Soft gluon contributions to Drell-Yan and Higgs productions beyond NNLO

V. Ravindran

Harish-Chandra Research Institute, Allahabad

- Introduction
- Scale ambiguity
- Sudakov Resummation of soft gluons at $N^3\text{LO}$
- Drell-Yan and Higgs productions
- Conclusions

Dedicated to

W.L. van Neerven

In collaboration with

W.L. van Neerven, J. Blümlein and J. Smith
Snap shot of the talk
Snap shot of the talk

• Perturbative QCD provides a frame work to compute observables at high energies.
Snap shot of the talk

- Perturbative QCD provides a framework to compute observables at high energies.

- They are "often" sensitive to:
 1) Renormalisation scale
 2) Factorisation scale
 3) Non-perturbative quantities that enter
 4) Missing higher order contributions (stability of perturbation)
Snap shot of the talk

- Perturbative QCD provides a framework to compute observables at high energies

- They are "often" sensitive to
 1) Renormalisation scale
 2) Factorisation scale
 3) Non-perturbative quantities that enter
 4) Missing higher order contributions (stability of perturbation)

- Higher order QCD corrections reduce these effects
Snap shot of the talk

- Perturbative QCD provides a framework to compute observables at high energies.

- They are "often" sensitive to:
 1) Renormalisation scale
 2) Factorisation scale
 3) Non-perturbative quantities that enter
 4) Missing higher order contributions (stability of perturbation)

- Higher order QCD corrections reduce these effects.

- Soft gluons dominate in some kinematic regions that are accessible at hadron colliders.
Snap shot of the talk

- Perturbative QCD provides a framework to compute observables at high energies.
- They are "often" sensitive to:
 1) Renormalisation scale
 2) Factorisation scale
 3) Non-perturbative quantities that enter
 4) Missing higher order contributions (stability of perturbation)
- Higher order QCD corrections reduce these effects.
- Soft gluons dominate in some kinematic regions that are accessible at hadron colliders.
- Sudakov resummation of soft gluons can be used to predict for Higgs and Drell-Yan total cross section and rapidity distribution beyond $NNLO$.
Hadronic cross section in terms of partonic cross sections convoluted with appropriate PDF:

\[2S \, d\sigma_{P_1P_2}^{P_1P_2} (\tau, m_h^2) = \sum_{ab} \int_{\tau}^{1} \frac{dx}{x} \Phi_{ab} (x, \mu_F) \, 2\hat{s} \, d\hat{\sigma}_{ab} \left(\frac{\tau}{x}, m_h^2, \mu_F \right) \]
Factorisation Theorem (QCD improved Parton Model)

Collins, Soper, Sterman

Hadronic cross section in terms of partonic cross sections convoluted with appropriate PDF:

\[
2S \, d\sigma^{P_1 P_2} (\tau, m_h^2) = \sum_{ab} \int_{\tau} \frac{d\tau}{\tau} \Phi_{ab} (x, \mu_F) \, 2\hat{s} \, d\hat{\sigma}^{ab} \left(\frac{\tau}{x}, m_h^2, \mu_F \right)
\]

- The perturbatively calculable partonic cross section:

\[
d\hat{\sigma}^{ab} (z, m_h^2, \mu_F) = \sum_{i=0}^{\infty} \left(\frac{\alpha_s (\mu_R)}{4\pi} \right)^i d\hat{\sigma}^{ab,(i)} (z, m_h^2, \mu_F, \mu_R)
\]
Factorisation Theorem (QCD improved Parton Model)

Collins, Soper, Sterman

Hadronic cross section in terms of partonic cross sections convoluted with appropriate PDF:

\[2S \, d\sigma^{P_1 P_2} (\tau, m_h^2) = \sum_{ab} \int_{\tau}^{1} \frac{dx}{x} \Phi_{ab} (x, \mu_F) \, 2\hat{s} \, d\hat{\sigma}^{ab} \left(\frac{\tau}{x}, m_h^2, \mu_F \right) \]

- The perturbatively calculable partonic cross section:

\[d\hat{\sigma}^{ab} (z, m_h^2, \mu_F) = \sum_{i=0}^{\infty} \left(\frac{\alpha_s (\mu_R)}{4\pi} \right)^i d\hat{\sigma}^{ab, (i)} (z, m_h^2, \mu_F, \mu_R) \]

- The non-perturbative flux:

\[\Phi_{ab} (x, \mu_F) = \int_{x}^{1} \frac{dz}{z} f_a (z, \mu_F) f_b \left(\frac{x}{z}, \mu_F \right) \]
Factorisation Theorem (QCD improved Parton Model)

Collins, Soper, Sterman

Hadronic cross section in terms of partonic cross sections convoluted with appropriate PDF:

$$2S \, d\sigma^{P_1P_2}_{12} (\tau, m_{h}^2) = \sum_{ab} \int_{\tau}^{1} \frac{dx}{x} \Phi_{ab}(x, \mu_F) \, 2\hat{s} \, d\hat{\sigma}^{ab}_{12} \left(\frac{\tau}{x}, m_{h}^2, \mu_F \right)$$

- The perturbatively calculable partonic cross section:

$$d\hat{\sigma}^{ab}_{12} (z, m_{h}^2, \mu_F) = \sum_{i=0}^{\infty} \left(\frac{\alpha_s(\mu_R)}{4\pi} \right)^i d\hat{\sigma}^{ab,(i)}_{12} (z, m_{h}^2, \mu_F, \mu_R)$$

- The non-perturbative flux:

$$\Phi_{ab}(x, \mu_F) = \int_{x}^{1} \frac{dz}{z} f_a(z, \mu_F) f_b \left(\frac{x}{z}, \mu_F \right)$$

- $f^{P_1}_{a}(x, \mu_F)$ are Parton distribution functions with momentum fraction x.
Factorisation Theorem (QCD improved Parton Model)

Collins, Soper, Sterman

Hadronic cross section in terms of partonic cross sections convoluted with appropriate PDF:

\[2S \, d\sigma^{P_1 P_2} (\tau, m_h^2) = \sum_{ab} \int_\tau^1 \frac{dx}{x} \Phi_{ab} (x, \mu_F) \cdot 2\hat{s} \, d\hat{\sigma}^{ab} \left(\frac{\tau}{x}, m_h^2, \mu_F \right) \]

- The perturbatively calculable partonic cross section:

\[d\hat{\sigma}^{ab} (z, m_h^2, \mu_F) = \sum_{i=0}^{\infty} \left(\frac{\alpha_s(\mu_R)}{4\pi} \right)^i d\hat{\sigma}^{ab,(i)} (z, m_h^2, \mu_F, \mu_R) \]

- The non-perturbative flux:

\[\Phi_{ab} (x, \mu_F) = \int_x^1 \frac{dz}{z} f_a (z, \mu_F) f_b \left(\frac{x}{z}, \mu_F \right) \]

- \(f_a^{P_1} (x, \mu_F) \) are Parton distribution functions with momentum fraction \(x \).
- \(\mu_R \) is the Renormalisation scale and \(\mu_F \), Factorisation scale
Factorisation Theorem (QCD improved Parton Model)

Hadronic cross section in terms of partonic cross sections convoluted with appropriate PDF:

\[
2S \, d\sigma_{P_1P_2}^{P_1P_2}(\tau, m_h^2) = \sum_{ab} \int_{\tau}^{1} \frac{dx}{x} \Phi_{ab}(x, \mu_F) \, 2\hat{s} \, d\hat{\sigma}_{ab}^{(z, m_h^2, \mu_F)}
\]

- The perturbatively calculable partonic cross section:

\[
d\hat{\sigma}_{ab}^{(z, m_h^2, \mu_F)} = \sum_{i=0}^{\infty} \left(\frac{\alpha_s(\mu_R)}{4\pi} \right)^i d\hat{\sigma}_{ab, (i)}^{(z, m_h^2, \mu_F, \mu_R)}
\]

- The non-perturbative flux:

\[
\Phi_{ab}(x, \mu_F) = \int_{x}^{1} \frac{dz}{z} \, f_a(z, \mu_F) \, f_b \left(\frac{x}{z}, \mu_F \right)
\]

- \(f_a^{P_1}(x, \mu_F)\) are Parton distribution functions with momentum fraction \(x\).
- \(\mu_R\) is the Renormalisation scale and \(\mu_F\), Factorisation scale

- The Renormalisation group invariance:

\[
\frac{d}{d\mu} \sigma_{P_1P_2}^{P_1P_2}(\tau, m_h^2) = 0, \quad \mu = \mu_F, \mu_R
\]
Higgs production at LHC and Scale dependence

$\sigma(pp\rightarrow H+X)$ [pb]

$\sqrt{s} = 14$ TeV

M_H [GeV]

- LO
- NLO
- NNLO

Harlander
Higgs production at LHC and Scale dependence

Harlander, Kilgore/ Anastasiou, Melnikov/ van Neerven, Smith, VR

$\sigma(pp\to H+X)$ [pb] for $\sqrt{s} = 14$ TeV

- See Hinchcliff,... for LO and see Dawson, Djouadi et.al for NLO (with finite top mass), NNLO is done in the large top limit $N = \frac{\sigma(\mu_R = \mu_F = \mu)}{\sigma(\mu_0)}$.

![Graph showing Higgs production at LHC and Scale dependence with $\sigma(pp\to H+X)$ and Z as functions of M_H and μ/μ_0.](image)
Higgs production at LHC and Scale dependence

Harlander, Kilgore/ Anastasiou, Melnikov/ van Neerven, Smith, VR

\[
\sqrt{s} = 14 \text{ TeV}
\]

\[
\sigma(pp\rightarrow H+X) \text{ [pb]}
\]

- See Hinchcliff,... for LO and see Dawson, Djouadi et.al for NLO (with finite top mass), NNLO is done in the large top limit \(N = \sigma(\mu_R = \mu_F = \mu)/\sigma(\mu_0) \).

- Is it the end?
Soft part of NNLO

Catani et al, Harlander and Kilgore
Soft part of NNLO

Catani et al, Harlander and Kilgore

\[2S \, d\sigma^{P_1 P_2} (\tau, m_h) = \sum_{ab} \int_{\tau}^{1} \frac{dx}{x} \Phi_{ab} (x) \, 2\hat{s} \, d\hat{\sigma}^{ab} \left(\frac{\tau}{x}, m_h \right) \quad \tau = \frac{m_h^2}{S} \]

Gluon flux is largest at LHC
Soft part of NNLO

Catani et al, Harlander and Kilgore

\[2S \ d\sigma^{P_1P_2}_\tau (\tau, m_h) = \sum_{ab} \int_\tau^1 \frac{dx}{x} \Phi_{ab} (x) \ 2\hat{s} \ d\hat{\sigma}^{ab} \left(\frac{\tau}{x}, m_h \right) \]

\[\tau = \frac{m_h^2}{S} \]

- \(\Phi_{ab}(x) \) becomes large when \(x \to x_{min} = \tau \)

Gluon flux is largest at LHC

LHC (\(S = (14 \text{ TeV})^2 \))
Soft part of NNLO

Catani et al, Harlander and Kilgore

\[2S \, d\sigma^{P_1P_2}_{\tau,m_h} = \sum_{ab} \int_{\tau}^{1} \frac{dx}{x} \Phi_{ab}(x) \, 2\hat{s} \, d\hat{\sigma}^{ab}_{\left(\frac{\tau}{x},m_h\right)} \]

\[\tau = \frac{m_h^2}{S} \]

- \(\Phi_{ab}(x) \) becomes large when \(x \to x_{min} = \tau \)

- Dominant contribution to Higgs production comes from the region when \(x \to \tau \)

Gluon flux is largest at LHC
$2S \frac{d\sigma^{P_1P_2}}{d\tau,m_h} = \sum_{ab} \int_{\tau}^{1} \frac{dx}{x} \Phi_{ab}(x) 2\hat{s} \frac{d\hat{\sigma}^{ab}}{d\tau,m_h}$

$\tau = \frac{m_h^2}{S}$

- $\Phi_{ab}(x)$ becomes large when $x \rightarrow x_{min} = \tau$
- Dominant contribution to Higgs production comes from the region when $x \rightarrow \tau$
- It is sufficient if we know the partonic cross section when $x \rightarrow \tau$

Gluon flux is largest at LHC
Soft part of NNLO

Catani et al, Harlander and Kilgore

\[2S \, d\sigma_{P_1 P_2}^{P_1 P_2} (\tau, m_h) = \sum_{ab} \int_{\tau}^{1} \frac{dx}{x} \Phi_{ab} (x) \, 2\hat{s} \, d\hat{\sigma}^{ab} \left(\frac{\tau}{x}, m_h \right) \quad \tau = \frac{m_h^2}{S} \]

- \(\Phi_{ab} (x) \) becomes large when \(x \rightarrow x_{min} = \tau \)
- Dominant contribution to Higgs production comes from the region when \(x \rightarrow \tau \)
- It is sufficient if we know the partonic cross section when \(x \rightarrow \tau \)
- \(x \rightarrow \tau \) is called soft limit.

Gluon flux is largest at LHC
Soft part of NNLO

Catani et al, Harlander and Kilgore

\[2S \, d\sigma^{P_1 P_2}(\tau, m_h) = \sum_{ab} \int_0^1 \frac{dx}{x} \Phi_{ab}(x) \; 2\hat{s} \; d\hat{\sigma}^{ab}\left(\frac{\tau}{x}, m_h\right) \quad \tau = \frac{m_h^2}{S} \]

- $\Phi_{ab}(x)$ becomes large when $x \rightarrow x_{\text{min}} = \tau$
- Dominant contribution to Higgs production comes from the region when $x \rightarrow \tau$
- It is sufficient if we know the partonic cross section when $x \rightarrow \tau$
- $x \rightarrow \tau$ is called \textit{soft limit}.
- Expand the partonic cross section around $x = \tau$.

Gluon flux is largest at LHC

\[\phi_{ab}(x) \text{ vs. } x = Q^2/S \]

LHC ($S = (14 \text{ TeV})^2$)
Soft part

Catani et al, Harlander and Kilgore
Soft part

Catani et al, Harlander and Kilgore

- Expand the partonic cross section around $x = \tau$ or $z = \frac{x}{\tau} = 1$.

• Expand the partonic cross section around $x = \tau$ or $z = \frac{x}{\tau} = 1$.

\[
d\hat{\sigma}(z) = C^{(0)}(z) + \sum_{i=1}^{\infty} (1 - z)^i C^{(i)}
\]
Soft part

Catani et al, Harlander and Kilgore

• Expand the partonic cross section around \(x = \tau \) or \(z = \frac{x}{\tau} = 1 \).

\[
d\hat{\sigma}(z) = C^{(0)}(z) + \sum_{i=1}^{\infty} (1 - z)^i C^{(i)} \quad z = \frac{x}{\tau}
\]

• \(C^{(0)} \):

\[
C^{(0)} = C_0^{(0)} \delta(1 - z) + \sum_{k=0}^{\infty} C_0^{(k)} \left(\frac{\log^k(1 - z)}{(1 - z)} \right)
\]
Soft part

Catani et al, Harlander and Kilgore

- Expand the partonic cross section around \(x = \tau \) or \(z = \frac{x}{\tau} = 1 \).

\[
d\hat{\sigma}(z) = \mathcal{C}^{(0)}(z) + \sum_{i=1}^{\infty} (1 - z)^i \mathcal{C}^{(i)}(z)
\]

- \(\mathcal{C}^{(0)} \):

\[
\mathcal{C}^{(0)} = \mathcal{C}_0^{(0)} \delta(1 - z) + \sum_{k=0}^{\infty} \mathcal{C}_0^{(k)} \left(\frac{\log^k(1 - z)}{(1 - z)} \right)
\]

- \(\mathcal{C}_0^{(i)} \) will be pure constants such as \(\zeta(2), \zeta(3) \).
Soft part

Catani et al, Harlander and Kilgore

• Expand the partonic cross section around \(x = \tau \) or \(z = \frac{x}{\tau} = 1 \).

\[
d\hat{\sigma}(z) = C^{(0)}(z) + \sum_{i=1}^{\infty} (1 - z)^i C^{(i)}
\]

\[z = \frac{x}{\tau} \]

• \(C^{(0)} \):

\[
C^{(0)} = C_0^{(0)} \delta(1 - z) + \sum_{k=0}^{\infty} C_0^{(k)} \left(\frac{\log^k(1-z)}{(1-z)} \right)
\]

• \(C_0^{(i)} \) will be pure constants such as \(\zeta(2), \zeta(3) \).

• Compute the entire cross section in the "soft limit".
Soft part

Catani et al, Harlander and Kilgore

- Expand the partonic cross section around $x = \tau$ or $z = \frac{x}{\tau} = 1$.

\[
d\hat{\sigma}(z) = C^{(0)}(z) + \sum_{i=1}^{\infty} (1 - z)^i C^{(i)}
\]

- $C^{(0)}$:

\[
C^{(0)} = C_0^{(0)} \delta(1 - z) + \sum_{k=0}^{\infty} C_0^{(k)} \left(\frac{\log^k(1 - z)}{(1 - z)} \right)
\]

- $C_0^{(i)}$ will be pure constants such as $\zeta(2), \zeta(3)$.

- Compute the entire cross section in the "soft limit".

OR

Extract from "Form factors and DGLAP kernels" using

1) Factorisation theorem
2) Renormalisation Group Invariance
3) Drell-Yan NNLO results
Soft plus Virtual at N^3LO and beyond

VR
Soft plus Virtual at N^3LO and beyond

Using "factorisation" of Virtual, Soft and Collinear:

$$\Delta_{I,P}^{sv}(z, q^2, \mu_R^2, \mu_F^2) = C \exp \left(\Psi_I^P (z, q^2, \mu_R^2, \mu_F^2, \varepsilon) \right) \bigg|_{\varepsilon=0}$$

$I = q, g$ \hspace{0.5cm} $n = 4 + \varepsilon$
Soft plus Virtual at $N^3 LO$ and beyond

Using "factorisation" of Virtual, Soft and Collinear:

$$\Delta_{I,P}^{sv}(z, q^2, \mu_R^2, \mu_F^2) = C \exp \left(\Psi_P^I (z, q^2, \mu_R^2, \mu_F^2, \epsilon) \right) \bigg|_{\epsilon=0}$$

$$\Psi_P^I (z, q^2, \mu_R^2, \mu_F^2, \epsilon) = \left(\ln \left(Z^I(\hat{a}_s, \mu_R^2, \mu_F^2, \epsilon) \right)^2 + \ln |\hat{F}_I(\hat{a}_s, Q^2, \mu^2, \epsilon)|^2 \right) \delta(1 - z)$$

$$+ 2 \Phi_P^I (\hat{a}_s, q^2, \mu^2, z, \epsilon) - 2 m C \ln \Gamma_{II}(\hat{a}_s, \mu^2, \mu_F^2, z, \epsilon)$$
Soft plus Virtual at $N^3 LO$ and beyond

Using "factorisation" of Virtual, Soft and Collinear:

$$\Delta_{I, P}^{sv}(z, q^2, \mu_R^2, \mu_F^2) = C \exp \left(\Psi_P^I(z, q^2, \mu_R^2, \mu_F^2, \varepsilon) \right) \bigg|_{\varepsilon=0} \quad I = q, g \quad n = 4 + \varepsilon$$

$$\Psi_P^I(z, q^2, \mu_R^2, \mu_F^2, \varepsilon) = \left(\ln \left(Z^I(\hat{a}_s, \mu_R^2, \mu^2, \varepsilon) \right)^2 + \ln \left| \hat{F}^I(\hat{a}_s, Q^2, \mu^2, \varepsilon) \right|^2 \right) \delta(1 - z)$$

$$+ 2 \Phi_P^I(\hat{a}_s, q^2, \mu^2, z, \varepsilon) - 2 m C \ln \Gamma_{II}(\hat{a}_s, \mu^2, \mu_F^2, z, \varepsilon)$$

- $Z^I(\hat{a}_s, \mu_R^2, \mu^2, \varepsilon)$ is operator renormalisation constant with μ is mass parameter in $n = 4 + \varepsilon$ dimensional regularisation $\rightarrow N^3 LO$

- $\hat{F}^I(\hat{a}_s, Q^2, \mu^2, \varepsilon)$ is the Form factor with $Q^2 = -q^2 \rightarrow N^3 LO$

- $\Phi_P^I(\hat{a}_s, q^2, \mu^2, z, \varepsilon)$ is the soft distribution function $\rightarrow NNLO$ level

- $\Gamma_{II}(\hat{a}_s, \mu^2, \mu_F^2, z, \varepsilon)$ is mass factorisation kernel $\rightarrow N^3 LO$
Soft plus Virtual at N^3LO and beyond

Using "factorisation" of Virtual, Soft and Collinear:

$$\Delta_{I,P}^{sv}(z, q^2, \mu_R^2, \mu_F^2) = C \exp \left(\Psi_P^I(z, q^2, \mu_R^2, \mu_F^2, \epsilon) \right) \Big|_{\epsilon=0}$$

$$I = q, g \quad n = 4 + \epsilon$$

$$\Psi_P^I(z, q^2, \mu_R^2, \mu_F^2, \epsilon) = \left(\ln \left(Z^I(\hat{\alpha}_s, \mu_R^2, \mu^2, \epsilon) \right)^2 + \ln |\hat{F}^I(\hat{\alpha}_s, Q^2, \mu^2, \epsilon)|^2 \right) \delta(1-z)$$

$$+ 2 \Phi_P^I(\hat{\alpha}_s, q^2, \mu^2, z, \epsilon) - 2 m C \ln \Gamma_{II}(\hat{\alpha}_s, \mu^2, \mu_F^2, z, \epsilon)$$

- $Z^I(\hat{\alpha}_s, \mu_R^2, \mu^2, \epsilon)$ is operator renormalisation constant with μ is mass parameter in $n = 4 + \epsilon$ dimensional regularisation $\rightarrow N^3LO$

- $\hat{F}^I(\hat{\alpha}_s, Q^2, \mu^2, \epsilon)$ is the Form factor with $Q^2 = -q^2 \rightarrow N^3LO$

- $\Phi_P^I(\hat{\alpha}_s, q^2, \mu^2, z, \epsilon)$ is the soft distribution function $\rightarrow NNLO$ level

- $\Gamma_{II}(\hat{\alpha}_s, \mu^2, \mu_F^2, z, \epsilon)$ is mass factorisation kernel $\rightarrow N^3LO$

$$\hat{\alpha}_s = \frac{g_s^2}{16\pi^2} \quad m = \frac{1}{2} \quad \text{for DIS} \quad m = 1 \quad \text{for DY, Higgs}$$
Sudakov Resummation for Form factors

Vogt, Vermaseren, Moch, VR
Sudakov Resummation for Form factors

\[Q^2 \frac{d}{dQ^2} \ln \hat{F}^I (\hat{a}_s, Q^2, \mu^2, \varepsilon) = \frac{1}{2} \left[K^I \left(\hat{a}_s, \frac{\mu_R^2}{\mu^2}, \varepsilon \right) + G^I \left(\hat{a}_s, \frac{Q^2}{\mu_R^2}, \frac{\mu^2}{\mu_R^2}, \varepsilon \right) \right] \]

Solution: \[\ln \hat{F}^I (\hat{a}_s, Q^2, \mu^2, \varepsilon) = \sum_{i=1}^{\infty} \hat{a}_s^i \left(\frac{Q^2}{\mu^2} \right)^{i \frac{\varepsilon}{2}} S_{\varepsilon}^i \hat{L}_{F}^{I,(i)} (\varepsilon) \]
Sudakov Resummation for Form factors

\[Q^2 \frac{d}{dQ^2} \ln \hat{F}^I (\hat{a}_s, Q^2, \mu^2, \varepsilon) = \frac{1}{2} \left[K^I \left(\hat{a}_s, \frac{\mu^2_R}{\mu^2}, \varepsilon \right) + G^I \left(\hat{a}_s, \frac{Q^2}{\mu^2_R}, \mu^2, \varepsilon \right) \right] \]

Solution:

\[\ln \hat{F}^I (\hat{a}_s, Q^2, \mu^2, \varepsilon) = \sum_{i=1}^{\infty} \hat{a}_s^i \left(\frac{Q^2}{\mu^2} \right)^i \frac{\varepsilon^i}{2} S_\varepsilon \hat{L}_F^{I,(i)} (\varepsilon) \]

Formal solution upto 4 loops:

\[\hat{L}_F^{I,(1)} = \frac{1}{\varepsilon^2} \left(-2A_1^I \right) + \frac{1}{\varepsilon} \left(G_1^I (\varepsilon) \right) \]

\[\hat{L}_F^{I,(2)} = \frac{1}{\varepsilon^3} \left(\beta_0 A_1^I \right) + \frac{1}{\varepsilon^2} \left(-\frac{1}{2} A_2^I - \beta_0 G_1^I (\varepsilon) \right) + \frac{1}{2\varepsilon} G_2^I (\varepsilon) \]

\[\ldots \quad \ldots \quad \ldots \quad \ldots \quad \ldots \quad \ldots \]
Sudakov Resummation for Form factors

\[Q^2 \frac{d}{dQ^2} \ln \hat{F}^I (\hat{a}_s, Q^2, \mu^2, \varepsilon) = \frac{1}{2} \left[K^I \left(\hat{a}_s, \frac{\mu_R^2}{\mu^2}, \varepsilon \right) + G^I \left(\hat{a}_s, \frac{Q^2}{\mu_R^2}, \frac{\mu_R^2}{\mu^2}, \varepsilon \right) \right] \]

Solution:
\[\ln \hat{F}^I (\hat{a}_s, Q^2, \mu^2, \varepsilon) = \sum_{i=1}^{\infty} \hat{a}_s^i \left(\frac{Q^2}{\mu^2} \right)^{i \frac{\varepsilon}{2}} S_{\varepsilon} \hat{\mathcal{L}}_F^{I,(i)} (\varepsilon) \]

Formal solution upto 4 loops:
\[
\begin{align*}
\hat{\mathcal{L}}_F^{I,(1)} &= \frac{1}{\varepsilon^2} \left(-2A^I_1 \right) + \frac{1}{\varepsilon} \left(G^I_1 (\varepsilon) \right) \\
\hat{\mathcal{L}}_F^{I,(2)} &= \frac{1}{\varepsilon^3} \left(\beta_0 A^I_1 \right) + \frac{1}{\varepsilon^2} \left(-\frac{1}{2} A^I_2 - \beta_0 G^I_1 (\varepsilon) \right) + \frac{1}{2\varepsilon} G^I_2 (\varepsilon) \\
\end{align*}
\]

\[\cdots \cdots \cdots \cdots \cdots \cdots \]

\[\cdots \cdots \cdots \cdots \cdots \cdots \]

\[\bullet A^I \text{ are maximally non-abelian} \quad A^g_i = \frac{C_A}{C_F} A^q_i \quad i = 1, 2, 3. \]
Sudakov Resummation for Form factors

Vogt, Vermaseren, Moch, VR

\[Q^2 \frac{d}{dQ^2} \ln \hat{F}^I(\hat{a}_s, Q^2, \mu^2, \varepsilon) = \frac{1}{2} \left[K^I(\hat{a}_s, \frac{\mu_R^2}{\mu^2}, \varepsilon) + G^I(\hat{a}_s, \frac{Q^2}{\mu_R^2}, \frac{\mu_R^2}{\mu^2}, \varepsilon) \right] \]

Solution:

\[\ln \hat{F}^I(\hat{a}_s, Q^2, \mu^2, \varepsilon) = \sum_{i=1}^{\infty} \hat{a}_s^i \left(\frac{Q^2}{\mu^2} \right)^{i\frac{\varepsilon}{2}} S_\varepsilon \hat{L}_F^{I,(i)}(\varepsilon) \]

Formal solution upto 4 loops:

\[\hat{L}_F^{I,(1)} = \frac{1}{\varepsilon^2} \left(-2A_1^I \right) + \frac{1}{\varepsilon} \left(G_1^I(\varepsilon) \right) \]

\[\hat{L}_F^{I,(2)} = \frac{1}{\varepsilon^3} \left(\beta_0 A_1^I \right) + \frac{1}{\varepsilon^2} \left(-\frac{1}{2} A_2^I - \beta_0 G_1^I(\varepsilon) \right) + \frac{1}{2\varepsilon} G_2^I(\varepsilon) \]

\[\ldots \ldots \ldots \ldots \ldots \]

- \(A^I \) are maximally non-abelian \(A_i^q = \frac{C_A}{C_F} A_i^q \) \(i = 1, 2, 3. \)

- Every order in \(\hat{a}_s \), all the poles except the lowest one can be predicted from the previous order results using \(A \) and \(\beta \) function.
New observation for single pole in ε
New observation for single pole in ε

Two loop results for \hat{F}^q and \hat{F}^g in $SU(N)$ solves the single pole problem:
New observation for single pole in ε

Two loop results for \hat{F}^q and \hat{F}^g in $SU(N)$ solves the single pole problem: G^I's have interesting structure:

$$G^I_1(\varepsilon) = 2(B^I_1 - \gamma^I_1) + f^I_1 + \sum_{k=1}^{\infty} \varepsilon^k g^I_{1,k}$$

$$G^I_2(\varepsilon) = 2(B^I_2 - \gamma^I_2) + f^I_2 - 2\beta_0 g^I_{1,1} + \sum_{k=1}^{\infty} \varepsilon^k g^I_{2,k}$$
New observation for single pole in ε

Two loop results for \hat{F}^q and \hat{F}^g in $SU(N)$ solves the single pole problem: G^I's have interesting structure:

$$G^I_1(\varepsilon) = 2(B^I_1 - \gamma^I_1) + f^I_1 + \sum_{k=1}^{\infty} \varepsilon^k g^I_1,k$$

$$G^I_2(\varepsilon) = 2(B^I_2 - \gamma^I_2) + f^I_2 - 2\beta_0 g^I_1,1 + \sum_{k=1}^{\infty} \varepsilon^k g^I_2,k$$

B^I_i are $\delta(1 - z)$ part of P_{II} splitting functions. The new constants "f^I_1 and f^I_2" satisfy

$$f^g_i = \frac{C_A}{C_F} f^q_i \quad i = 1, 2$$
New observation for single pole in ε

Two loop results for \hat{F}^q and \hat{F}^g in $SU(N)$ solves the single pole problem: G^I's have interesting structure:

$$
G_1^I(\varepsilon) = 2(B_1^I - \gamma_1^I) + f_1^I + \sum_{k=1}^{\infty} \varepsilon^k g_{1,k}^I
$$

$$
G_2^I(\varepsilon) = 2(B_2^I - \gamma_2^I) + f_2^I - 2\beta_0 g_{1,1}^I + \sum_{k=1}^{\infty} \varepsilon^k g_{2,k}^I
$$

B_i^I are $\delta(1-z)$ part of P_{II} splitting functions. The new constants "f_1^I and f_2^I" satisfy

$$
f_i^g = \frac{C_A}{C_F} f_i^q \quad i = 1, 2
$$

Even the single pole can be predicted: $G_i^I = 2(B_i^I - \gamma_i^I) + f_i^I + \cdots$
New observation for single pole in ε

Two loop results for \hat{F}^q and \hat{F}^g in $SU(N)$ solves the single pole problem: G^I's have interesting structure:

$$G^I_1(\varepsilon) = 2(B^I_1 - \gamma^I_1) + f^I_1 + \sum_{k=1}^{\infty} \varepsilon^k g^{I,1}_{1,k}$$

$$G^I_2(\varepsilon) = 2(B^I_2 - \gamma^I_2) + f^I_2 - 2\beta_0 g^{I,1}_{1} + \sum_{k=1}^{\infty} \varepsilon^k g^{I,1}_{2,k}$$

B^I_i are $\delta(1-z)$ part of P_{II} splitting functions. The new constants "f^I_1 and f^I_2" satisfy

$$f^g_i = \frac{C_A}{C_F} f^q_i \quad i = 1, 2$$

Even the single pole can be predicted: $G^I_i = 2(B^I_i - \gamma^I_i) + f^I_i + \cdots$

Recent three loop result by Moch, Vermaseren, Vogt confirms our prediction:

$$f^g_3 = \frac{C_A}{C_F} f^q_3$$
New observation for single pole in ε

Two loop results for \hat{F}^q and \hat{F}^g in $SU(N)$ solves the single pole problem: G^I's have interesting structure:

\[
G^I_1(\varepsilon) = 2(B^I_1 - \gamma^I_1) + f^I_1 + \sum_{k=1}^{\infty} \varepsilon^k g^I_{1,k}
\]

\[
G^I_2(\varepsilon) = 2(B^I_2 - \gamma^I_2) + f^I_2 - 2\beta_0 g^I_{1,1} + \sum_{k=1}^{\infty} \varepsilon^k g^I_{2,k}
\]

B^I_i are $\delta(1 - z)$ part of P_{II} splitting functions. The new constants "f^I_1 and f^I_2" satisfy

\[
f^g_i = \frac{C_A}{C_F} f^q_i \quad i = 1, 2
\]

Even the single pole can be predicted: $G^I_i = 2(B^I_i - \gamma^I_i) + f^I_i + \cdots$

Recent three loop result by Moch, Vermaseren, Vogt confirms our prediction:

\[
f^g_3 = \frac{C_A}{C_F} f^q_3
\]

This completes the understanding of all the poles of the form factors.
Mass factorisation using DGLAP kernel

VR
Mass factorisation using DGLAP kernel

Due to the massless partons, collinear singularities appear in
- the phase space of the real emission processes
- loop integrals of the virtual corrections
Mass factorisation using DGLAP kernel

Due to the massless partons, collinear singularities appear in
- the phase space of the real emission processes
- loop integrals of the virtual corrections
They are removed by Mass Factorisation by adding:

$$- \ln \Gamma(\hat{a}_s, \mu^2, \mu_F^2, z, \epsilon)$$
Mass factorisation using DGLAP kernel

Due to the massless partons, collinear singularities appear in
- the phase space of the real emission processes
- loop integrals of the virtual corrections
They are removed by Mass Factorisation by adding:

\[- \ln \Gamma(\hat{\alpha}_s, \mu^2, \mu_F^2, z, \epsilon)\]

DGLAP kernels satisfy Renormalisation Group Equations:

\[
\mu_F^2 \frac{d}{d\mu_F^2} \Gamma(z, \mu_F^2, \epsilon) = \frac{1}{2} P(z, \mu_F^2) \otimes \Gamma(z, \mu_F^2, \epsilon).
\]
Mass factorisation using DGLAP kernel

Due to the massless partons, collinear singularities appear in

- the phase space of the real emission processes
- loop integrals of the virtual corrections

They are removed by Mass Factorisation by adding:

\[- \ln \Gamma(\hat{\alpha}_s, \mu^2, \mu_F^2, z, \varepsilon)\]

DGLAP kernels satisfy Renormalisation Group Equations:

\[\mu_F^2 \frac{d}{d\mu_F^2} \Gamma(z, \mu_F^2, \varepsilon) = \frac{1}{2} P(z, \mu_F^2) \otimes \Gamma(z, \mu_F^2, \varepsilon) .\]

The diagonal terms of the splitting functions \(P^{(i)}(z)\) have the following structure

\[P^{(i)}_{II}(z) = 2 \left[B^I_{i+1} \delta(1 - z) + A^I_{i+1} D_0 \right] + P^{(i)}_{reg,II}(z) ,\]
Mass factorisation using DGLAP kernel

Due to the massless partons, collinear singularities appear in
• the phase space of the real emission processes
• loop integrals of the virtual corrections
They are removed by Mass Factorisation by adding:

\[- \ln \Gamma(\hat{\alpha}_s, \mu^2, \mu_F^2, z, \varepsilon)\]

DGLAP kernels satisfy Renormalisation Group Equations:

\[
\mu_F^2 \frac{d}{d\mu_F^2} \Gamma(z, \mu_F^2, \varepsilon) = \frac{1}{2} P(z, \mu_F^2) \otimes \Gamma(z, \mu_F^2, \varepsilon).
\]

The diagonal terms of the splitting functions \(P^{(i)}(z)\) have the following structure

\[
P^{(i)}_{II}(z) = 2 \left[B_{i+1}^I \delta(1-z) + A_{i+1}^I D_0 \right] + P^{(i)}_{reg,II}(z),
\]

\[
D_0 = \left(\frac{1}{1-z} \right)_+, \quad P^{(i)}_{reg,II} \text{ are regular when } z \to 1.
\]

We will be left with only maximally non-abelian constants \(A^I_i\) and \(f^I_i\).
Finiteness of the Cross section

VR
Finiteness of the Cross section

Observable $\Delta^I(\alpha_s, Q^2)$ are finite:

$Infra – red safe$
Finiteness of the Cross section

Observable $\Delta^I(\alpha_s, Q^2)$ are finite:

$\textit{Infra – red safe}$

The remaining poles after UV Operator Renormalisation (Z_{α_s} and Z^I) and Mass factorisation:

$$\frac{1}{\varepsilon^{i+1}} \text{ at } i^{\text{th}} \text{ loop}$$

Highest poles are not removed by renormalisation and factorisation
Finiteness of the Cross section

Observable $\Delta^I(\alpha_s, Q^2)$ are finite:

$$\text{Infra - red safe}$$

The remaining poles after UV Operator Renormalisation(Z_{α_s} and Z^I) and Mass factorisation:

$$\frac{1}{\varepsilon^{i+1}} \text{ at } i^{th} \text{ loop}$$

Highest poles are not removed by renormalisation and factorisation

- The structure of soft part should be "similar" to the Form Factors.
- Hence using gauge invariance and RG invariance, we can propose

$$q^2 \frac{d}{dq^2} \Phi^I (\hat{\alpha}_s, q^2, \mu^2, z, \varepsilon) = \frac{1}{2} \left[K^I \left(\hat{\alpha}_s, \frac{\mu^2}{\mu^2_R}, z, \varepsilon \right) + G^I \left(\hat{\alpha}_s, \frac{q^2}{\mu^2_R}, \frac{\mu^2}{\mu^2}, z, \varepsilon \right) \right]$$
Finiteness of the Cross section

Observable $\Delta^I(\alpha_s, Q^2)$ are finite:

\[V_R \]

Infra-red safe

The remaining poles after UV Operator Renormalisation (Z_{α_s} and Z^I) and Mass factorisation:

\[\frac{1}{\varepsilon^{i+1}} \text{ at } i^{th}\text{ loop} \]

Highest poles are not removed by renormalisation and factorisation

- The structure of soft part should be "similar" to the Form Factors.
- Hence using gauge invariance and RG invariance, we can propose

\[
q^2 \frac{d}{dq^2} \Phi^I(\hat{\alpha}_s, q^2, \mu^2, z, \varepsilon) = \frac{1}{2} \left[K^I \left(\hat{\alpha}_s, \frac{\mu_R^2}{\mu^2}, z, \varepsilon \right) + G^I \left(\hat{\alpha}_s, \frac{q^2}{\mu_R^2}, \frac{\mu_R^2}{\mu^2}, z, \varepsilon \right) \right]
\]

RG invariance of Φ^I implies:

\[
\mu_R^2 \frac{d}{d\mu_R^2} K^I \left(\hat{\alpha}_s, \frac{\mu_R^2}{\mu^2}, z, \varepsilon \right) = -\mu_R^2 \frac{d}{d\mu_R^2} G^I \left(\hat{\alpha}_s, \frac{q^2}{\mu_R^2}, \frac{\mu_R^2}{\mu^2}, z, \varepsilon \right) = -A^I(\alpha_s(\mu_R^2)) \delta(1-z)
\]
Solution to (Soft)Sudakov Equation

VR
Infra-red safeness of the cross section implies

\[\overline{A}^I = -A^I \]
Infra-red safeness of the cross section implies

\[\overline{A}^I = - A^I \]

Solution to (soft) Sudakov equation:

\[
\Phi^I (\hat{a}_s, q^2, \mu^2, z, \varepsilon) = \sum_{i=1}^{\infty} \hat{a}_s^i \left(\frac{q^2}{\mu^2} \right)^{i \varepsilon / 2} S^i_{\varepsilon} \hat{\Phi}^I, (i) (z, \varepsilon)
\]
Infra-red safeness of the cross section implies

$$\overline{A^I} = -A^I$$

Solution to (soft) Sudakov equation:

$$\Phi^I (\hat{a}_s, q^2, \mu^2, z, \varepsilon) = \sum_{i=1}^{\infty} \hat{a}_s^i \left(\frac{q^2}{\mu^2} \right)^{i \frac{\varepsilon}{2}} S_{\varepsilon}^i \hat{\Phi}^{I,(i)}(z, \varepsilon)$$

where

$$\hat{\Phi}^{I,(i)}(z, \varepsilon) = \hat{L}_F^{I,(i)}(\varepsilon) \begin{pmatrix} A^I \rightarrow -\delta(1-z) A^I, & G^I(\varepsilon) \rightarrow \overline{G}^I(z, \varepsilon) \end{pmatrix}$$
In red safeness of the cross section implies
\[\overline{A}^I = -A^I \]

Solution to (soft) Sudakov equation:
\[\Phi^I (\hat{a}_s, q^2, \mu^2, z, \varepsilon) = \sum_{i=1}^{\infty} \hat{a}_s^i \left(\frac{q^2}{\mu^2} \right)^{i \frac{\varepsilon}{2}} S^i_{\varepsilon} \hat{\Phi}^{I,(i)}(z, \varepsilon) \]

where
\[\hat{\Phi}^{I,(i)}(z, \varepsilon) = \mathcal{L}^{I,(i)}_{F}(\varepsilon) \left(A^I \rightarrow -\delta(1-z) A^I, \ G^I(\varepsilon) \rightarrow \overline{G}^I(z, \varepsilon) \right) \]

Most general solution:
\[\Phi^I (\hat{a}_s, q^2, \mu^2, z, \varepsilon) = \Phi^I (\hat{a}_s, q^2 (1-z)^{2m}, \mu^2, \varepsilon) \]
\[= \sum_{i=1}^{\infty} \hat{a}_s^i \left(\frac{q^2 (1-z)^{2m}}{\mu^2} \right)^{i \frac{\varepsilon}{2}} S^i_{\varepsilon} \left(\frac{i m \varepsilon}{2(1-z)} \right) \hat{\phi}^{I,(i)}(\varepsilon) \]
Infra-red safeness of the cross section implies

\[\overline{A}^I = -A^I \]

Solution to (soft) Sudakov equation:

\[
\Phi^I (\hat{a}_s, q^2, \mu^2, z, \varepsilon) = \sum_{i=1}^{\infty} \hat{a}_s^i \left(\frac{q^2}{\mu^2} \right)^{i \frac{\varepsilon}{2}} S^i_{\varepsilon} \hat{\Phi}^{I,(i)}(z, \varepsilon)
\]

where

\[
\hat{\Phi}^{I,(i)}(z, \varepsilon) = \hat{\mathcal{L}}^{I,(i)}_{\mathcal{F}}(\varepsilon) \left(A^I \rightarrow -\delta(1 - z) A^I, \ G^I(\varepsilon) \rightarrow \overline{G}^I(z, \varepsilon) \right)
\]

Most general solution:

\[
\Phi^I (\hat{a}_s, q^2, \mu^2, z, \varepsilon) = \Phi^I (\hat{a}_s, q^2(1 - z)^{2m}, \mu^2, \varepsilon)
= \sum_{i=1}^{\infty} \hat{a}_s^i \left(\frac{q^2(1 - z)^{2m}}{\mu^2} \right)^{i \frac{\varepsilon}{2}} S^i_{\varepsilon} \left(\frac{i \ m \ \varepsilon}{2(1 - z)} \right) \hat{\phi}^{I,(i)}(\varepsilon)
\]

All the poles in \(\varepsilon \) are predictable.
Universal Soft part

VR
Universal Soft part

Single pole in ε:

$$
\overline{G}_1^I(\varepsilon) = -f_1^I + \sum_{k=1}^{\infty} \varepsilon^k \overline{G}_1^I,(k)
$$

$$
\overline{G}_2^I(\varepsilon) = -f_2^I - 2\beta_0 \overline{G}_1^I,(1) + \sum_{k=1}^{\infty} \varepsilon^k \overline{G}_2^I,(k)
$$

\[\vdots \qquad \vdots \qquad \vdots \]

\[\vdots \qquad \vdots \qquad \vdots \]
Universal Soft part

Single pole in ε:

$$\overline{g}_1^I(\varepsilon) = -f_1^I + \sum_{k=1}^{\infty} \varepsilon^k \overline{g}_1^{I,(k)}$$

$$\overline{g}_2^I(\varepsilon) = -f_2^I - 2\beta_0 \overline{g}_1^{I,(1)} + \sum_{k=1}^{\infty} \varepsilon^k \overline{g}_2^{I,(k)}$$

Maximally non-abelian:

$$\overline{g}_i^g(\varepsilon) = \frac{C_A}{C_F} \overline{g}_i^g(\varepsilon) \quad i = 1, 2, 3$$
Universal Soft part

Single pole in ε:

$$\mathcal{G}^I_1(\varepsilon) = -f^I_1 + \sum_{k=1}^{\infty} \varepsilon^k \mathcal{G}^{I,(k)}_1$$

$$\mathcal{G}^I_2(\varepsilon) = -f^I_2 - 2\beta_0 \mathcal{G}^{I,(1)}_1 + \sum_{k=1}^{\infty} \varepsilon^k \mathcal{G}^{I,(k)}_2$$

Maximally non-abelian:

$$\mathcal{G}^g_i(\varepsilon) = \frac{C_A}{C_F} \mathcal{G}^g_i(\varepsilon) \quad i = 1, 2, 3$$

Soft part of the any cross section are independent of spin, colour, flavour or other quantum numbers.
Universal Soft part

Single pole in ε:

$$\bar{g}_1^I (\varepsilon) = -f_1^I + \sum_{k=1}^{\infty} \varepsilon^k \bar{g}_1^{I,(k)}$$

$$\bar{g}_2^I (\varepsilon) = -f_2^I - 2\beta_0 \bar{g}_1^{I,(1)} + \sum_{k=1}^{\infty} \varepsilon^k \bar{g}_2^{I,(k)}$$

Maximally non-abelian:

$$\bar{g}_i^g (\varepsilon) = \frac{C_A}{C_F} \bar{g}_i^q (\varepsilon) \quad i = 1, 2, 3$$

Soft part of the any cross section are independent of spin, colour, flavour or other quantum numbers.

$$\Phi^q (\hat{a}_s, q^2, z, \mu^2, \varepsilon) = \frac{C_F}{C_A} \Phi^g (\hat{a}_s, q^2, z, \mu^2, \varepsilon)$$
Higgs productions from Drell-Yan beyond NNLO

Universal soft function: VR
Higgs productions from Drell-Yan beyond $NNLO$

Universal soft function: VR

$$\Phi^g (\hat{a}_s, q^2, z, \mu^2, \varepsilon) = \frac{C_A}{C_F} \Phi^q (\hat{a}_s, q^2, z, \mu^2, \varepsilon)$$

- From Drell-Yan $\Phi^q (\hat{a}_s, q^2, z, \varepsilon)$, Gluon form factor \mathcal{F}^g, and operator renormalisation constant Z_g and DGLAP kernel Γ_{gg}, we can compute soft plus virtual part of

$$\sigma(g + g \rightarrow Higgs)$$

without explicitly calculating the soft part of Higgs production.
Higgs productions from Drell-Yan beyond **NNLO**

Universal soft function: \(VR \)

\[
\Phi^g (\hat{a}_s, q^2, z, \mu^2, \varepsilon) = \frac{C_A}{C_F} \Phi^q (\hat{a}_s, q^2, z, \mu^2, \varepsilon)
\]

- From Drell-Yan \(\Phi^q (\hat{a}_s, q^2, z, \varepsilon) \), Gluon form factor \(F^g \) and operator renormalisation constant \(Z_g \) and DGLAP kernel \(\Gamma_{gg} \), we can compute soft plus virtual part of

\[
\sigma (g + g \rightarrow \text{Higgs})
\]

without explicitly calculating the soft part of Higgs production.

- Our **NNLO** predictions agrees with the results by Catani et al, Harlander and Kilgore. No need for explicit computation of soft contributions for the Higgs production.
Higgs productions from Drell-Yan beyond $NNLO$

Universal soft function:

$$\Phi^g(\hat{a}_s, q^2, z, \mu^2, \varepsilon) = \frac{C_A}{C_F} \Phi^q(\hat{a}_s, q^2, z, \mu^2, \varepsilon)$$

- From Drell-Yan $\Phi^q(\hat{a}_s, q^2, z, \varepsilon)$, Gluon form factor F^g and operator renormalisation constant Z_g and DGLAP kernel Γ_{gg}, we can compute soft plus virtual part of

$$\sigma(g + g \rightarrow \text{Higgs})$$

without explicitly calculating the soft part of Higgs production.

- Our $NNLO$ predictions agrees with the results by Catani et al, Harlander and Kilgore. No need for explicit computation of soft contributions for the Higgs production.

- Our N^3LO predictions (without $\delta(1 - z)$ part) for soft plus virtual contributions to Drell-Yan and Higgs productions agree with the results of Moch and Vogt
Higgs productions from Drell-Yan beyond \textbf{NNLO}

Universal soft function:

$$\Phi^g(\hat{a}_s, q^2, z, \mu^2, \varepsilon) = \frac{C_A}{C_F} \Phi^q(\hat{a}_s, q^2, z, \mu^2, \varepsilon)$$

- From Drell-Yan $\Phi^q(\hat{a}_s, q^2, z, \varepsilon)$, Gluon form factor \mathcal{F}^g and operator renormalisation constant Z_g and DGLAP kernel Γ_{gg}, we can compute soft plus virtual part of

$$\sigma(g + g \rightarrow \text{Higgs})$$

without explicitly calculating the soft part of Higgs production.

- Our \textbf{NNLO} predictions agrees with the results by Catani et al, Harlander and Kilgore. No need for explicit computation of soft contributions for the Higgs production.

- Our $\textbf{N}^3\text{LO}$ predictions (without $\delta(1 - z)$ part) for soft plus virtual contributions to Drell-Yan and Higgs productions agree with the results of Moch and Vogt.

- The scalar form factor $\mathcal{F}^S = \langle P \bar{\psi} \psi | P \rangle$ can be predicted at three loop from the known three loop A_i, B_i, f_i and γ_i^m.
Higgs productions from Drell-Yan beyond $NNLO$

Universal soft function:

$$\Phi^g (\hat{a}_s, q^2, z, \mu^2, \epsilon) = \frac{C_A}{C_F} \Phi^q (\hat{a}_s, q^2, z, \mu^2, \epsilon)$$

- From Drell-Yan $\Phi^q (\hat{a}_s, q^2, z, \epsilon)$, Gluon form factor F_g and operator renormalisation constant Z_g and DGLAP kernel Γ_{gg}, we can compute soft plus virtual part of

$$\sigma(g + g \rightarrow \text{Higgs})$$

without explicitly calculating the soft part of Higgs production.

- Our $NNLO$ predictions agrees with the results by Catani et al, Harlander and Kilgore. No need for explicit computation of soft contributions for the Higgs production.

- Our N^3LO predictions (without $\delta(1 - z)$ part) for soft plus virtual contributions to Drell-Yan and Higgs productions agree with the results of Moch and Vogt.

- The scalar form factor $\mathcal{F}^S = \langle P | \overline{\psi} \psi | P \rangle$ can be predicted at three loop from the known three loop A_i, B_i, f_i and γ_i^m.

- Soft plus Virtual part Higgs production through bottom quark fusion

$$\sigma(b + \overline{b} \rightarrow \text{Higgs})$$

can be predicted upto N^3LO(without $\delta(1 - z)$).
Higgs productions from Drell-Yan beyond $NNLO$

Universal soft function:

$$\Phi^g (\hat{a}_s, q^2, z, \mu^2, \epsilon) = \frac{C_A}{C_F} \Phi^q (\hat{a}_s, q^2, z, \mu^2, \epsilon)$$

• From Drell-Yan $\Phi^q (\hat{a}_s, q^2, z, \epsilon)$, Gluon form factor F_g and operator renormalisation constant Z_g and DGLAP kernel Γ_{gg}, we can compute soft plus virtual part of

$$\sigma(g + g \rightarrow \text{Higgs})$$

without explicitly calculating the soft part of Higgs production.

• Our $NNLO$ predictions agrees with the results by Catani et al, Harlander and Kilgore. No need for explicit computation of soft contributions for the Higgs production.

• Our N^3LO predictions (without $\delta(1 - z)$ part) for soft plus virtual contributions to Drell-Yan and Higgs productions agree with the results of Moch and Vogt

• The scalar form factor $F_S = \langle P|\overline{\psi}\psi|P \rangle$ can be predicted at three loop from the known three loop A_i, B_i, f_i and γ^m_i.

• Soft plus Virtual part Higgs production through bottom quark fusion

$$\sigma(b + \bar{b} \rightarrow \text{Higgs})$$

can be predicted upto N^3LO(without $\delta(1 - z))$.

• Our $NNLO$ predictions agrees with the results of by Harlander and Kilgore.
Hadro production in e^+e^- annihilation from DIS

Blümlein and VR
Hadro production in e^+e^- annihilation from DIS

- The scaling variable in DIS is

$$x_{Bj} = -\frac{q^2}{2p \cdot q} \quad -q^2 > 0$$
Hadro production in $e^+ e^-$ annihilation from DIS

- The scaling variable in DIS is

$$x_{Bj} = -\frac{q^2}{2p \cdot q} \quad -q^2 > 0$$

- The scaling variable in hadro production is

$$x_{ee} = \frac{2p \cdot q}{q^2} \quad q^2 > 0$$
Hadro production in e^+e^- annihilation from DIS

- The scaling variable in DIS is

$$x_{Bj} = -\frac{q^2}{2p \cdot q} \quad -q^2 > 0$$

- The scaling variable in hadro production is

$$x_{ee} = \frac{2p \cdot q}{q^2} \quad q^2 > 0$$

- Drell-Levy-Yan showed that these two processes are related by crossing relation.
Hadro production in $e^+ e^- \text{ annihilation from DIS}$

Blümlein and VR

- The scaling variable in DIS is

\[x_{Bj} = -\frac{q^2}{2p \cdot q} \quad -q^2 > 0 \]

- The scaling variable in hadro production is

\[x_{ee} = \frac{2p \cdot q}{q^2} \quad q^2 > 0 \]

- Drell-Levy-Yan showed that these two processes are related by crossing relation.
- Gribov-Lipatov relation in the soft limit:

\[\Phi_{DIS}(\hat{a}_s, Q^2, \mu^2, x_{Bj}, \varepsilon) = \Phi_{ee}(\hat{a}_s, q^2, \mu^2, x_{ee}, \varepsilon) \]

\[P_{II}(x_{Bj}) = \tilde{P}_{II}(x_{ee}) \quad \text{Distributions} \]
Hadro production in e^+e^- annihilation from DIS

- The scaling variable in DIS is

$$x_{Bj} = -\frac{q^2}{2p \cdot q} \quad -q^2 > 0$$

- The scaling variable in hadro production is

$$x_{ee} = \frac{2p \cdot q}{q^2} \quad q^2 > 0$$

- Drell-Levy-Yan showed that these two processes are related by crossing relation.

- Gribov-Lipatov relation in the soft limit:

$$\Phi_{DIS}(\hat{a}_s, Q^2, \mu^2, x_{Bj}, \varepsilon) = \Phi_{ee}(\hat{a}_s, q^2, \mu^2, x_{ee}, \varepsilon)$$

$$P_{II}(x_{Bj}) = \tilde{P}_{II}(x_{ee}) \quad \text{Distributions}$$

- From DIS results, we can predict soft plus virtual part of the coefficient functions for hadro production in e^+e^- annihilation up to three loop level.

$$C^{(3),sv}_{ee}(\alpha_s, z) \quad \text{New result}$$
Hadro production in e^+e^- annihilation from DIS

- The scaling variable in DIS is

\[x_{Bj} = -\frac{q^2}{2p \cdot q} \quad -q^2 > 0 \]

- The scaling variable in hadro production is

\[x_{ee} = \frac{2p \cdot q}{q^2} \quad q^2 > 0 \]

- Drell-Levy-Yan showed that these two processes are related by crossing relation.

- Gribov-Lipatov relation in the soft limit:

\[\Phi_{DIS}(\hat{a}_s, Q^2, \mu^2, x_{Bj}, \varepsilon) = \Phi_{ee}(\hat{a}_s, q^2, \mu^2, x_{ee}, \varepsilon) \]

\[P_{II}(x_{Bj}) = \tilde{P}_{II}(x_{ee}) \quad \text{Distributions} \]

- From DIS results, we can predict soft plus virtual part of the coefficient functions for hadro production in e^+e^- annihilation up to three loop level.

\[C_{ee}^{(3), sv}(\alpha_s, z) \quad \text{New result} \]
Threshold Resummation

\[\Phi^I_P(\hat{a}_s, q^2, \mu^2, z, \varepsilon) = \left(\frac{m}{1 - z} \left\{ \int_{\mu_R^2}^{q^2(1-z)^{2m} \delta_P} \frac{d\lambda^2}{\lambda^2} A_I(a_s(\lambda^2)) \right\} + \right. \\
+ \bar{G}^I_P(a_s(q^2(1-z)^{2m} \delta_P), \varepsilon) \right) + \\
+ \delta(1 - z) \sum_{i=1}^{\infty} \hat{a}^i_s \left(\frac{q^2 \delta_P}{\mu^2} \right)^i S^i_\varepsilon \hat{\Phi}^I_{P,(i)}(\varepsilon) \\
+ \left(\frac{m}{1 - z} + \sum_{i=1}^{\infty} \hat{a}^i_s \left(\frac{\mu_R^2}{\mu^2} \right)^i \right) S^i_\varepsilon K^{I,(i)}(\varepsilon) \]
Threshold Resummation

- Alternate derivation for the threshold resummation formula in z space for both DY and DIS:

$$\Phi^I_P(\hat{a}_s, q^2, \mu^2, z, \varepsilon) = \left(\frac{m}{1 - z} \right) \left\{ \int_{\mu_R^2}^{q^2(1-z)^{2m}\delta_P} \frac{d\lambda^2}{\lambda^2} A_I(a_s(\lambda^2)) \right. + \left[G^I_P(a_s(q^2(1-z)^{2m}\delta_P), \varepsilon) \right] \right\} +$$

$$+ \delta(1 - z) \sum_{i=1}^{\infty} \hat{a}_s^i \left(\frac{q^2\delta_P}{\mu^2} \right)^{i \frac{\varepsilon}{2}} S_{\varepsilon}^i \hat{\Phi}^I_P(\varepsilon)$$

$$+ \left(\frac{m}{1 - z} \right) + \sum_{i=1}^{\infty} \hat{a}_s^i \left(\frac{\mu_R^2}{\mu^2} \right)^{i \frac{\varepsilon}{2}} S_{\varepsilon}^i \overline{K}^I(\varepsilon)$$

- The threshold exponents D^I_i for DY and B^I_i for DIS are related to $\overline{G}^I_P(\varepsilon = 0)$.
- $\overline{G}^I_P(\varepsilon = 0)$ up to three loop gives D^I_i and B^I_i for $i = 1, 2, 3$.
Threshold Resummation

- Alternate derivation for the threshold resummation formula in z space for both DY and DIS:

$$
\Phi_P^I(\hat{a}_s, q^2, \mu^2, z, \varepsilon) = \left(\frac{m}{1 - z} \left\{ \int_{\mu_R^2}^{q^2(1-z)^2m\delta_P} \frac{d\lambda^2}{\lambda^2} A_I(a_s(\lambda^2)) \right. \right.

+ \mathcal{G}_P^I(a_s(q^2(1-z)^2m\delta_P), \varepsilon) \left. \right\} \right) +

+ \delta(1 - z) \sum_{i=1}^{\infty} \hat{\alpha}_s^i \left(\frac{q^2\delta_P}{\mu^2} \right)^{i\frac{\varepsilon}{2}} S^i_\varepsilon \hat{\Phi}_P^{I,(i)}(\varepsilon)

+ \left(\frac{m}{1 - z} \right) + \sum_{i=1}^{\infty} \hat{\alpha}_s^i \left(\frac{\mu_R^2}{\mu^2} \right)^{i\frac{\varepsilon}{2}} S^i_\varepsilon \overline{K}^{I,(i)}(\varepsilon)

- The threshold exponents D_i^I for DY and B_i^I for DIS are related to $\mathcal{G}_P^I(\varepsilon = 0)$.
- $\mathcal{G}_P^I(\varepsilon = 0)$ up to three loop gives D_i^I and B_i^I for $i = 1, 2, 3$
- Expansion of $C e^{(2\Phi_P^I)}$ leads to soft part of the cross section.
- Fixed order $N^3 LO$ soft plus virtual cross sections can be computed (except $\delta(1 - z)$)
Soft plus Virtual part at N^3LO for Higgs Production

Moch, Vogt and VR
Soft plus Virtual part at N^3LO for Higgs Production

\[2S \, d\sigma_{P_1P_2}^{P_1P_2}(\tau, m_h) = \sum_{ab} \int_{\tau}^{1} \frac{dx}{x} \Phi_{ab}(x) \, 2\hat{s} \, d\hat{\sigma}^{ab}_{\tau}(\frac{\tau}{x}, m_h) \quad \tau = \frac{m_h^2}{S} \]
Soft plus Virtual part at N^3LO for Higgs Production

Moch, Vogt and VR

$$2S \, d\sigma^{P_1 P_2}(\tau, m_h) = \sum_{ab} \int_{\tau}^{1} \frac{dx}{x} \Phi_{ab}(x) \, 2\hat{s} \, d\hat{\sigma}^{ab}\left(\frac{\tau}{x}, m_h\right) \quad \tau = \frac{m_h^2}{S}$$

- Finite terms in F^I and Φ^I at 3-loop are still missing
Soft plus Virtual part at N^3LO for Higgs Production

\[2S d\sigma^{P_1P_2} (\tau, m_h) = \sum_{ab} \int_{\tau}^{1} \frac{dx}{x} \Phi_{ab} (x) 2\hat{s} d\hat{\sigma}^{ab} \left(\frac{\tau}{x}, m_h \right) \]

\[\tau = \frac{m_h^2}{S} \]

- Finite terms in F^I and Φ^I at 3-loop are still missing
- We can not predict $\delta(1 - z)$ part at 3-loop.
Soft plus Virtual part at N^3LO for Higgs Production

\[2S \ d\sigma^{P_1P_2}(\tau, m_h) = \sum_{ab} \int_{\tau}^{1} \frac{dx}{x} \Phi_{ab}(x) \ 2\hat{s} \ d\hat{\sigma}^{ab}\left(\frac{\tau}{x}, m_h\right) \quad \tau = \frac{m_h^2}{S} \]

- Finite terms in F^I and Φ^I at 3-loop are still missing
- We can not predict $\delta(1 - z)$ part at 3-loop.
- At 3-loop we can predict all $D_j \quad j = 5, 4, 3, 2, 1, 0$
Soft plus Virtual part at N^3LO for Higgs Production

Moch, Vogt and VR

\[2S \, d\sigma^P_{P_1 P_2} (\tau, m_h) = \sum_{ab} \int_{\tau}^{1} \frac{dx}{x} \Phi_{ab} (x) \, 2 \hat{s} \, d\hat{\sigma}^{ab} \left(\frac{\tau}{x}, m_h \right) \]

\[\tau = \frac{m_h^2}{S} \]

- Finite terms in F^I and Φ^I at 3-loop are still missing

- We can not predict $\delta(1 - z)$ part at 3-loop.

- At 3-loop we can predict all

\[\mathcal{D}_j \quad j = 5, 4, 3, 2, 1, 0 \]

- At 4-loop, we can predict only

\[\mathcal{D}_j \quad j = 7, 6, 5, 4, 3, 2 \]
Soft plus Virtual part at N^3LO for Higgs Production

\[
2S \ d\sigma^{P_1P_2} (\tau, m_h) = \sum_{ab} \int_{\tau}^{1} \frac{dx}{x} \Phi^{ab} (x) \ 2\hat{s} \ \hat{d}\sigma^{ab} \left(\frac{\tau}{x}, m_h \right) \quad \tau = \frac{m_h^2}{S}
\]

- Finite terms in F^I and Φ^I at 3-loop are still missing

- We can not predict $\delta (1 - z)$ part at 3-loop.

- At 3-loop we can predict all $\mathcal{D}_j \quad j = 5, 4, 3, 2, 1, 0$

- At 4-loop, we can predict only $\mathcal{D}_j \quad j = 7, 6, 5, 4, 3, 2$

- They contribute bulk of the cross section

Gluon flux is largest at LHC
Scale variation at N^3LO for Higgs production

\[N = \frac{\sigma_{N^iLO}(\mu)}{\sigma_{N^iLO}(\mu_0)} \]
Scale variation at N^3LO for Higgs production

$$N = \frac{\sigma_{N^iLO}(\mu)}{\sigma_{N^iLO}(\mu_0)}$$

![Graph showing scale variation at N^3LO for Higgs production](image-url)

- $\sigma(pp\rightarrow H+X)$ [pb]
- $\sqrt{s} = 14$ TeV
- M_H [GeV]
- Harlander

Options: LO, NLO, NNLO

- Red: NNLO
- Blue: NLO
- Green: LO
Scale variation at N^3LO for Higgs production

$$N = \frac{\sigma_{N^iLO}(\mu)}{\sigma_{N^iLO}(\mu_0)}$$

![Graph showing scale variation]
Scale variation at N^3LO for Higgs production

\[N = \frac{\sigma_{N^iLO}(\mu)}{\sigma_{N^iLO}(\mu_0)} \]

- Scale uncertainty improves a lot
- Perturbative QCD works at LHC
Soft distribution for rapidity

Using RGE and Factorisation:
Soft distribution for rapidity

Using RGE and Factorisation:

\[
\Phi_d^I(\hat{a}_s, q^2, \mu^2, z_1, z_2, \varepsilon) = \Phi_d^{I, finite} + \Phi_d^{I, singular}
\]
Soft distribution for rapidity

Using RGE and Factorisation:

\[\Phi_d^I(\hat{a}_s, q^2, \mu^2, z_1, z_2, \epsilon) = \Phi_{d,\text{finite}}^I + \Phi_{d,\text{singular}}^I \]

where

\[
\Phi_{d,\text{finite}}^I = \frac{1}{2} \delta(1 - z_2) \left(\frac{1}{1 - z_1} \int_{\mu_R^2}^{q^2(1-z_1)} \frac{d\lambda^2}{\lambda^2} A_I(a_s(\lambda^2)) \right.
\]
\[
+ \overline{G}_d^I(a_s(q^2(1-z_1), \epsilon) \bigg) \bigg) +
\]
\[
+ q^2 \frac{d}{dq^2} \left[\left(\frac{1}{4(1 - z_1)(1 - z_2)} \int_{\mu_R^2}^{q^2(1-z_1)(1-z_2)} \frac{d\lambda^2}{\lambda^2} A_I(a_s(\lambda^2)) \right. \right.
\]
\[
+ \overline{G}_d^I(a_s(q^2(1-z_1)(1 - z_2)), \epsilon) \bigg) \bigg) \bigg) +
\]
\[
+ z_1 \leftrightarrow z_2
\]

VR, Smith and van Neerven
$N^3 L_{PSV}$ results for Drell-Yan rapidity

\[N = \frac{\sigma_{N^iLO}(\mu)}{\sigma_{N^iLO}(\mu_0)} \]

VR, Smith and van Neerven
$N^3 LO_{pSV}$ results for Drell-Yan rapidity

\[N = \frac{\sigma_{N^i LO}(\mu)}{\sigma_{N^i LO}(\mu_0)} \]

VR, Smith and van Neerven

![Graph showing the dependence of differential cross-section on rapidity, with various order approximations.]
N^3LO_{pSV} results for Drell-Yan rapidity

VR, Smith and van Neerven

$$N = \frac{\sigma_{N^3LO}(\mu)}{\sigma_{N^3LO}(\mu_0)}$$

![Graph of d^3σ/dM dY (pb/GeV) (LHC) M=115 GeV](image1)

![Graph of R-Ratio (Y) (LHC) M=115 GeV](image2)
N^2LO_{pSV} results for Drell-Yan rapidity

$VR, Smith and van Neerven$

$N = \frac{\sigma_{N^iLO}(\mu)}{\sigma_{N^iLO}(\mu_0)}$

- Compared against Dixon, Anastasiou, Melnikov, Petriello NNLO results for Drell-Yan, Higgs, Z, W$^\pm$ productions.
$N^3 LO_{pSV}$ results for Higgs rapidity

$V R, S m i t h ~ a n d ~ v a n ~ N e e r v e n$

$$N = \frac{\sigma_{N^iLO}(\mu)}{\sigma_{N^iLO}(\mu_0)}$$
$N^3 LO_{pSV}$ results for Higgs rapidity

VR, Smith and van Neerven

$$N = \frac{\sigma_{N^3 LO}(\mu)}{\sigma_{N^3 LO}(\mu_0)}$$

\[
\frac{d\sigma}{dY} \text{ (pb/GeV) (LHC)}
\]

$m_H = 115$ GeV
N^3LO_{pSV} results for Higgs rapidity

$VR, Smith and van Neerven$

\[N = \frac{\sigma_{N^iLO}^{\mu}}{\sigma_{N^iLO}^{\mu_0}} \]

dσ/dY (pb/GeV) (LHC)

$m_H=115$ GeV

R-Ratio (Y) (LHC)

$m_H=115$ GeV
N^3LO_{pSV} results for Higgs rapidity

$N = \frac{\sigma_{N_iLO}(\mu)}{\sigma_{N_iLO}(\mu_0)}$

- Scale uncertainty improves a lot
$N^3 L O_{PSV}$ results for rapidity of Z

$$N = \frac{\sigma_{N^i LO}^{VR, Smith}(\mu)}{\sigma_{N^i LO}(\mu_0)}$$
N^3LO_{pSV} results for rapidity of Z

$$N = \frac{\sigma_{N^iLO}(\mu)}{\sigma_{N^iLO}(\mu_0)}^{VR, Smith}$$

![Graph showing rapidity distribution of Z boson at various order of perturbative QCD.](image-url)
N^3LO_{pSV} results for rapidity of Z

$$N = \frac{\sigma_{N^3LO}(\mu)}{\sigma_{N^3LO}(\mu_0)}$$

$VR, Smith$
\(N^3 \text{LO}_{pSV} \) results for rapidity of \(Z \)

\[
N = \frac{\sigma^V_{N^i\text{LO}}(\mu)}{\sigma^V_{N^i\text{LO}}(\mu_0)}
\]

- Scale uncertainty improves a lot
$N^3 LO_{PSV}$ results for rapidity of W^+

\[N = \frac{\sigma_{N^i LO}^{VR,Smith}(\mu)}{\sigma_{N^i LO}(\mu_0)} \]
N^3LO_{pSV} results for rapidity of W^+

$$N = \frac{\sigma_{N^3LO}^{VR, Smith}(\mu)}{\sigma_{N^3LO}(\mu_0)}$$

\[d^2\sigma/dydy \text{ pb/GeV (LHC)}\]

- $q=\mu_F=M_W$

- LO

- NLO

- N^3LO_{SV}

- N^3LO_{pSV}
$N^3 LO_{pSV}$ results for rapidity of W^+

$$N = \frac{\sigma_{N^3LO}(\mu)}{\sigma_{N^3LO}(\mu_0)}$$

VR, Smith

Below are plots showing the differential cross sections $d^2\sigma/dqdy$ in pb/GeV for different orders of perturbation theory at the LHC. The plots compare N^3LO_{pSV} and N^2LO_{pSV} to N^3LO and N^2LO at LO and NLO respectively, with $q=\mu_F=M_W$. The plots illustrate the evolution of cross sections with rapidity for varying q. The data points and lines represent different theoretical predictions and experimental measurements.
N^3LO_{pSV} results for rapidity of W^+

$$
N = \frac{\sigma_{N^3LO}(\mu)}{\sigma_{N^3LO}(\mu_0)}
$$

- Scale uncertainty improves a lot
Conclusions
Conclusions

- The scale uncertainties go down significantly due to the success in computing various higher order results.
Conclusions

• The scale uncertainties go down significantly due to the success in computing various higher order results.

• All the poles in ϵ of the vector and scalar form factors are now understood.
Conclusions

- The scale uncertainties go down significantly due to the success in computing various higher order results.

- All the poles in ϵ of the vector and scalar form factors are now understood.

- Soft distribution functions are found to satisfy Sudakov type differential equation.
Conclusions

• The scale uncertainties go down significantly due to the success in computing various higher order results.

• All the poles in ϵ of the vector and scalar form factors are now understood.

• Soft distribution functions are found to satisfy Sudakov type differential equation.

• Higher order threshold corrections beyond N^2LO can be computed using three loop form factors, splitting functions and soft distribution functions.
Conclusions

- The scale uncertainties go down significantly due to the success in computing various higher order results.
- All the poles in ε of the vector and scalar form factors are now understood.
- Soft distribution functions are found to satisfy Sudakov type differential equation.
- Higher order threshold corrections beyond N^2LO can be computed using three loop form factors, splitting functions and soft distribution functions.
- Higher order threshold exponents D_i^I and B_i^I upto three loop level can be computed using this approach.
Conclusions

- The scale uncertainties go down significantly due to the success in computing various higher order results.

- All the poles in ε of the vector and scalar form factors are now understood.

- Soft distribution functions are found to satisfy Sudakov type differential equation.

- Higher order threshold corrections beyond $N^2 LO$ can be computed using three loop form factors, splitting functions and soft distribution functions.

- Higher order threshold exponents D_i^I and B_i^I upto three loop level can be computed using this approach.

- Dominant Soft plus Virtual total cross sections and rapidity distributions to $N^3 LO$ is now known for both Drell-Yan and Higgs productions.
Conclusions

- The scale uncertainties go down significantly due to the success in computing various higher order results.

- All the poles in ε of the vector and scalar form factors are now understood.

- Soft distribution functions are found to satisfy Sudakov type differential equation.

- Higher order threshold corrections beyond N^2LO can be computed using three loop form factors, splitting functions and soft distribution functions.

- Higher order threshold exponents D_i^I and B_i^I upto three loop level can be computed using this approach.

- Dominant Soft plus Virtual total cross sections and rapidity distributions to N^3LO is now known for both Drell-Yan and Higgs productions.

Can INDIA be venue for next to next to… RADCOR’07?
Conclusions

• The scale uncertainties go down significantly due to the success in computing various higher order results.

• All the poles in ε of the vector and scalar form factors are now understood.

• Soft distribution functions are found to satisfy Sudakov type differential equation.

• Higher order threshold corrections beyond $N^2 LO$ can be computed using three loop form factors, splitting functions and soft distribution functions.

• Higher order threshold exponents D_i and B_i upto three loop level can be computed using this approach.

• Dominant Soft plus Virtual total cross sections and rapidity distributions to $N^3 LO$ is now known for both Drell-Yan and Higgs productions.

Can INDIA be venue for next to next to... RADCOR’07?

Thank You