+16x-12+\frac{4}{x}\right)L_x+\left(\frac{400x^2}{9}+16x-12+\frac{4}{x}\right)L_x+\left(\frac{400x^2}{9}+16x-12+\frac{4}{x}\right)L_x+\left(\frac{400x^2}{9}+16x-12+\frac{4}{x}\right)L_x+\left(\frac{400x^2}{9}+16x-12+\frac{4}{x}\right)L_x+\left(\frac{400x^2}{9}+16x-12+\frac{4}{x}\right)L_x+\left(\frac{400x^2}{9}+16x-12+\frac{4}{x}\right)L_x+\left(\frac{400x^2}{9}+16x-12+\frac{4}{x}\right)L_x+\left(\frac{400x^2}{9}+16x-12+\frac{4}{x}\right)L_x+\left(\frac{400x^2}{9}+16x-12+\frac{4}{9}\right)L_x+\left(\frac{400x^2}{9}+16x +\pi^{2}\left(\frac{68x^{2}}{3}-\frac{88x}{3}+22-\frac{22}{3x}\right)+48-\frac{167}{9x}L_{x}-\frac{1040x^{2}}{27}+\frac{1040x}{27}$ $+S_{1,2}(x)\left(-16x^2+16x+\frac{4}{1-x}-12\right)+\pi^2\left(-\frac{122x^2}{9}+\frac{122x}{9}-\frac{119}{18(1-x)}+\frac{148}{9}-\frac{119}{18x}\right)$ $+L_y^2\left(-8x^2+11x+\frac{2}{1-x}+6\right)+L_y^3\left(\frac{8x^2}{3}-\frac{40x}{3}+\frac{2}{1-x}+\frac{14}{3}\right)+L_{i3}(x)\left(16x^2-16x+12-\frac{4}{x}\right)$

$$\begin{split} &+ \mathrm{L}_{\mathcal{T}} \left(\frac{400x^2}{9} - 15x + \pi^2 \left(\frac{68x^2}{3} - 16x - \frac{22}{3(1-x)} + \frac{46}{3} \right) - \frac{167}{9(1-x)} + \frac{167}{9} \right) \\ &+ \left(-\frac{368x^2}{9} + \frac{368x}{3} + \frac{80}{3(1-x)} - \frac{356}{3} + \frac{92}{3x} \right) \left(5_3 - \frac{211}{2(1-x)} - \frac{211}{21x} + \frac{55}{27} \right] \\ &+ \left(\frac{13x^2}{6} + \frac{x}{6} - \frac{1}{8} + \frac{1}{24x} \right) \mathrm{L}_x^4 + \left(\frac{2x^2}{3} - \frac{17x}{12} + \mathrm{L}_{\mathcal{T}} \left(-\frac{22x^2}{3} + 8x - 6 + \frac{2}{x} \right) + \frac{26}{3} - \frac{3}{4x} \right) \mathrm{L}_x^3 \\ &+ \left(\left(2x^2 + 2x - \frac{15}{2} + \frac{9}{2x} \right) \mathrm{L}_x^2 + \left(-2x^2 - \frac{59x}{12} + 1 + \frac{31}{12x} \right) \mathrm{L}_y - \frac{265x}{72} + \pi^2 \left(12x^2 - \frac{38x}{3} + \frac{19}{2} - \frac{19}{6x} \right) \right) \\ &- \frac{5}{1-x} - \frac{91}{72x} - \frac{17}{12} \right) \mathrm{L}_x^2 + \left(-\frac{262x^2}{27} + \frac{3379x}{216} + \mathrm{L}_y\pi^2 \left(-\frac{20x^2}{3} + \frac{8x}{3} + 2 - \frac{2}{x} \right) \right) \\ &+ \pi^2 \left(-\frac{17x}{9} + 4x + 10 - \frac{16}{3x} \right) + \left(-\frac{172x^2}{27} + \frac{272x}{3} - 68 + \frac{68}{3x} \right) \left(5_3 - \frac{97}{18} - \frac{2279}{216x} \right) \mathrm{L}_x - \frac{1246x^2}{81} \\ &+ \mathrm{S}_{2x}(x) \left(-32x + \frac{18}{1-x} + 16 - \frac{18}{x} \right) + \frac{1246x}{81} + \pi^2 \left(-\frac{422x^2}{27} + \frac{422x}{549} + \frac{589}{54(1-x)} - \frac{3581}{108} + \frac{589}{54x} \right) \\ &+ \mathrm{S}_{1,3}(x) \left(-4x^2 - 4x - \frac{3}{1-x} - 1 \right) + \pi^4 \left(\frac{17x^2}{30} + \frac{7x}{30} - \frac{117}{360(1-x)} + \frac{126}{120} - \frac{23}{360x} \right) \\ &+ \mathrm{L}_y^2 \left(\frac{2x^2}{3} + \frac{x}{12} - \frac{3}{3} - \frac{3}{10} + \frac{12}{12} \right) + \mathrm{L}_y^4 \left(\frac{13x^2}{30} - \frac{9x}{3} + \frac{11}{24(1-x)} + \frac{53}{24} \right) + \mathrm{L}_4(x) \left(4x^2 - 12x + 9 - \frac{3}{x} \right) \\ &+ \mathrm{S}_{1,2}(x) \left(-4x^2 + \frac{107x}{6} + \mathrm{L}_y \left(-16x^2 + 12x + \frac{5}{1-x} - 11 \right) + \mathrm{L}_x \left(8x^2 + 8x - 30 + \frac{18}{x} \right) + \frac{31}{6(1-x)} \right) \\ &+ \mathrm{L}_y \left(\frac{2x^2}{12} + x^2 \left(-\frac{34x}{3} - \frac{19}{6(1-x)} + \frac{53}{6} \right) - \frac{91}{72(1-x)} - \frac{367}{72} - \frac{5}{x} \right) \\ &+ \mathrm{L}_4(x) \left(\left(-14x^2 + 14x - \frac{21}{2} + \frac{7}{2x} \right) \mathrm{L}_x^2 \left(-4x^2 - \frac{59x}{6} + \mathrm{L}_y \left(8x^2 + 8x - 30 + \frac{18}{x} \right) + 2 + \frac{31}{6x} \right) \mathrm{L}_x \\ &+ \pi^2 \left(-\frac{8x}{2} + \frac{2}{-x} + 4 - \frac{2}{x} \right) \right) + \left(52x^2 - \frac{395x}{6} + \frac{23}{6(1-x)} + \frac{89}{6} + \frac{3}{x} \right) \zeta_3 + \mathrm{L}_y \left(-\frac{262x^2}{27} + \frac{271x}{72} + \frac{71x}{72} \right) \\ &+ \pi^2 \left(-\frac{17x^2}{-9} - \frac{2}{9$$

Functional basis

 $log(ms), log(x), log(1-x), Li_{2}(x), Li_{3}(x), S_{12}(x), Li_{4}(x), S_{22}(x), S_{13}(x)$

Particle fluxes at the LHC

Direct computation

- Statistics
- annihilation channel
 - 190 diagrams expressed through 2812 integrals
 - 145 master integrals in the full result
 - 69 master integrals needed in the present calculation
- fusion channel
 - 726 diagrams expressed through 8676 integrals
 - 422 master integrals in the full result
 - 174 master integrals needed in the present calculation

Direct computation

- Reduction to masters as a first step (S.Laporta '00)
- The real problem is how to compute the masters
- We know the functions in the solution after expansion, but that doesn't help much
- We even have an idea of the functions in the full result, but that doesn't help much either
- One of the methods to proceed:

Mellin-Barnes representations

Steps

- construct representations (MBrepresentation.m, G.Chachamis, M.C.)
- perform an analytic continuation in ε to the vicinity of O (MB.m, M.C.)
- expand in the mass by recursively closing the contours in the multifold integrals (MBasymptotics, M.C.)
- perform as much of the integrations with the help of the Barnes lemmas
- resum the remaining integrals with non-trivial kinematic dependence by transforming into harmonic series (xsummer, S.Moch, P.Uwer)
- resum the remaining constants by high-precision numerical evaluation (~ 80 digits) and subsequent fit to a transcendental basis (PSLQ, D.Bailey)
- as a last resort expand in x and resum by fitting to a basis

Non-planar graphs

- on-shell graphs have no Euclidean domain of definition
- need to extend the integral by using U as an independent parameter to have a properly defined MB representation
- loop-by-loop integration produces more compact representations in the case of massive integrals, but the expansion falls back on the massless case
- the massless loop-by-loop is six-dimensional and the U parameter regulates part of the divergence

$$A\frac{1}{\epsilon^4}+B\frac{1}{\epsilon^3}\log(S+T+U)+...$$

 necessary to construct representations by directly integrating the two-loop Feynman parameter integral Example non-planar integral

• Working with non-planar tensor integrals

tensors rank 2 unavoidable

it's wiser to replace tensors by inverse denominators (K⁴)

- generates an 8-fold representation, but double analytic continuation
- reduces the number of 4-folds at the end (~ $400 \rightarrow ~ 10$)
- simpler structure of the result

$\frac{1}{180 (1 - x)}$

 $(-68 \pi^{d} - 45 \pi^{d} x + 480 \pi^{2} H[1, 1, x] + 120 \pi^{2} xH[1, 1, x] + 1440 IPiH[0, 0, 1, x] - 360 IPi xH[0, 0, 1, x] - 720 IPiH[0, 1, 1, x] + 1080 IPi xH[0, 1, 1, x] + 360 IPi xH[1, 0, 1, x] + 1440 IPi H[1, 1, 1, x] + 1440 IPi xH[1, 1, 1, x] + 720 xH[0, 0, 0, 1, 1, x] + 720 xH[0, 0, 1, 1, x] + 2880 H[0, 1, 0, 1, x] + 360 xH[0, 1, 0, 1, x] - 1440 H[0, 1, 1, 1, x] - 2880 xH[0, 1, 1, 1, x] + 2880 xH[0, 1, 1, 1, x] + 2880 xH[0, 1, 1, 1, x] + 2880 H[1, 0, 0, 1, x] + 360 xH[1, 0, 0, 1, x] + 360 xH[1, 0, 1, 1, x] - 720 xH[1, 0, 1, 1, x] - 1080 xH[1, 1, 1, 1, x] + 240 IPi \pi^{2} Log[ms] + 240 IPi \pi^{2} xLog[ms] + 720 IPiH[1, 1, x] Log[ms] + 1080 IPi xH[1, 1, x] Log[ms] + 1440 xH[0, 0, 1, x] Log[ms] - 720 H[0, 1, 1, x] Log[ms] - 720 H[0, 1, 1, x] Log[ms] - 1440 xH[0, 1, 1, x] Log[ms] + 360 xH[1, 1, 1, x] Log[ms] + 180 \pi^{2} Log[ms]^{2} + 240 \pi^{2} xLog[ms]^{2} + 180 xH[1, 1, x] Log[ms]^{2} - 60 IPi Log[ms]^{3} - 15 Log[ms]^{4} + 90 xLog[ms]^{4} + 720 IPi H[1, 1, x] Log[x] - 1440 xH[0, 0, 1, x] Log[x] - 360 xH[0, 1, 1, x] Log[x] - 1440 xH[0, 0, 1, x] Log[x] - 360 xH[1, 1, x] Log[x] - 180 xLog[ms] + 120 xH[1, 1, 1, x] Log[x] - 1440 H[0, 1, 1, x] Log[x] - 360 xH[1, 1, x] Log[x] + 1440 H[1, 1, 1, x] Log[x] + 720 xH[1, 1, 1, x] Log[x] - 120 \pi^{2} xLog[ms] Log[x] + 720 H[1, 1, x] Log[x] - 360 xH[1, 0, 1, x] Log[x] - 180 xLog[ms] Log[x] + 720 xH[1, 1, 1, x] Log[x] - 120 \pi^{2} xLog[ms] Log[x] + 720 H[1, 1, x] Log[x] - 360 xH[1, 1, x] Log[x] - 180 xLog[ms]^{3} Log[x] + 60 \pi^{2} xLog[x]^{2} + 720 H[1, 1, x] Log[x]^{2} + 180 xH[1, 1, x] Log[x]^{2} + 540 IPi xLog[ms] Log[x]^{2} + 90 xLog[ms] Log[x] - 180 xLog[ms]^{3} Log[x] + 60 \pi^{2} xLog[x]^{2} + 720 H[1, 1, x] Log[x]^{2} + 180 xH[1, 1, x] Log[x]^{2} + 540 IPi xLog[ms] Log[x]^{2} + 90 xLog[ms]^{2} Log[x]^{2} - 240 IPi xLog[ms] Log[x]^{3} + 60 xLog[ms] Log[x]^{3} - 45 xLog[x]^{4} + 120 H[0, 1, x] (4 \pi^{2} - 6 IPi (2 - x) Log[x] + 9 xLog[x]^{2} + 540 IPi xLog[ms] Log[x]^{2} + 90 xLog[ms]^{2} Log[x]^{2} - 240 IPi xLog[ms] Log[x]^{3} + 60 xLog[ms] Zeta[3] - 1800 xLog[x] Zeta[3]$

Power corrections

• Let's consider the expansion in ms of the bare 2-loop leading color contribution to quark annihilation

$$\langle \mathsf{M}^{(0)} | \mathsf{M}^{(2)} \rangle_{\text{bare}} = \mathsf{N}^4 \left(\frac{\alpha_{s}^{(0)}}{2\pi} \right)^2 \mathsf{A}_{0}^{(0)} + \dots$$

• at x=1/2 and with r = 4 ms

 $36.4466 + 36.6376 r - 2.11948 r^{2} + 0.318695 r^{3} + 1.8244 r^{4} + \\3.25332 r^{5} + 4.54712 r^{6} + 5.73099 r^{7} + 6.82737 r^{8} + 7.85347 r^{9} + 8.82223 r^{10} + \\(-7.13933 - 13.2047 r - 1.679 r^{2} - 1.79336 r^{3} - 0.682462 r^{4} + 0.344393 r^{5} + \\1.31353 r^{6} + 2.23685 r^{7} + 3.12317 r^{8} + 3.97884 r^{9} + 4.80856 r^{10}) Log[ms] + \\(4.44113 + 2.67214 r - 1.97207 r^{2} - 0.387011 r^{3} - 0.0835894 r^{4} + 0.0520038 r^{5} + \\0.164006 r^{6} + 0.287566 r^{7} + 0.428835 r^{8} + 0.5859 r^{9} + 0.755209 r^{10}) Log[ms]^{2} + \\(-0.608904 - 1.10606 r + 0.155183 r^{2} + 0.298532 r^{3} + 0.425373 r^{4} + 0.543219 r^{5} + \\0.651184 r^{6} + 0.75001 r^{7} + 0.840853 r^{8} + 0.924882 r^{9} + 1.00314 r^{10}) Log[ms]^{3} + \\(0.0625 + 0.0833333 r + 0.0208333 r^{2} + 0.00260417 r^{3} - 0.0078125 r^{4} - 0.0157064 r^{5} - \\0.0222168 r^{6} - 0.027832 r^{7} - 0.032814 r^{8} - 0.0373214 r^{9} - 0.0414581 r^{10}) Log[ms]^{4}$

11 terms up to ms¹⁰

• The series is derived under the assumption that $m_t^2 \ll s$, |t|, |u|. what happens at the edge of the phase space ?

Power corrections

Full mass dependence

Merging ideas for workable numerics

sector decomposition T.Binoth, G.Heinrich '00 integration by contour deformation D.Soper '98, Z.Nagy, D.Soper '06

see also R.Boughezal's talk

K.Melnikov, A.Lazopoulos '07, Ch.Anastasiou, A.Daleo '07

Steps

- Compute the high energy asymptotics of the master integrals obtaining the leading behaviour of the amplitude
- Determine the coefficients of the mass expansions using differential equations in ms obtaining the power corrections

ms
$$\frac{d}{dms}M_i(ms, x, \epsilon) = \sum_j C_{ij}(ms, x, \epsilon)M_j(ms, x, \epsilon)$$

- Evaluate the expansions for $ms \ll 1$ to obtain the desired numerical precision of the boundaries
- Evolve the functions from the boundary point with differential equations first in ms and then in X (ODEPACK)

- interpolation necessary
- relative errors required 10^{-14} (ms), 10^{-12} (x)
- contour deformation

 $\Delta_{\rm ms}{=}0.01$, $\Delta_{\rm x}{=}0.01$

W pair production

- Accurate knowledge needed
 - signal: to study the gauge structure of the Standard Model
 - background: for Higgs boson production and decay in the mass range $\,M_{\rm H}\,\in\,[140,175]\,$ GeV
- Large enhancements at the NLO level in the dominant quark annihilation channel
 - 70% with general LHC cuts
 - 20 30% with Higgs boson search cuts
- Necessity to study scale variation in the case of gluon fusion (leading order error determination)
 - 30% enhancement with Higgs boson search cuts, otherwise 5%

W pair production

 Leading color contribution at 2-loops in t-channel production in quark annihilation

$\frac{\pi^4 (88 - 307 x)}{2880 (-1 + x)} + \frac{51863 x - 1800 x^2}{10369 (-1 + x)} + \frac{\frac{3}{12 m s} - \frac{(-1 + x) x}{g(-1 + x)} - \frac{(-1 + x) x}{12 m s^4}}{\varepsilon^4} + \frac{\pi^4}{12 m s^4} + \frac{\pi^4}{12 $	- 433 (-14
$\frac{(-72 + 432 x + 499 x^2 - 228 x^3) \text{H[1, x]}}{288 (-1 + x) x} + \frac{(18 - 54 x + 63 x^2 - 79 x^3 - 9 x^4) \text{H[1, 1, x]}}{36 (-1 + x) x^2} +$	$\left(\frac{17 \text{ x}}{72 (-1+3)}\right)$
$\frac{(-1+x^2-2x^3-x^4)H[0,1,1,x]}{4(-1+x)x^2} + \frac{(3-22x^3-3x^4)H[1,1,1,x]}{12(-1+x)x^2} + $	$\left(-\frac{41443}{13824}+\right)$
$\frac{(-4+3x) H[0, 0, 1, 1, x]}{4(-1+x)} + \frac{xH[0, 1, 1, 1, x]}{2(-1+x)} + \frac{xH[1, 0, 1, 1, x]}{2(-1+x)} +$	$\pi^2 \left(-\frac{16}{23}\right)$
$\frac{(-1+x+x^2)\log[mg]^*}{24(-1+x)} + \left(\frac{-251x-720x^2}{864(-1+x)} + \frac{(-3+x)H[1,x]}{6(-1+x)} + (-3+x)H$	$\frac{1}{ms^2} \left(\frac{9093}{1} \right)$
$\frac{(6+11 \times) H[1, 1, X]}{12 (-1+X)} - \frac{X H[0, 1, 1, X]}{2 (-1+X)} - \frac{X H[1, 1, 1, X]}{-1+X} \int Log[s] +$	$\frac{17}{72}$ (-1
$\left(\frac{-8 \times +9 \times^{4}}{18 (-1+x)} - \frac{\times H(1, x)}{4 (-1+x)} + \frac{\times H(1, 1, x)}{2 (-1+x)}\right) \log[s]^{2} + \frac{\times \log[s]^{2}}{72 (-1+x)} - \frac{\times \log[s]^{2}}{12 (-1+x)} + \frac{\times \log[s]^{2}}{12 (-1+x)} + \frac{1}{12 (-1+x$	$\pi^2 \left(\frac{215}{12}\right)$
$\log[ms]^{2} \left(\frac{7 - 10x - 5x^{2}}{16(-1 + x)} + \frac{(-1 + x + x^{2}) \log[s]}{4(-1 + x)} \right) +$	(- 13 /72 (·
$\pi^{2} \left(\frac{216 + 132 \times 1007 \times -780 \times }{1728 (-1 + x) \times } + \frac{(-19 - 66 \times -17 \times +6 \times) \times 11[1, x]}{144 (-1 + x) \times 2} + \right)$	-2521 X - 1728 (-
$\frac{(-4+11x) H[0, 1, x]}{24 (-1+x)} + \frac{13 x H[1, 1, x]}{24 (-1+x)} - \frac{13 (-1+x+x^2) Log[ms]}{24 (-1+x)} + \frac{13 (-1+x) Log[ms]}{24 (-1+x)} + 13 (-1+x) Log[ms$	<u>(1 - x -</u> 9
$\left(\frac{13 x}{72 (-1+x)} - \frac{3 x H[1, x]}{4 (-1+x)}\right) Log[8] + \frac{x Log[8]^{2}}{2 (-1+x)} + \frac{1}{2 (-1+x)} + $	$\frac{x \log[s]}{4 (-1+3)}$
$\log[ms] \left(\frac{115 - 43 x - 37 x^2}{144 (-1 + x)} + \frac{(-6 + 19 x - 16 x^2 - 13 x^3) H[1, x]}{24 (-1 + x) x} + \right)$	Log[ms]
$\frac{(1-x^3-x^4) H[1, 1, x]}{4 (-1+x) x^2} + \frac{(5-8 x - 2 x^2) Log[8]}{6 (-1+x)} + \frac{(-1+x+x^2) Log[8]^2}{2 (-1+x)} + \frac{(-1+x+x^2) Log[8]}{2 (-1+x)} + (-1+$	$\frac{324}{2304} + \pi$
$-\frac{11x}{16(-1+x)} + \frac{\frac{43}{16} + \frac{3\log(n)}{16}}{\frac{1}{16}} + \frac{x\log(n)}{4(-1+x)} + \frac{\frac{127}{16}(-1+x)x + \frac{1}{16}(-1+x)x\log(n)}{\pi n^2} + \frac{1}{1}$	(- <u></u>
$\left(\frac{\pi^2 x}{\pi^2 x} + \frac{35 x + 72 x^2}{\pi^2 x} - \frac{x H[1, x]}{\pi^2 x} + \frac{x H[1, 1, x]}{\pi^2 x} + \frac$	π* (3
$\begin{pmatrix} 4 \ (-1+x) & 288 \ (-1+x) & 8 \ (-1+x) & 4 \ (-1+x) \\ (-1+x+x^2) \ \text{Log}(ma) & 17x \ \text{Log}(a) & x \ \text{Log}(a)^2 & \frac{25}{2} - \frac{3\pi^2}{2} - \frac{21 \ \text{Log}(a)}{2} + \frac{3 \ \text{Log}(a)^2}{2} \\ \end{pmatrix}$	
$\frac{(-1+x+x+x+y)\log[\log]}{4(-1+x)} + \frac{1+x\log[\log]}{24(-1+x)} - \frac{x\log[\log]}{4(-1+x)} + \frac{384}{16} - \frac{32}{32} + \frac{36}{16} + \frac{384}{16} + \frac{384}{16$	

$\frac{-\frac{431 \left(-1+x\right) x}{1152}+\frac{1}{15} \pi^2 \left(-1+x\right) x+\frac{29}{95} \left(-1+x\right) x \log \left[8\right]-\frac{1}{16} \left(-1+x\right) x \log \left[8\right]^2}{\text{ms}^2}\right)+$
$\frac{17x}{72(-1+x)} - \frac{3x\text{H[1, x]}}{4(-1+x)} + \frac{7x\text{Log[s]}}{12(-1+x)}\right)\text{Zeta[3]} + \frac{1}{\text{ms}}$
$-\frac{41443}{13824} + \frac{263 \pi^4}{3840} + \frac{1003 \log[8]}{1152} - \frac{\log[8]^2}{24} - \frac{3 \log[8]^3}{32} + \frac{\log[8]^4}{16} + \frac{1003 \log[8]}{16} + \frac{1003 \log[8]}{16}$
$\pi^{2} \left(-\frac{161}{2304} + \frac{19 \log[8]}{49} - \frac{3 \log[8]^{2}}{8} \right) + \left(\frac{1}{4} - \frac{7 \log[8]}{16} \right) \text{Zeta[3]} \right) +$
$\frac{1}{18^2} \left(\frac{9083 \ (-1+x) \ x}{41472} - \frac{263 \ x^4 \ (-1+x) \ x}{11520} + \frac{877 \ (-1+x) \ x \log[8]}{3456} - \right)$
$\frac{17}{72} (-1+x) \times \log[s]^2 + \frac{25}{288} (-1+x) \times \log[s]^3 - \frac{1}{48} (-1+x) \times \log[s]^4 + \frac{1}{288} (-1+x) \times \log[s]^4 (-1+x) \times \log[s]^4 + \frac{1}{288} (-1+x) \times \log[s]^4 (-1+x) \times \log$
$\pi^{2} \left(\frac{2153 \ (-1+x) \ x}{6912} - \frac{43}{144} \ (-1+x) \ x \log[8] + \frac{1}{8} \ (-1+x) \ x \log[8]^{2} \right) +$
$\left(-\frac{13}{72}\left(-1+x\right)x+\frac{7}{48}\left(-1+x\right)x \log[s]\right) \operatorname{Zeta}[3]\right)+\frac{1}{\varepsilon}$
$\frac{-2521 x + 1512 x^2}{1728 (-1+x)} + \frac{(4-5 x) H[1, x]}{16 (-1+x)} - \frac{H[1, 1, x]}{4 (-1+x)} + \frac{x H[0, 1, 1, x]}{4 (-1+x)} + \frac{x H[1, 1, 1, x]}{2 (-1+x)} + \frac{(-1+x)}{2 (-1+x)} +$
$\frac{(1-x-x^2)\log\left[\text{ms}\right]^2}{9\left(-1+x\right)} + \left(\frac{31x-72x^2}{144\left(-1+x\right)} + \frac{x\text{H}[1,x]}{4\left(-1+x\right)} - \frac{x\text{H}[1,1,x]}{2\left(-1+x\right)}\right)\log\left[\text{s}\right] - \frac{1}{2}\left(-1+x\right)^2\left(-1+x\right)^2\left(-1+x\right)^2\left(-1+x\right)^2\right)\log\left[\text{s}\right] + \frac{1}{2}\left(-1+x\right)^2\left(-1+x\right)^2\left(-1+x\right)^2\left(-1+x\right)^2\left(-1+x\right)^2\right)\log\left[\text{s}\right] + \frac{1}{2}\left(-1+x\right)^2\left(-1+x\right)^2\left(-1+x\right)^2\left(-1+x\right)^2\left(-1+x\right)^2\right)\log\left[\text{s}\right] + \frac{1}{2}\left(-1+x\right)^2\left(-1+x\right)^2\left(-1+x\right)^2\left(-1+x\right)^2\left(-1+x\right)^2\left(-1+x\right)^2\right)\log\left[\text{s}\right] + \frac{1}{2}\left(-1+x\right)^2\left(-1+x\right)^2\left(-1+x\right)^2\left(-1+x\right)^2\left(-1+x\right)^2\left(-1+x\right)^2\left(-1+x\right)^2\right)\log\left[\text{s}\right] + \frac{1}{2}\left(-1+x\right)^2\left$
$\frac{x \log[s]^2}{4 (-1+x)} + \frac{x \log[s]^2}{6 (-1+x)} + \pi^2 \left(\frac{17 x}{96 (-1+x)} + \frac{3 x H[1, x]}{8 (-1+x)} - \frac{x \log[s]}{2 (-1+x)}\right) +$
$\log[ms] \left(\frac{-7+9x+5x^2}{8(-1+x)} + \frac{(1-x-x^2)\log[s]}{2(-1+x)} \right) + $
$\frac{\frac{501}{2304} + \pi^2}{\frac{1}{2304} + \pi^2} \left(-\frac{51}{132} + \frac{3\log[\pi]}{9} \right) - \frac{\log[\pi]}{\frac{54}{2}} + \frac{5\log[\pi]^2}{16} - \frac{\log[\pi]^2}{9} + \frac{72\pi t_{\pi}[t_{\pi}]}{32} - \frac{7 \times 2\pi t_{\pi}[2]}{24 (-1 + x)} + \frac{1}{ma^2}$
$\left(-\frac{4045\left(-1+x\right)x}{6912}+\frac{235}{576}\left(-1+x\right)x\text{Log[8]}-\frac{3}{16}\left(-1+x\right)x\text{Log[8]}^{2}+\frac{1}{24}\left(-1+x\right)x\text{Log[8]}^{3}+\frac{1}{24}\left(-1+x\right)xxxxxxxxxxxxxxxxxx$
$\pi^{2} \left(\frac{93}{394} (-1+x) \times -\frac{1}{8} (-1+x) \times \text{Log}[s] \right) - \frac{7}{96} (-1+x) \times \text{Zeta[3]} \right)$

• full result soon to follow (G.Chachamis, M.C., D.Eiras)

Conclusions

- Leading high energy behaviour of the 2-loop virtual corrections available for both production channels in the case of top pairs
- Leading high energy behaviour of the 2-loop virtual corrections almost complete in the quark annihilation channel for W pairs
- Power corrections and full mass dependence in both cases are feasible
- Lots to be done from here...