A Matrix Formulation for Small-x RG Improved Evolution

Marcello Ciafaloni

ciafaloni@fi.infn.it

University of Florence and INFN Florence (Italy)

In collaboration with: D. Colferai
G.P. Salam
A.M. Stašto

RadCor Conference, GGI (Florence), October 2007
Some “historical” physical problems

- Reliable description of rising “hard” cross sections and structure functions at high energies
- Precise determination of parton splitting functions at small-x while keeping their well known behaviour at larger-x;
- Providing a small-x resummation in matrix form: quarks and gluons are treated on the same ground and in a collinear factorization scheme as close as possible to $\overline{\text{MS}}$.
Some “historical” physical problems

- Reliable description of rising “hard” cross sections and structure functions at high energies
- Precise determination of parton splitting functions at small-\(x\) while keeping their well known behaviour at larger-\(x\);
- Providing a small-\(x\) resummation in matrix form: quarks and gluons are treated on the same ground and in a collinear factorization scheme as close as possible to \(\overline{\text{MS}}\)

Outline

- Generalizing BFKL and DGLAP evolutions
- Criteria and mechanism of matrix kernel construction
- Resummed results and partonic splitting function matrix
- Conclusions
Generalizing BFKL and DGLAP eqs

- The BFKL equation (1976) predicts rising cross-sections but
- Leading log predictions overestimate the hard Pomeron exponent, while NLL corrections are large, negative, and may make it ill-defined (Fadin, Lipatov; Camici, Ciafaloni: 1998)
- Low order DGLAP evolution is consistent with rise of HERA SF, with marginal problems (hints of negative gluon density)
- Need to reconcile BFKL and DGLAP approaches
Generalizing BFKL and DGLAP eqs

- The BFKL equation (1976) predicts rising cross-sections but
- Leading log predictions overestimate the hard Pomeron exponent, while NLL corrections are large, negative, and may make it ill-defined (Fadin, Lipatov; Camici, Ciafaloni: 1998)
- Low order DGLAP evolution is consistent with rise of HERA SF, with marginal problems (hints of negative gluon density)
- Need to reconcile BFKL and DGLAP approaches

Collinear + small-\(x\) Resummations

- In the last decade, various (doubly) resummed approaches (CCS + CCSS; Altarelli, Ball, Forte; Thorne, White ...)
- Main idea: to incorporate RG constraints in the BFKL kernel
Output: effective (resummed) BFKL eigenvalue \(\chi_{eff}(\gamma)\) or the “dual” DGLAP anomalous dimension \(\Gamma_{eff}(\omega)\) (+ running \(\alpha_s\))
- So far, only the gluon channel is treated self-consistently; the quark channel is added by \(k\)-factorization of the \(q - \bar{q}\) dipole
The matrix approach

- Generalizes DGLAP self-consistent evolution for quarks and gluons in k-factorized matrix form, so as to be consistent, at small x, with BFKL gluon evolution.
- Defines, by construction, some unintegrated partonic densities at any x, and provides the resummed Hard Pomeron exponent and the Splitting Functions matrix.
The matrix approach

- Generalizes DGLAP self-consistent evolution for quarks and gluons in \(k \)-factorized matrix form, so as to be consistent, at small \(x \), with BFKL gluon evolution.
- Defines, by construction, some unintegrated partonic densities at any \(x \), and provides the resummed Hard Pomeron exponent and the Splitting Functions matrix.

Main construction criteria for the matrix kernel

- Should incorporate exactly NLO DGLAP matrix evolution and the NL\(x \) BFKL kernel.
- Should satisfy RG constraints in both ordered and antiordered collinear regions, and thus the \(\gamma \leftrightarrow 1 - \gamma + \omega \) symmetry (below).
- Is assumed to satisfy the Minimal-pole Assumption in the \(\gamma \)- and \(\omega \)- expansions (see below).
BFKL vs. DGLAP evolution

Recall: DGLAP is evolution equation for PDF $f_a(Q^2)$ in hard scale Q^2 and defines the anomalous dimension matrix $\Gamma(\omega)$, with the moment index $\omega = \partial / \partial Y$ conjugated to $Y = \log 1/x$

$$\frac{\partial}{\partial t} f_a = \frac{\partial}{\partial \log Q^2} f_a = [\Gamma(\omega)]_{ab} f_b$$
BFKL vs. DGLAP evolution

Recall: DGLAP is evolution equation for PDF $f_a(Q^2)$ in hard scale Q^2 and defines the anomalous dimension matrix $\Gamma(\omega)$, with the moment index $\omega = \partial / \partial Y$ conjugated to $Y = \log 1/x$

$$\frac{\partial}{\partial t} f_a = \frac{\partial}{\partial \log Q^2} f_a = [\Gamma(\omega)]_{ab} f_b$$

BFKL is evolution equation in Y for unintegrated PDF $F(Y, k^2)$, and defines the kernel $K(\gamma)$, with $\gamma = \partial / \partial t$ conjugated to $t = \log k^2$

$$\omega F = \frac{\partial}{\partial Y} F = K(\gamma) F$$
BFKL vs. DGLAP evolution

Recall: DGLAP is evolution equation for PDF $f_a(Q^2)$ in hard scale Q^2 and defines the anomalous dimension matrix $\Gamma(\omega)$, with the moment index $\omega = \partial/\partial Y$ conjugated to $Y = \log 1/x$

$$\frac{\partial}{\partial t} f_a = \frac{\partial}{\partial \log Q^2} f_a = [\Gamma(\omega)]_{ab} f_b$$

BFKL is evolution equation in Y for unintegrated PDF $F(Y, k^2)$, and defines the kernel $K(\gamma)$, with $\gamma = \partial/\partial t$ conjugated to $t = \log k^2$

$$\omega F = \frac{\partial}{\partial Y} F = K(\gamma) F$$

If k-factorization is used, DGLAP evolution of the Green’s function G corresponds to either the ordered $k \gg k' \gg \ldots k_0$ or the antiordered momenta, while BFKL incorporates all possible orderings
Matrix Kernel Construction

At frozen α_s, our RG-improved matrix kernel is expanded in the form

$$K(\bar{\alpha}_s, \gamma, \omega) = \bar{\alpha}_s K_0(\gamma, \omega) + \bar{\alpha}_s^2 K_1(\gamma, \omega)$$

and satisfies the minimal-pole assumption in the γ- and ω- expansions ($\gamma = 0 \leftrightarrow$ ordered k’s)

$$K(\bar{\alpha}_s, \gamma, \omega) = \frac{1}{\gamma} K^{(0)}(\bar{\alpha}_s, \omega) + K^{(1)}(\bar{\alpha}_s, \omega) + O(\gamma)$$

$$= (1/\omega) \; _0K(\bar{\alpha}_s, \gamma) + _1K(\bar{\alpha}_s, \gamma) + O(\omega)$$

from which DGLAP anomalous dimension matrix Γ and BFKL kernel χ:

$$\Gamma_0 = K_0^{(0)}(\omega); \quad \Gamma_1 = K_1^{(0)}(\omega) + K_1^{(1)}(\omega) \Gamma_0(\omega); \ldots$$

$$\chi_0 = [K_0(\gamma)]_{gg}; \quad \chi_1 = [K_1(\gamma) + K_0(\gamma) \; _1K_0(\gamma)]_{gg}; \ldots$$
Matrix Kernel Construction

At frozen α_s, our RG-improved matrix kernel is expanded in the form

$$\mathcal{K}(\bar{\alpha}_s, \gamma, \omega) = \bar{\alpha}_s \mathcal{K}_0(\gamma, \omega) + \bar{\alpha}_s^2 \mathcal{K}_1(\gamma, \omega)$$

and satisfies the minimal-pole assumption in the γ- and ω- expansions ($\gamma = 0 \leftrightarrow$ ordered k’s)

$$\mathcal{K}(\bar{\alpha}_s, \gamma, \omega) = \frac{1}{\gamma} \mathcal{K}^{(0)}(\bar{\alpha}_s, \omega) + \mathcal{K}^{(1)}(\bar{\alpha}_s, \omega) + O(\gamma)$$

$$= \frac{1}{\omega} \mathcal{K}^{(0)}(\bar{\alpha}_s, \gamma) + \mathcal{K}^{(1)}(\bar{\alpha}_s, \gamma) + O(\omega)$$

from which DGLAP anomalous dimension matrix Γ and BFKL kernel χ:

$$\Gamma_0 = \mathcal{K}^{(0)}_0(\omega); \quad \Gamma_1 = \mathcal{K}^{(0)}_1(\omega) + \mathcal{K}^{(1)}_0(\omega) \Gamma_0(\omega); \ldots$$

$$\chi_0 = [\mathcal{K}_0(\gamma)]_{gg}; \quad \chi_1 = [\mathcal{K}_1(\gamma) + \mathcal{K}_0(\gamma) \mathcal{K}_0(\gamma)]_{gg}; \ldots$$

Such expressions used to constrain \mathcal{K}_0 and \mathcal{K}_1 iteratively to yield the known NLO/NLx evolution, and approximate momentum conservation.
Matrix Kernel Construction

At frozen α_s, our RG-improved matrix kernel is expanded in the form

$$K(\bar{\alpha}_s, \gamma, \omega) = \bar{\alpha}_s K_0(\gamma, \omega) + \bar{\alpha}_s^2 K_1(\gamma, \omega)$$

and satisfies the minimal-pole assumption in the γ- and ω- expansions ($\gamma = 0 \leftrightarrow$ ordered k’s)

$$K(\bar{\alpha}_s, \gamma, \omega) = (1/\gamma) K^{(0)}(\bar{\alpha}_s, \omega) + K^{(1)}(\bar{\alpha}_s, \omega) + O(\gamma)$$

$$= (1/\omega) 0K(\bar{\alpha}_s, \gamma) + 1K(\bar{\alpha}_s, \gamma) + O(\omega)$$

from which DGLAP anomalous dimension matrix Γ and BFKL kernel χ:

$$\Gamma_0 = K^{(0)}_0(\omega); \quad \Gamma_1 = K^{(0)}_1(\omega) + K^{(1)}_0(\omega)\Gamma_0(\omega); \ldots$$

$$\chi_0 = [0 K_0(\gamma)]_{gg}; \quad \chi_1 = [0 K_1(\gamma) + 0 K_0(\gamma) 1 K_0(\gamma)]_{gg}; \ldots$$

Such expressions used to constrain K_0 and K_1 iteratively to yield the known NLO/NLx evolution, and approximate momentum conservation.

RG constraints in both ordered and antiordered collinear regions are met by the $\gamma \leftrightarrow 1 + \omega - \gamma$ symmetry of the kernel.
The Matrix Kernel

\[\mathcal{K}_0 = \begin{pmatrix}
\Gamma_{qq}^0(\omega)\chi^\omega_c(\gamma) & \Gamma_{gg}^0(\omega)\chi^\omega_c(\gamma) \\
\Gamma_{qq}^0(\omega)\chi^\omega_c(\gamma) & \left[\Gamma_{gg}^0(\omega) - \frac{1}{\omega}\right]\chi^\omega_c(\gamma) + \frac{1}{\omega}\chi^\omega_0(\gamma)
\end{pmatrix} \]
The Matrix Kernel

\[\mathcal{K}_0 = \begin{pmatrix}
\Gamma^0_{qq}(\omega) \chi_c^\omega(\gamma) & \Gamma^0_{qg}(\omega) \chi_c^\omega(\gamma) \\
\Gamma^0_{gq}(\omega) \chi_c^\omega(\gamma) & \left[\Gamma^0_{gg}(\omega) - \frac{1}{\omega} \right] \chi_c^\omega(\gamma) + \frac{1}{\omega} \chi_0^\omega(\gamma)
\end{pmatrix} \]

- \(\mathcal{K}_0 \) has simple poles in \(\gamma \) (in \(\chi_c^\omega \) and \(\chi_0^\omega \)) and simple poles in \(\omega \) in the gluon row.
- No \(\omega \)-poles are present in the quark row, consistently with LO DGLAP and reggeization of the quark at \(\omega = -1 \). We keep this structure also in \(\mathcal{K}_1 \).
The Matrix Kernel

\[\mathcal{K}_0 = \begin{pmatrix}
\Gamma_{qq}^0(\omega)\chi_c^\omega(\gamma) & \Gamma_{qg}^0(\omega)\chi_c^\omega(\gamma) + \Delta_{qg}(\gamma, \omega) \\
\Gamma_{gq}^0(\omega)\chi_c^\omega(\gamma) & \left[\Gamma_{gg}^0(\omega) - \frac{1}{\omega} \right] \chi_c^\omega(\gamma) + \frac{1}{\omega} \chi_0^\omega(\gamma)
\end{pmatrix} \]

- \(\mathcal{K}_0 \) has simple poles in \(\gamma \) (in \(\chi_c^\omega \) and \(\chi_0^\omega \)) and simple poles in \(\omega \) in the gluon row.
- No \(\omega \)-poles are present in the quark row, consistently with LO DGLAP and reggeization of the quark at \(\omega = -1 \). We keep this structure also in \(\mathcal{K}_1 \).
- At NLO \(\Gamma_{qq}^1 \) and \(\Gamma_{qg}^1 \) contain \(\frac{\alpha_s^2}{\omega} \). Instead of adding such terms in \(\mathcal{K}_1 \) (see above) we add a proper non-singular \(\Delta_{qg}(\gamma, \omega) \) term.
- \(\mathcal{K}_1 \) is obtained by adding NLO DGLAP matrix \(\Gamma_1 \) and NLx BFKL kernel \(\chi_1 \) (in \(\mathcal{K}_{1,gg} \)) with the subtractions due to the \(\gamma \)- and \(\omega \)- expansions explained before.
The Matrix Kernel

\[\mathcal{K}_0 = \begin{pmatrix} \Gamma_{qq}^0(\omega)\chi_c^\omega(\gamma) & \Gamma_{qg}^0(\omega)\chi_c^\omega(\gamma) + \Delta_{qg}(\gamma, \omega) \\ \Gamma_{gq}^0(\omega)\chi_c^\omega(\gamma) & [\Gamma_{gg}^0(\omega) - \frac{1}{\omega}]\chi_c^\omega(\gamma) + \frac{1}{\omega}\chi_0^\omega(\gamma) \end{pmatrix} \]

- \(\mathcal{K}_0 \) has simple poles in \(\gamma \) (in \(\chi_c^\omega \) and \(\chi_0^\omega \)) and simple poles in \(\omega \) in the gluon row.
- No \(\omega \)-poles are present in the quark row, consistently with LO DGLAP and reggeization of the quark at \(\omega = -1 \). We keep this structure also in \(\mathcal{K}_1 \).
- At NLO \(\Gamma_{qq}^1 \) and \(\Gamma_{qg}^1 \) contain \(\frac{\alpha_s^2}{\omega} \). Instead of adding such terms in \(\mathcal{K}_1 \) (see above) we add a proper non-singular \(\Delta_{qg}(\gamma, \omega) \) term.
- \(\mathcal{K}_1 \) is obtained by adding NLO DGLAP matrix \(\Gamma_1 \) and NL\(x \) BFKL kernel \(\chi_1 \) (in \(\mathcal{K}_{1,gg} \)) with the subtractions due to the \(\gamma \)- and \(\omega \)-expansions explained before.
- In \((k, x) \) space one has the \(k \leftrightarrow k' \) and \(x \leftrightarrow x k^2 / k'^2 \) symmetry of the matrix elements and running coupling is introduced

\[\mathcal{K}(k, k'; x) = \bar{\alpha}_s(k^2)\mathcal{K}_0(k, k'; x) + \bar{\alpha}_s^2(k^2)\mathcal{K}_1(k, k'; x) \]

(the scale \(k^2 > \equiv \max(k^2, k'^2) \) is replaced by \((k - k')^2 \) in front of the BFKL kernel \(\chi_0^\omega \)).
Remarks

Reproducing both low order DGLAP and BFKL evolutions provides novel Consistency Relations between the matrix k-factorization scheme and $\overline{\text{MS}}$. They are satisfied at NLO/NLx accuracy.
Remarks

- Reproducing both low order DGLAP and BFKL evolutions provides novel Consistency Relations between the matrix k-factorization scheme and $\overline{\text{MS}}$. They are satisfied at NLO/NLx accuracy.

- A small violation would appear at NNLO: the simple-pole assumption in ω-space implies that $[\Gamma_2]_{gg} = (C_F/C_A)[\Gamma_2]_{gg}$ at order α_s^3/ω^2, violated by (n_f/N_c^2)-suppressed terms ($\leq 0.5\%$ for $n_f \leq 6$) in $\overline{\text{MS}}$ (taken from Moch, Vermaseren, Vogt 2004).
Remarks

- Reproducing both low order DGLAP and BFKL evolutions provides novel Consistency Relations between the matrix k-factorization scheme and $\overline{\text{MS}}$. They are satisfied at NLO/NLx accuracy.

- A small violation would appear at NNLO: the simple-pole assumption in ω-space implies that $[\Gamma_2]_{gg} = (C_F/C_A)[\Gamma_2]_{gg}$ at order α_s^3/ω^2, violated by (n_f/N_c^2)-suppressed terms ($\leq 0.5\%$ for $n_f \leq 6$) in $\overline{\text{MS}}$ (taken from Moch, Vermaseren, Vogt 2004).

- Note a source of ambiguity: integrated PDF are defined at $\gamma \sim 0$, all ω; but unintegrated ones are well defined by k-factorization around different ω values: $\omega \sim 0$ (gluon) and $\omega \sim -1$ (quark).

- We choose the NLO/NLx scheme: incorporates exact $\overline{\text{MS}}$ anomalous dimension up to NLO and high-energy NLx BFKL kernel for the gluon channel.
Remarks

- Reproducing both low order DGLAP and BFKL evolutions provides novel Consistency Relations between the matrix k-factorization scheme and $\overline{\text{MS}}$. They are satisfied at NLO/NLx accuracy.

- A small violation would appear at NNLO: the simple-pole assumption in ω-space implies that $[\Gamma_2]_{gg} = (C_F/C_A)[\Gamma_2]_{gg}$ at order α_s^3/ω^2, violated by (n_f/N_c^2)-suppressed terms ($\leq 0.5\%$ for $n_f \leq 6$) in $\overline{\text{MS}}$ (taken from Moch, Vermaseren, Vogt 2004).

- Note a source of ambiguity: integrated PDF are defined at $\gamma \sim 0$, all ω; but unintegrated ones are well defined by k-factorization around different ω values: $\omega \sim 0$ (gluon) and $\omega \sim -1$ (quark).

- We choose the NLO/NLx scheme: incorporates exact $\overline{\text{MS}}$ anomalous dimension up to NLO and high-energy NLx BFKL kernel for the gluon channel.

- Frozen coupling results are partly analytical, running coupling splitting functions obtained by a numerical deconvolution method.
Results: Hard Pomeron Exponent

Frozen-α_s exponent $\omega_s(\alpha_s)$. LO/NLx scheme has only gg entry in K_1

- Modest decrease from n_f-dependence (running α_s not included)
- LO/NLx scheme joins smoothly the gluon-channel limit at $n_f = 0$
Effective Eigenvalue Functions ($n_f = 4$)

There are two, frozen α_s, resummed eigenvalue functions: $\omega = \chi_{\pm}(\alpha_s, \gamma)$

Fixed points at $\gamma = 0, 2$ and $\omega = 1 \Rightarrow$ momentum conservation in both collinear and anti-collinear limits.

New subleading eigenvalue χ_-
Modest n_f-dependence of $\chi_+(\alpha_s, \gamma)$. NLx-LO scheme recovers the known gluon-channel result (in agreement with ABF) at $n_f = 0$. Level crossing of χ_- and χ_+ in the $n_f = 0$ limit.
Resummed Splitting Function Matrix

NLO^+ scheme includes, besides NLO, also NNLO terms $\sim \alpha_s^3/\omega^2$

\[x P_{qq}(x) \]

- $NLx-NLO$
- $NLx-NLO^+$
- NLO

\[x P_{qg}(x) \]

- $\alpha_s=0.2$, $n_f=4$
- $0.5 < x_\mu < 2$

\[x P_{gg}(x) \]

- scheme B ($n_f=0$)

Marcello Ciafaloni
A Matrix formulation for small-x: RG improved evolution
RadCor Conference, GGI (Florence), October 2007
Resummed Splitting Function Matrix

\(NLO^+ \) scheme includes, besides NLO, also NNLO terms \(\sim \alpha_s^3/\omega^2 \)

- Infrared cutoff independence insures (matrix) collinear factorization
- At intermediate \(x \simeq 10^{-3} \) resummed \(P_{gg} \) and \(P_{gq} \) show a shallow dip
- Small-\(x \) rise of novel \(P_{gg} \) and \(P_{gq} \) delayed down to \(x \simeq 10^{-4} \)
- Scale uncertainty band (0.25<\(x_\mu^2 <4 \)) larger for the (small) \(P_{qa} \) entries
Conclusions

- We propose a small-x evolution scheme in matrix form
- Quarks and gluons treated on the same ground
- Splitting functions already (closely) in \overline{MS} scheme
Conclusions

- We propose a small-\(x\) evolution scheme in matrix form
- Quarks and gluons treated on the same ground
- Splitting functions already (closely) in \(\overline{\text{MS}}\) scheme
- We fix the NLO/NL\(x\) matrix factorization scheme by further requiring “symmetry” and “minimal poles”.
Conclusions

- We propose a small-x evolution scheme in matrix form
- Quarks and gluons treated on the same ground
- Splitting functions already (closely) in $\overline{\text{MS}}$ scheme
- We fix the NLO/NLx matrix factorization scheme by further requiring “symmetry” and “minimal poles”.
- Hard Pomeron and leading eigenvalue function are stable, with modest n_f-dependence.
- New subleading eigenvalue is obtained
- Resummed splitting functions P_{ga} show a shallow dip, small x increase of P_{qa} delayed to $x \simeq 10^{-4}$. Overall, gentle matching of low order with resummation
Conclusions

We propose a small-\(x \) evolution scheme in matrix form
- Quarks and gluons treated on the same ground
- Splitting functions already (closely) in \(\overline{\text{MS}} \) scheme

We fix the NLO/NL\(x \) matrix factorization scheme by further requiring “symmetry” and “minimal poles”.

Hard Pomeron and leading eigenvalue function are stable, with modest \(n_f \)-dependence. New subleading eigenvalue is obtained

Resummed splitting functions \(P_{ga} \) show a shallow dip, small\(x \) increase of \(P_{qa} \) delayed to \(x \approx 10^{-4} \). Overall, gentle matching of low order with resummation

Still need coefficients with comparable accuracy: take first LO impact factors with “exact kinematics”
Conclusions

- We propose a small-x evolution scheme in matrix form
 - Quarks and gluons treated on the same ground
 - Splitting functions already (closely) in $\overline{\text{MS}}$ scheme

- We fix the NLO/NLx matrix factorization scheme by further requiring “symmetry” and “minimal poles”.

- Hard Pomeron and leading eigenvalue function are stable, with modest n_f-dependence.
- New subleading eigenvalue is obtained

- Resummed splitting functions P_{ga} show a shallow dip, small x increase of P_{qa} delayed to $x \simeq 10^{-4}$. Overall, gentle matching of low order with resummation

- Still need coefficients with comparable accuracy:
 - take first LO impact factors with “exact kinematics”

- On the whole, it looks quite nice!