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Snap shot of the talk

e Perturbative QCD provides a frame work to compute observables at high energies

e They are "often" sensitive to
1) Renormalisation scale
2) Factorisation scale
3) Non-perturbative quantities that enter

4) Missing higher order contributions(stability of perturbation)
e Higher order QCD corrections reduce these effects
e Soft gluons dominate in some kinematic regions that are accessible at hadron colliders.

e Sudakov resummation of soft gluons can be used to predict for Higgs and Drell-Yan total
cross section and rapidity distribution beyond NN LO.
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® The non-perturbative flux:
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o f1 (x, ) are Parton distribution functions with momentum fraction .
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Factorisation Theorem (QCD improved Parton Model)

Gotlins,—Soper, Sterman

Hadronic cross section in terms of partonic cross sections convoluted with appropriate PDF:
T
2.S’ch'PlP2 T,mh Z/ —<I>ab (x, ;J,F)st“"b (;,mi,p,p>
® The perturbatively calculable partonic cross section:

d&ab (z m? - N as(1r) i dé&ab () 2
) ha/J'F) — Z A o (zamhalJ'Fall'R)
1=0

® The non-perturbative flux:

Pop (T, pr) = /:—fa(z MF)fb( ,MF>

ffl (x, ) are Parton distribution functions with momentum fraction .
pr is the Renormalisation scale and pr, Factorisation scale

e The Renormalisation group invariance:

dCL o1z (T, mf) = 0, M= LF, LR
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Higgs production at LHC and Scale dependence
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Higgs production at LHC and Scale dependence
Harlander, Kilgore/ Anastasiou, Melnikov/ van Neerven, Smith, VR
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§ 10000 |

1000

e |t is sufficient if we know the partonic cross
section when x — T
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e x — T is called soft limat.
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X = QZ/S e Expand the partonic cross section around
Gluon flux is largest at LHC r = T.
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Soft part

Catant et al, Harlander and Kilgore

® Expand the partonic cross section around © = Torz = Z = 1.

dé(z) =CcO(z) + > (1 —=z)c® PO
] T

1=1

o C(O);

oo k o
c® =cP 51 -2+ 3 ¢ (log (1 z)>
- (1 —2)
k=0 +
° C((,i) will be pure constants such as ¢(2), ¢(3).

L Compute the entire cross section in the "soft limit".
OR

Extract from "Form factors and DGLAP kernels" using

1) Factorisation theorem 2) Renormalisation Group Invariance

3) Drell-Yan NNLO results
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Soft plus Virtual at N3LO and beyond
VR

Using "factorisation"” of Virtual, Soft and Collinear:

AS}],P(zaqzaﬂzRaN%)zceXp (‘Ilfg(z,qz,p,zR,p%,e)> I =4q,g n=4-+c¢

e=0

. 2 AT /4 2
‘Pé(zaqzall'zRall'%‘as) — <1n (ZI(a'Sall'zR’ll'zae)) +ln|FI(a'87Q27P"27€)| >6(1_z)
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Soft plus Virtual at N3LO and beyond

VR

Using "factorisation"” of Virtual, Soft and Collinear:

I=q,9 mn=4+e¢

SIv,P(z7 q2, IJ'ZRa FL%‘) = Cexp (‘II{D(za q27 IJIZR7 F’/%‘ae)>
e=0

R 2 ~T . 2
Uh (2, 0%, phs upre) = <1n(ZI(as,u?z,u2,€)) + In |F(as, Q%, 2, €)| )5(1—2)

+2 (I)p{(a'saqzaﬂzazae) — 2 mCIHFII(a'87“27FL%‘7Za€)

o ZI(as, p%, 12, €) is operator renormalisation constant with . is mass parameter in
n = 4 + e dimensional regularisation — N3 LO

o Fl(as,Q?, u2,e) is the Form factor with Q2 = —g? — N3LO
e & l(as,q?, n?,z,e¢) is the soft distribution function — NINLO level

e I'yr(as, u?, u%, z, ) is mass factorisation kernel — N3LO
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Soft plus Virtual at N3LO and beyond

VR

Using "factorisation"” of Virtual, Soft and Collinear:

I=q,9 mn=4+e¢

SIv,P(z7 q2, IJ'ZRa FL%‘) = Cexp (‘II{D(za q27 IJIZR7 F’/%‘ae)>
e=0

R 2 ~T . 2
Uh (2, 0%, phs upre) = <1n(ZI(as,u?z,u2,€)) + In |F(as, Q%, 2, €)| )5(1—2)

+2 (I)p{(a'saqzaﬂzazae) — 2 mCIHFII(a'87“27FL%‘7Za€)

o ZI(as, p%, 12, €) is operator renormalisation constant with . is mass parameter in
n = 4 + e dimensional regularisation — N3 LO

o Fl(as,Q?, u2,e) is the Form factor with Q2 = —g? — N3LO
e & l(as,q?, n?,z,e¢) is the soft distribution function — NINLO level

e I'yr(as, u?, u%, z, ) is mass factorisation kernel — N3LO

for DIS, m=1 for DY, Higgs

m =
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Vogt, Vermaseren, Moch, VR
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Sudakov Resummation for Form factors

Vogt, Vermaseren, Moch, VR

d R ) 1 . “2 ~ Q2 “2
I I O O RS o

A oo . 2 ’I,% o .
Solution : In B (a5, Q?%, u?,e) = Z a. (Q—> Se [,;1’(1)(6)

1=1
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Sudakov Resummation for Form factors

Vogt, Vermaseren, Moch, VR
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Sudakov Resummation for Form factors

Vogt, Vermaseren, Moch, VR

d . 1 [JJZ Q2 ”2
2 I (A 2 2 .+ I~ HRr I~ € Hpr
Q sz lnF (as,Q ,IJJ ,E) —_ 2[K (as, “2,€>+G <a37”?{,“29€
A oo . 2 ’I,% o .
Solution : In B (a5, Q?%, u?,e) = Z a. (%) Se [,;1’(1)(6)
1=1
Formal solution upto 4 loops:
A 1
g = = ( — 2A{> + — (G{(€)>
€ €
sI,2) 1 I 1 1 7 I 1 7
Lp = 3 (50441) + pe) ( — §A2 —,30G1(€)> + 2—€G2(€)
C
e Al are maximally non — abelian Ag = ZA 79 t=1,2,3.
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Sudakov Resummation for Form factors

Vogt, Vermaseren, Moch, VR

d R ) 1 . ”2 ~ Q2 ”2
@ g o @tie) = |1 (o e £ (B

A oo . 2 ’L% o .
Solution :  InF'(as,Q?% pu?,e) = ) al (Q—> st 25 (¢)
: M
1=1

Formal solution upto 4 loops:

A 1
g = = ( — 2A{> + — (G{(€)>

€ €
sI,2) _ 1 I 1 11 I L 1
Ly = 3 (50141) + o2 ( — §A2 —,30G1(€)> + 2—€G2(€)

C
e A’ are maximally non — abelian Al = C’_A Af 1=1,2,3.
F

e Every order in ag, all the poles except the lowest one can be predicted from the previous
order results using A and 3 function.
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New observation for single polein e

VR,Smith,van Neerven
Two loop results for "¢ and F9 in SU(N) solves the single pole problem:
G's have interesting structure:

Gi(e) = 2(31—’)’1)+f1+26k fok
k=1
Gi(e) = 2(Bi—~L)+ ff —280g, " Zs"’ !k

B{ are §(1 — z) part of Py splitting functions. The new constants " f{ and fi1" satisfy
C
f=208 =12
F

Even the single pole can be predicted: G} = 2(B] —~{) + f} +

Recent three loop result by Moch,Vermaseren, Vogt confirms our prediction:

This completes the understanding of all the poles of the form factors.
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Due to the massless partons, collinear singularities appear in
e the phase space of the real emission processes

® |oop integrals of the virtual corrections
They are removed by Mass Factorisation by adding:

- lnr(a’sal"?all%‘azas)
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Mass factorisation using DGLAP kernel

VR
Due to the massless partons, collinear singularities appear in
e the phase space of the real emission processes

® |oop integrals of the virtual corrections
They are removed by Mass Factorisation by adding:

—InT'(as, FL2, U’%‘a z,€)
DGLAP kernels satisfy Renormalisation Group Equations:

d 1
N%‘d > I‘(zall'%‘as) — _P(za“’%‘) XTI (zall'%‘as) .
M 2
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Mass factorisation using DGLAP kernel

VR
Due to the massless partons, collinear singularities appear in
e the phase space of the real emission processes

® |oop integrals of the virtual corrections
They are removed by Mass Factorisation by adding:

—InT'(as, FL2, U’%‘a z,€)
DGLAP kernels satisfy Renormalisation Group Equations:

d

MFd

1
5 (2, p,F,s) = EP (z,y%) XTI (z,p,%,s) .
The diagonal terms of the splitting functions P(*) (z) have the following structure

PP (2) = 2|Bl ,6(1 —2) + Al Do| + P 11(2),

- p. 10/24



Mass factorisation using DGLAP kernel

VR
Due to the massless partons, collinear singularities appear in
e the phase space of the real emission processes

® |oop integrals of the virtual corrections
They are removed by Mass Factorisation by adding:

—InT'(as, I"'2a U’%‘a z,€)
DGLAP kernels satisfy Renormalisation Group Equations:

d

1
dn I‘(z p,F,s) = EP(Z’“%) XTI (z,u%,s) .

MF
The diagonal terms of the splitting functions P(*) (z) have the following structure

P (2) =2 Bj,6(1 —2) + Aj{;Do| + Pfi)g,ff(z) ;

1
Do = (1 — z) , Pr(e)g, sare regular when 2z — 1.
_|_

We will be left with only maximally non-abelian constants A} and f;
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Finiteness of the Cross section

VR
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Observable Al (as, Q?) are finite:
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The remaining poles after UV Operator Renormalisation(Z,, and ZT) and Mass
factorisation:

1

T at ithloop
€

Highest poles are not removed by renormalisation and factorisation
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The remaining poles after UV Operator Renormalisation(Z,, and ZT) and Mass
factorisation:

1

T at ithloop
€

Highest poles are not removed by renormalisation and factorisation

® The structure of soft part should be "similar" to the Form Factors.
® Hence using gauge invariance and RG invariance, we can propose

2 2 2
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Finiteness of the Cross section

VR
Observable Al (as, Q?) are finite:

Infra — red safe

The remaining poles after UV Operator Renormalisation(Z,, and ZT) and Mass
factorisation:

1
cit1

at ithloop

Highest poles are not removed by renormalisation and factorisation

® The structure of soft part should be "similar" to the Form Factors.
® Hence using gauge invariance and RG invariance, we can propose

2 2 2
K CLS,—IZ?',Z,E _I_G as,—z,—lj,z,s
v neg M

d . 1
qzd—qubI (asaq2al"'2,za€) — 5

RG invariance of ®! implies:

d —r1(. b3 d —1(. dq*> u? —1
e 5 K as,—g,z,s = —u3 5 G as,—z,—g,z,s = —A (as(1%))6(1 — 2)
dusg Iz LR M

- p. 11/24



Solution to (Soft)Sudakov Equation

VR

-p. 12/24



Solution to (Soft)Sudakov Equation

VR
Infra-red safeness of the cross section implies

ZI = —Al

-p. 12/24



Solution to (Soft)Sudakov Equation

Infra-red safeness of the cross section implies

Solution to (soft) Sudakov equation:

@I (& 2 2 _ = ~1 q_2 i§
s9q » 7z7€)—za’s )

VR

-p. 12/24



Solution to (Soft)Sudakov Equation

VR
Infra-red safeness of the cross section implies

Solution to (soft) Sudakov equation:
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where
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Solution to (Soft)Sudakov Equation

VR

Infra-red safeness of the cross section implies

Solution to (soft) Sudakov equation:

oo 2\ t5
~ L q LA )
! (asaqza .U'za =2) €) — Z ag <_2> Se (I)I’(z)(zae)

where

10 (z,e) = £L D (g) <AI — —8(1—2) AL, GI(e) =G I(z,s)>

Most general solution:

(I)I(a'saq27 “2729 €)

(I)I(&S, q2(1 - z)Zm, PLZ, £)

oo 2 2m \ i 5
~i (4 (1—=2) % i
>a () s

1=1 H

TMmEe 3 1,(3) (o
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Solution to (Soft)Sudakov Equation

Infra-red safeness of the cross section implies

VR

Solution to (soft) Sudakov equation:

oo 2\ t5
~ L q LA )
! (asaqza .U'za =2) 8) — Z ag <_2> Se (I)I’(z)(zae)

where

10 (z,e) = £L D (g) <AI — —8(1—2) AL, GI(e) =G I(z,s)>

Most general solution:

All the poles in € are predictable.

(I)I(&S, q2(1 - z)Zm, PLZ, £)

1M e

> o (PO st () 10

1=1 H
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Universal Soft part
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Single pole in e:
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k=1
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Maximally non-abelian:
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Gl(e) = =2Gi(e) i=1,2,3
Cr

Soft part of the any cross section are independent of spin,colour,flavour or other quantum
numbers.
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Universal Soft part

VR
Single pole in e:
— T > = I,
Gi(e) = —fI+> g™
k=1
k=1

Maximally non-abelian:
_ Ca—
Gl(e) = =2Gi(e) i=1,2,3
Cr

Soft part of the any cross section are independent of spin,colour,flavour or other quantum
numbers.

. CFr .
q)q(as,qz,z,p,z,s) — C—A(I)g(a-s,q2azal"'2a€)
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Higgs productions from Drell-Yan beyond NN LO

Universal soft function: VR
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Higgs productions from Drell-Yan beyond NN LO

Universal soft function: VR

. Ca .
(I)g(a'saq27z7 [,LZ,E?) — C—F(I)q(a87q27z7 [1.2,6)

e From Drell-Yan ®9 (as, g2, z, €), Gluon form factor /9 and operator renormalisation
constant Z, and DGLAP kernel I'y 5, we can compute soft plus virtual part of

o(g + g — Higgs)

without explicitly calculating the soft part of Higgs production.
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need for explicit computation of soft contributions for the Higgs production.
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Higgs productions from Drell-Yan beyond NN LO

Universal soft function: VR

R Ca .
(I)g(a'sa q27 =2 ”’2, é:) — —(I)q(a'87 q27 2 ”’2, é:)
CFr
e From Drell-Yan ®9 (as, g2, z, €), Gluon form factor /9 and operator renormalisation
constant Z, and DGLAP kernel I'y 5, we can compute soft plus virtual part of

o(g + g — Higgs)

without explicitly calculating the soft part of Higgs production.

e Our NN LO predictions agrees with the results by Catani et al, Harlander and Kilgore. No
need for explicit computation of soft contributions for the Higgs production.

e Our N3 LO predictions (without §(1 — z) part) for soft plus virtual contributions to Drell-Yan
and Higgs productions agree with the results of Moch and Vogt

e The scalar form factor 75 =< P|11| P > can be predicted at three loop from the known
three loop A;, B;, f; and ™.

e Soft plus Virtual part Higgs production through bottom quark fusion

o(b+ b — Higgs)

can be predicted upto IN3 LO(without §(1 — z)).
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e The scaling variable in DIS is
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® The scaling variable in hadro production is
2p-q
Lee — 2 q2 >0
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e Drell-Levy-Yan showed that these two processes are related by crossing relation.
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e The scaling variable in DIS is

q2 2
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’ 2p - q
® The scaling variable in hadro production is
2p-q
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q

Drell-Levy-Yan showed that these two processes are related by crossing relation.
Gribov-Lipatov relation in the soft limit:

CI)DIS(&SaQ29lJ'27ij7€) — q)ee(a'quzvll'z’weeve)

PII(:BBj) = 13”(31366) Distributions

- p. 15/24



Hadro production in ete™ annihilation from DIS

Bliumlemn and VR
e The scaling variable in DIS is

q2 2
rp; = — —q° >0
’ 2p - q
® The scaling variable in hadro production is
2p-q
Lee — 2 q2 >0
q

Drell-Levy-Yan showed that these two processes are related by crossing relation.
Gribov-Lipatov relation in the soft limit:
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PII(ij) = ﬁ[[(iﬂee) Distributions

e From DIS results, we can predict soft plus virtual part of the coefficient functions for hadro
production in eT e~ annihilation upto three loop level.

Cé::’)’” (s, 2) New result
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Threshold Resummation

VR
e Alternate derivation for the threshold resummation formula in z space for both DY and DIS:

. ™m
q)lg(a'saq2al*"27za€) — ( {

1 — 2=

a?>(1—2)*™6p g)\2
—-Ar (as A2
/“% N2 I (a ( ))

—I—E; (as (q2(1 - z)2m5p) , €) })
_I_

oo 2 2
m ~i [ MR —I(z)
+<1_z>+ .231‘13(”2) (e)

1=

N|®
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Threshold Resummation

VR
e Alternate derivation for the threshold resummation formula in z space for both DY and DIS:

2 2m
™m 97 (1=2)""0p g)\2
q)lg(a'saq2all'27za€) — ( {/ Ag (aS(Az))
1—2z | Juz A2

‘|‘EIJI’ (as (q2(1 - z)2m6P) ,E) })

oo 2\ ‘3 ,
H(m), St (ME) sw 0w
1 —2= + 1 | V7

e The threshold exponents D7 for DY and B/ for DIS are related to Gh(e = 0).

e Gh(e = 0) upto three loop gives D} and Bf fori =1,2,3
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Threshold Resummation

VR
e Alternate derivation for the threshold resummation formula in z space for both DY and DIS:

a?>(1—2)*™6p g)\2
/. Sz Ar (a: ()

1 —2= n2,

. ™m
q)lg(asaqzal«l'zazag) — ( {

-|—G1£ (as (*(1 — 2)*™ép) , &) })

e The threshold exponents D7 for DY and B/ for DIS are related to Gh(e = 0).

e Gh(e = 0) upto three loop gives D} and Bf fori =1,2,3

I
e Expansion of Ce(zép) leads to soft part of the cross section.

e Fixed order N3 LO soft plus virtual cross sections can be computed(except 6 (1 — z))

- p. 16/24



Soft plus Virtual part at N3LO for Higgs Production

Moch, Vogt and VR
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Soft plus Virtual part at N3LO for Higgs Production

Moch, Vogt and VR

1 d 2
2S doP1P2 (1,my,) = E / —w<I>ab (x) 25 d62° (I,mh) r="h
T/ T x S
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Soft plus Virtual part at N3LO for Higgs Production

Moch, Vogt and VR

1 d m2
28 do PPz (1,my) = Z/ @y () 28 d5°" (=, mp,) r=_h
£r £r

ab T

e Finite terms in F'I and ®! at 3-loop are still
missing
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Moch, Vogt and VR
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x T

ab T

e Finite terms in F'I and ®! at 3-loop are still
missing

e \We can not predict 6(1 — =z) part at 3-loop.

e At 3-loop we can predict all

D; j=5,4,3,2,1,0
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Moch, Vogt and VR
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28 do PPz (1,my) = Z/ @y () 28 d5°" (=, mp,) r=_h
£r £r
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e At 3-loop we can predict all
D; j=5,4,3,2,1,0
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Soft plus Virtual part at N3LO for Higgs Production
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150

Gluon flux is largest at LHC

o, (x) 25 d5° (I,mh)
£Ir £

Moch, Vogt and VR

Finite terms in FI and ®! at 3-loop are still

missing

We can not predict §(1 — =) part at 3-loop.

At 3-loop we can predict all
D; j=5,4,3,2,1,0
At 4-loop, we can predict only

D, j=1,6,5/4,3,2

They contribute bulk of the cross section
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Scale variation at N3LO for Higgs production

N = ZNiLOo (1)
oniro(Ho)
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cale variation at N3LO for Higgs production
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cale variation at N3LO for Higgs production
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cale variation at N3LO for Higgs production
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® Scale uncertainity improves a lot
e Perturbative QCD works at LHC
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Soft distribution for rapidity

VR,Smith and van Neerven

Using RGE and Factorisation:
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Soft distribution for rapidity

VR,Smith and van Neerven

Using RGE and Factorisation:

I (A 2 2 _ I I
P (s, q“, p°,21,22,6) = (I)d,finite + q)d,singula'r
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Soft distribution for rapidity

VR,Smith and van Neerven

Using RGE and Factorisation:

(I)dI (a’s ’ q27 /‘1’2 » 21y 22, E) — q)dI,.]""i,n'ite + (I)dI,singula’r
where
2
1 1 77 (1=z1) d)2
I 2
‘I’d,fz'm'te — 55(1 — 22) (1 — { 2 FAI (as (A ))
R

+Gy (as (¢*(1 — z1)) ,s)})

_I_

2
d 1 q“(1—2z1)(1—22) g)\2
+q° —— A (as(N?
’ dq2[<4<1—z1)(1—z2){ b s A (o)

—I—Efi (as (q2(1 —2z1)(1 — zz)) ,s)})

_|_

+21 > 2o
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N3LO,sv results for Drell-Yan rapidity

VR,Smith and van Neerven
N = ZNiLo (1)
oniro(Ho)

- p. 20124



N3LO,sv results for Drell-Yan rapidity
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N3LO,sv results for Drell-Yan rapidity
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N3LO,sv results for Drell-Yan rapidity

0.2

0.175

0.15

0.125

0.1

0.075

N = ZNiLo (1)

O'N'iLo(MO)

d’c/dM dY (pb/GeV) (LHC)

M=115 GeV

-2 0 vy 2

1.06

1.04

1.02

0.98

0.96

VR,Smith and van Neerven

P | T T T | T

R-Ratio (Y) (LHC)

0.5

1y,

e Compared against Dixon,Anastasiou,Melnikov,Petriello NNLO results for

Drell-Yan, Higgs, Z, W productions.

M=115 GeV —
————— NLO ]
.......... NNLO I

3 sV
—— NLO,, —
I L
1.5 2

- p. 20124



N3LO,sv results for Higgs rapidity

VR,Smith and van Neerven
N = ZNiLo (1)
oniro(Ho)
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N3LO,sv results for Higgs rapidity
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N3LO,sv results for Higgs rapidity
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N3LO,sv results for Higgs rapidity
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N3LO,sv results for rapidity of Z

VR,Smith
N = ZNiLo (1)
oniro(Mo)
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N3LO,sv results for

rapidity of Z
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N3LO,sv results for
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The scale uncertainties go down significantly due to the success in computing various
higher order results.

All the poles in £ of the vector and scalar form factors are now understood.

Soft distribution functions are found to satisfy Sudakov type differential equation.

Higher order threshold corrections beyond N2 LO can be computed using three loop form

factors, splitting functions and soft distribution functions.

Higher order threshold exponents D{ and B{ upto three loop level can be computed using

this approach.

Dominant Soft plus Virtual total cross sections and rapidity distributions to N3 LO is now
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