

ILC : PHYSICS FROM TERA- TO PLANCK-SCALE

1. Introduction

- Physics base and perspectives
- 2. ILC Physics Targets in Micro-Universe
 - Electroweak Symmetry Breaking
 - Ultimate Unification / Supersymmetry
 - Extra Space Dimensions
- **3.** Cosmology Connection
- **4.** Conclusions

1. INTRODUCTION

<u>Basic laws of Nature</u> $\sim 10^{-15}$ cm : Standard Model of particle physics \oplus Gravity

Central problems in micro-Universe ...

- Mechanism of electroweak symmetry breaking
- Unification of forces including gravity
- Space-time structure at short distances

... and macro-Universe

– Connection with cosmology

- \Leftarrow Higgs or alternative?
- \Leftarrow Supersymmetry?
- \Leftarrow Dimensions > 4?

- \Leftarrow Cold Dark Matter?
- \Leftarrow Baryon Asymmetry?

⇐ ...

$\underline{\text{TARGETS}} \Leftarrow \underline{\text{LHC}} \text{ and } \underline{\text{ILC}}$

break-through discovery and high-resolution picture of Terascale scenario \Rightarrow unification of matter and interactions

<u>SCENARIOS</u> – generally not without tension but:

- representative for extended classes [MSSM \sim SUSY]
- prove comprehensive coverage of theoretical glacis [weak ... strong elwSB]

LITERATURE :

- "Physics Chapter of RDR": A.Djouadi, J.Lykken, K.Mönig, Y.Okada, M.Oreglia, S.Yamashita
- "Scenarios for ILC in 2010": F.Richard, arXiv:0707.3723 [hep-ph]
- "Snowmass ILC Report / LCWS07": Kilian, Z: hep-ph/0601217

$\underline{\text{TARGETS}} \Leftarrow \underline{\text{LHC}} \text{ and } \underline{\text{ILC}}$

break-through discovery and high-resolution picture of Terascale scenario \Rightarrow unification of matter and interactions

canonical path: Standard Model | Supersymmetry \Rightarrow GUT/Planck Scenarioalternative:Standard Model \Rightarrow Extra Space Dimens : stdd | TeV Planck Scenario

BASE OF TALK :

... central physics targets of ILC : $\sqrt{s} = 500 \text{ GeV} \mid \text{upgrade} = 1 \text{ TeV}$ $e^{-}/90 \left[e^{+}/60\right] \text{ polarization}$ $e^{-}e^{-} \mid e\gamma/\gamma\gamma \mid \text{GigaZ}$

LITERATURE :

- "Physics Chapter of RDR": A.Djouadi, J.Lykken, K.Mönig, Y.Okada, M.Oreglia, S.Yamashita
- "Scenarios for ILC in 2010": F.Richard, arXiv:0707.3723 [hep-ph]
- "Snowmass ILC Report / LCWS07" : Kilian, Z: hep-ph/0601217

2A. ELECTROWEAK SYMMETRY BREAKING

- missing keystone of Standard Model
- indicator of physics landscape beyond SM

<u>realizations</u>: standard wk Higgs mechanism [SM, SUSY, ...] ↓ strong elw symmetry breaking [Little Higgs, strong WW, ...] ↑ topology extra space dim [$H \sim 5$ th gauge field, BC : higgsless, ...]

a) <u>SM HIGGS MECHANISM</u>

– light Higgs: suggested by precision data [EWWG:

 $M_H = 76^{+33}_{-24} \text{ GeV} \mid < 144 \text{ GeV} (95\% \text{ CL})$

– probability 15%

2A. ELECTROWEAK SYMMETRY BREAKING

- missing keystone of Standard Model
- indicator of physics landscape beyond SM

- a) <u>SM HIGGS MECHANISM</u>
 - light Higgs: suggested by precision data digression:

 $\Rightarrow 110^{+8}_{-10} \pm 3 \text{ GeV} \text{ in mSUGRA}$ Buchmüller ea

Three central questions

 $\Leftarrow \text{ after Higgs discovery at LHC}$

- **1.** Higgs field filling vacuum \Rightarrow scalar field \star
- **2.** mass generation by Higgs interaction \Rightarrow Higgs coupling prop mass \star
- **3.** elw symmetry breaking : Higgs potential \Rightarrow non-zero vacuum value
- (1) Higgs = fundamental scalar :

Higgs-strahlung near threshold:

 $\sigma[e^+e^- \to ZH] \sim \sqrt{s - (m_H + m_Z)^2}$

ruling out : $0^-, 1^-, 2^-, 3^{\pm}, ...$ $1^+, 2^+$ no *TL* ang correl

Lohmann ea

(2) Higgs couplings to SM particles :

Higgs coupling – mass relation:

 $g(Hpp) = \sqrt{2\sqrt{2}G_F} \, m_p$

⇐ proving mass generation by interaction with Higgs field

Higgs-strahlung : $e^+e^- \to ZH$ WW fusion : $e^+e^- \to \nu\nu H$

- \Rightarrow production cross sections
- \Rightarrow decay branching ratios
- \Rightarrow Higgs radiation off top
- ~ strg BSM scale 2 .. 3 TeV ~ <u>univ</u> 0⁺ mix [radion]

ACTA LO Study

improving on LHC significantly: precision and model-indep slope $/Z/W/\tau/b/t/ = /1/1/3/2/2\%$

(3) Higgs potential

elw SB \Leftarrow non-zero Higgs field vgenerated by shifted min of potential :

$$V = \lambda [|\phi|^2 - \frac{1}{2}v^2]^2$$
$$\phi = (v+H)/\sqrt{2}$$

 $\underline{self\text{-interaction}}$:

$$V = \frac{1}{2}M_H^2 H^2 + \frac{1}{2}\frac{M_H^2}{v} H^3 + \frac{1}{8}\frac{M_H^2}{v^2} H^4$$

trilin coupling \Rightarrow bending of potential \Rightarrow shift of minimum

<u>measurement</u>: $e^+e^- \rightarrow ZHH$ $e^+e^- \rightarrow \nu\nu HH$ $\sqrt{s} = 1 \text{ TeV} : 12\%$ <u>BSM H sector ~ 1 TeV</u>

LHC \rightarrow SLHC for M_H > 140 GeV

-0.75 M. 1-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75

0.8 0.6 0.4

0.2 0 -0.2

-0.4 -0.6 -0.8

> 0.75 0.5 0.25

0 -0.25 -0.5

(3) Higgs potential

elw SB \Leftarrow non-zero Higgs field vgenerated by shifted min of potential :

$$V = \lambda [|\phi|^2 - \frac{1}{2}v^2]^2$$
$$\phi = (v+H)/\sqrt{2}$$

 $\underline{self\text{-interaction}}:$

$$V = \frac{1}{2}M_H^2 H^2 + \frac{1}{2}\frac{M_H^2}{v} H^3 + \frac{1}{8}\frac{M_H^2}{v^2} H^4$$

trilin coupling \Rightarrow bending of potential \Rightarrow shift of minimum

measurement:
$$e^+e^- \rightarrow ZHH$$

 $e^+e^- \rightarrow \nu\nu HH$
 $\sqrt{s} = 1 \text{ TeV} : 12\%$
BSM H sector ~ 1 TeV

Mühlleitner ea | Gay | Yamashita (ea)

b) <u>SUSY HIGGS BOSONS</u>

Higgs sector extended to 2 doublets \Rightarrow 5 physical particles in MSSM :

 h^0 light ≤ 140 GeV | generically < 200 GeV H^0, A^0, H^{\pm} typically v to 1 TeV

600

650

700

750

800

detection at LHC: blind wedge

ILC: pairs /w mass up to E_B

[Desch ea]

250

300

¹ 50

100 150 200

b) <u>SUSY HIGGS BOSONS</u>

Higgs sector extended to 2 doublets \Rightarrow 5 physical particles in MSSM :

 h^0 light ≤ 140 GeV H^0, A^0, H^{\pm} typically v to 1 TeV

detection at LHC: blind wedge

 $\underline{\gamma\gamma \to H, A: +50\%}$

[Mühlleitner ea, Gunion ea, F: Niezurawski ea]

 $7\mathrm{C}$

SUSY EXTENSIONS :

<u>CP Violation</u> :

 $h^0, H^0 \max A^0 \Rightarrow H_1^0, H_2^0, H_3^0$

- changing spectra and production F: Carena ea
- CP : $\tau \tau$ polarization asymmetry in circularly pol $\gamma \gamma$

USSM, NMSSM, etc:

- additional (light) singlets: $h^0, H^0 \oplus H'^0 \Rightarrow H^0_1, H^0_2, H^0_3$ $A^0 \oplus A'^0 \Rightarrow A^0_1, A^0_2$

F: Miller, D.J. ea

SUSY EXTENSIONS :

<u>CP Violation</u> :

- $h^0, H^0 \max A^0 \Rightarrow H_1^0, H_2^0, H_3^0$
- changing spectra and production

F: Carena ea

- CP : $\tau\tau$ polarization asymmetry in circularly pol $\gamma\gamma$

USSM, NMSSM, etc:

- additional (light) singlets: $h^0, H^0 \oplus H'^0 \Rightarrow H_1^0, H_2^0, H_3^0$ $A^0 \oplus A'^0 \Rightarrow A_1^0, A_2^0$

F: Miller ea

c) <u>STRONG ELW SYMMETRY BREAKING</u>

new strong interaction sector: global symmetry breaking \Rightarrow [pseudo-] Goldstone bosons ~ Higgs particles

LITTLE HIGGS THEORIES

large global symmetry group $| f \sim TeV :$ 10^{4} r $\sqrt{s} = 800 \text{ GeV}$ $e^-e^+ \rightarrow t\bar{t}b\bar{b}$ rich spectrum of TeV particles $\int \mathcal{L} = 1 \text{ ab}^{-1}$ #evt/2 GeV 1000 plus light Higgs sector $g_{tt\eta}=0.2$ $\mathfrak{m}_\eta=50~ extbf{GeV}$ 100 pseudoscalar $\eta: e^+e^- \to t\bar{t}\eta \mid \eta \to b\bar{b}$ 100150 F: Kilian, Rainwater, Reuter 10 parameters : $e^+e^- \to f\bar{f}$ and Zh501001500 $M_{inv}(b\bar{b})$ [GeV] almost completely covered

c) <u>STRONG ELW SYMMETRY BREAKING</u>

new strong interaction sector: global symmetry breaking \Rightarrow [pseudo-] Goldstone bosons ~ Higgs particles

LITTLE HIGGS THEORIES

large global symmetry group $| f \sim TeV$: rich spectrum of TeV particles plus light Higgs sector

pseudoscalar
$$\eta: e^+e^- \to t\bar{t}\eta \mid \eta \to b\bar{b}$$

<u>parameters</u> : $e^+e^- \rightarrow f\bar{f}$ and Zhalmost completely covered masses known from LHC : ILC determines model specific cplgs \Rightarrow

F: Conley, Hewett, Le

c) <u>STRONG ELW SYMMETRY BREAKING</u>

new strong interaction sector: global symmetry breaking \Rightarrow [pseudo-] Goldstone bosons ~ Higgs particles

MINIMAL STRONG THEORY

no light states : [WW] in $0^+, 1^-, \dots \sim 1$ TeV observed in WW scattering $\sqrt{s} = 1$ TeV

> $e^+e^- \to \bar{\nu}\nu WW$ $e^+e^- \to WWZ$ Krstotosic, Beyer ea

sensitivity : across entire threshold region

SI scale: $\Lambda_* < 4\pi v \simeq 3$ TeV

CLOSURE of SM ...

- GigaZ : ultimate precision in SM elw/QCD sector :

```
elw mix angle \sin^2 \theta_W \sim 10^{-5}
QCD coupling \alpha_s \sim 10^{-3} to 10^{-4}
W mass M_W \sim 10^{-4}
```

- SU(2) gauge symmetry : tri- and quattro-linear couplings : WWW etc

anomalous magnetic dipole moment $\Delta [e/2M_W] \sim 10^{-3}$ anomalous electric quadrupole moment $\Delta [e/M_W^2] \sim 10^{-3}$

Weyl gauge principle proven basis of fundamental forces in Nature

- top quark : t-quark mass m_t to $\frac{1}{2} \cdot 10^{-3}$ and static properties

key observable for flavor physics | reflect new interactions

2B. SUPERSYMMETRY

Fundamental symmetry with impact across all micro-areas plus cosmology:

- generating and stabilizing light Higgs boson
- leading to unification of gauge couplings / paving path to gravity
- providing candidate particle for Cold Dark Matter

 $\begin{array}{ll} \underline{\text{MASS SCALE}}: \ \text{LEdata} + \text{CDM small/mod } \tan\beta: \text{[mild] pref low mass spectrum} \\ \\ \text{[no firm pred]} & \text{focus pt } \text{[egret]}: \tilde{\chi} < 200 \text{ GeV}, \ \tilde{F} \sim 1 \text{ TeV} \end{array}$

discovery sensitivity ~ 2.5 to 3 TeV

first steps in exploring spectrum

ILC

high-resolution profile of supersymmetric particles :

- complete spectrum, particularly in light non-colored sector particle masses
- q-numbers: spin
- elw chirality charges | mix parameters | Majorana nature
 couplings: identity of Yukawa with gauge couplings
 ⇒ extracting basic Lagrangian parameters at Tera-scale
 ⇒ reconstructing fundamental theory at GUT/Planck scale
- \Leftarrow complexity SUSY > SM : analysis to be successful needs high-precision data

MASSES at ILC

a) Edge effects:
$$\tilde{\mu}_R \to \mu + \tilde{\chi}_1^0$$

 $m_{\tilde{\ell}} = \sqrt{s} [E_+ E_-]^{\frac{1}{2}} / (E_+ + E_-)$
 $m_{\tilde{\chi}_1^0} = m_{\tilde{\ell}} [1 - 2(E_+ + E_-) / \sqrt{s}]^{\frac{1}{2}}$
F: Martyn

precision on χ_1^0 increased by $\sim 10^2$

b) <u>Threshold excitations:</u>

$$e^+e^- \rightarrow \tilde{\mu}_R^+ + \tilde{\mu}_R^- \rightarrow \mu^+\mu^- + E_{miss}$$

P-wave: slow β^3 rise

$$e^-e^- \rightarrow \tilde{e}_R^- + \tilde{e}_R^- \rightarrow e^-e^- + E_{miss}$$

S-wave: fast β rise

F: Freitas ea

Summary	Weiglein	ea	:
---------	----------	----	---

LHC :

- voids in LE spectrum
- accuracy per-cent
- mass diff per-mille

ILC :

- filling voids
- accuracy increased by one to two orders

 $\underline{\rm LHC+ILC\ coherent}$:

comprehensive and highresolution susy picture

	Mass, ideal	"LHC"	"ILC"	"LHC+ILC"
$\tilde{\chi}_1^{\pm}$	179.7		0.55	0.55
$\tilde{\chi}_2^{\pm}$	382.3	_	3.0	3.0
$ ilde{\chi}_1^0$	97.2	4.8	<u>0.05</u>	<u>0.05</u>
$ ilde{\chi}_2^0$	180.7	4.7	1.2	0.08
\tilde{e}_R	143.9	4.8	0.05	0.05
${ ilde e}_L$	207.1	5.0	0.2	0.2
$ ilde{ u}_e$	191.3	_	1.2	1.2
$ ilde{\mu}_R$	143.9	4.8	0.2	0.2
$ ilde{ au}_1$	134.8	5-8	0.3	0.3
$ ilde{ au}_2$	210.7	_	1.1	1.1
$ ilde q_L$	570.6	8.7	—	4.9
${ ilde t}_1$	399.5		2.0	2.0
$ ilde{t}_2$	586.3		—	
$ ilde{g}$	604.0	8.0	_	6.5
h^0	110.8	0.25	0.05	0.05
A^0	399.4		1.5	1.5

NATURE OF SUPERSYMMETRIC PARTICLES

SPIN OF PARTICLES

SUSY cascade decays : $\tilde{q} \to q \, \tilde{\chi}_2^0 \to q \, (\tilde{\ell}\ell) \to q \, (\ell\ell) \, \tilde{\chi}_1^0$

UED cascade decays : $q_1 \rightarrow q Z_1 \rightarrow q (l_1 l) \rightarrow q(ll) \gamma_1$ [isomorphic]

 $\frac{distinction \ by \ spin}{\text{ILC prod angle}: e^+e^- \rightarrow \tilde{\mu}^+\tilde{\mu}^- \rightarrow \mu^+\mu^- + E_{miss}} \begin{bmatrix} 1000 \\ 800 \\ 000 \\ \hline \\ \hline \\ \hline \\ \tilde{\chi}^{\pm} \ \text{etc: fs analysis required} \\ \hline \\ \hline \\ F: \ Martyn, \ Choi \ ea \end{bmatrix} = 0$

MIXING AND COUPLINGS

Mixing $\tilde{g} \oplus \tilde{h}$ of charginos :

SUSY id: Yukawa = gauge cplgs :

MAJORANA NATURE OF NEUTRALINOS

classical reaction: $e^-e^- \rightarrow \tilde{e}^-\tilde{e}^-$

two fermion charges annihilated only by Majorana $\tilde{\chi}^0$ t-exchange

Extracting SUSY Parameters at Terascale

Gaugino, higgsino, scalar mass parameters, trilinear couplings, etc:

integral LHC/LC analysis \oplus loops: $\mathcal{O} = \mathcal{O}[\mathcal{MSSM}]$: SPA Project

EXC	LHC	LC	LHC+LC	SPS1a
M_1	102.5 ± 5.3	102.3 ± 0.1	$102.2 {\pm} 0.1$	102.2
M_2	191.8 ± 7.3	$192.5{\pm}0.7$	$191.8 {\pm} 0.2$	191.8
M_3	$578. \pm 15.$	\rightarrow	$588.\pm11.$	589.4
$M_{\tilde{e}_L}$	198.7 ± 5.1	$198.7{\pm}0.2$	$198.7 {\pm} 0.2$	198.7
$M_{\tilde{e}_R}$	138.2 ± 5.0	$138.2 {\pm} 0.05$	$138.2 {\pm} 0.05$	138.2
$M_{\tilde{q}_L}$	$550.\pm13.$	\rightarrow	$553.3 {\pm} 6.5$	553.7
$M_{\tilde{u}_R}$	$529.\pm20.$	\rightarrow	$532.\pm 15.$	532.1
$M_{\tilde{d}_R}$	$526.\pm 20.$	\rightarrow	$529.\pm 15.$	529.3
A_t	$-507.\pm91.$	-501.9 ± 2.7	-505.2 ± 3.3	-504.9
μ	345.2 ± 7.3	344.3 ± 2.3	$344.4{\pm}1.0$	344.3
aneta	10.2 ± 9.1	$10.3 {\pm} 0.3$	$10.06 {\pm} 0.2$	10

SFitter [Lafaye, Plehn, Zerwas.D]

 $consistent \ with \ :$

<u>Fittino</u> [Bechtle, Desch, Wienemann]

GUT/PLANCK-SCALE SCENARIOS

High-precision measurement of SUSY Lagrangian parameters \Rightarrow

Extrapolation to high scale : • reconstruction of fundamental theory $\sim \Lambda_{Pl}$ exploration of microscopic SUSY breaking • symmetries/universal behavior at Λ_{Pl} ? impact of high-scale physics? Proton decay and related phenomena Neutrino physics – e.g. see-saw mechanism

Program in parallel to : Cosmology / early times

picture coarse \Rightarrow HEP SUSY addition highly valuable

to reconstruct Planck scale scenario

GAUGE COUPLINGS

Evolution:present elw/strong gauge couplings \oplus SUSY threshold corr ~ LHC

Grand Unification : ~ $2\sigma / g^U : 2\%$ Δ_3 at 8σ level : high sc phys

 $\frac{\text{GigaZ}}{\oplus}: \Delta s_W^2 / \alpha_s \leq 10^{-5/-3}$ $\oplus \text{ILC completed}$

	Present/"LHC" GigaZ/"LHC+LC	
M_U	$(2.36\pm0.06)\cdot10^{16}~{ m GeV}$	$(2.360\pm 0.016)\cdot 10^{16}~{\rm GeV}$
αU^{-1}	24.19 ± 0.10	24.19 ± 0.05
$\alpha_3^{-1} - \alpha_U^{-1}$	0.97 ± 0.45	0.95 ± 0.12

UNIVERSALITY : MASSES AND SUSY BREAKING

 $\underline{\text{Evolution}}$: 0.01 400 D_1 Q_1 U_1 E_1 L_1 H_2 0.009 300 0.008 Gaugino / scalar masses M_1 0.007 200 0.006 universal in mSUGRA M_2 0.005 100 0.004 0.003 F: Blair, Porod, ea 0 M_3 0.002 0.001 -100 ் ட் $10^8 10^{11} 10^{14} 10^{16}$ $10^5 10^8 10^{11} 10^{14} 10^{16}$ 10^{5} 10^{2} 10^{2}

Scalars in GMSB

evolution distinctly different \Rightarrow

- Micro-picture of SUSY breaking
- *GUT/Pl physics scenarios*

INTERMEDIATE SCALE : Z' BOSON

Heavy Z' vector boson motivated by TeV scale remnants of grand unified theories and string theories, ext. Higgs and extra. dim models, etc

Examples : Z' in SO_{10} , LH, etc : LHC : $M_{Z'}$ up to ~ 5 TeV

ILC : virtual extension up to 15 TeV Riemann.S

Z' cplgs : discriminate models Godfrey ea

INTERMEDIATE SCALE : SEE-SAW IN ν PHYSICS

Example : neutrino mass generated by see-saw mechanism \Rightarrow

<u>intermediate see-saw scale</u> $M[\nu_R] \sim 10^{10}/10^{15}$ measurable? "qualified yes"

Seesaw-scale affects evolution of $\tilde{\tau}/\tilde{\nu}_{\tau}$ masses in third generation, but not 1st/2nd generation : $\tilde{\tau}/\tilde{\nu}_{\tau}$ shifted wrt $\tilde{e}/\tilde{\nu}_{e}$

 $M_{\nu_{R3}} \sim 1.0 \times 10^{15} \text{ GeV} \mid 50\% \text{ level}$

Deppisch, ea

2C. EXTRA SPACE DIMENSIONS

basic element: gravity extends to higher dimensions $[\oplus SM fields]$

3. COSMOLOGY CONNECTION

<u>Focus</u>: mechanism of baryon asymmetry $\rho_B = 4.0 \pm 0.4\%$

particle character of CDM $\rho_{cdm} = 24 \pm 4\%$

Baryon Asymmetry

• LEPTOGENESIS : CP violation in heavy ν_R sector ILC [*indirect*] \Rightarrow mass estimate ν_R

• SUPERSYMMETRY: new CP-violation source $[\tilde{\chi}]$ 1st PT : light \tilde{t}_R and Higgs

 $\Leftrightarrow \text{ window left by LEP [Higgs < 120 GeV]}$ and Tevatron $[\tilde{t}_R < top]$

 \leftarrow ILC : near degeneracy \tilde{t}_R and $\tilde{\chi}_1^0$ Carena ea

Cold Dark Matter

Many candidate particles in a variety of theoretical approaches \Rightarrow CDM = mixture of different components / complex structure ?

- supersymmetry: lightest neutralino \Leftarrow
 - gravitino \Leftarrow
- extra dimensions: KK states, ...

• <u>NEUTRALINO CDM</u>:

area in mSUGRA param ~ octopus CDM predicted by $\tilde{\chi}\tilde{\chi}$ etc annihilation \Leftarrow precise SUSY sector required

<u>LCC2 focus pt</u> : Ωh^2 corr /w mass diff $\tilde{\chi}_1^{\pm} - \tilde{\chi}_1^0 = 51.7 \pm 0.3 \text{ GeV}$ $\Omega h^2 = 0.109 \pm 8\%$

Cold Dark Matter

:: present accuracy [WMAP] : $\Omega h^2 = 0.104^{+0.007}_{-0.013}$: ~ 10% :: future [PLANCK] : : 1.4%

MSSM conclusion on CDM = neutralino $\tilde{\chi}_1^0$:

	character	channel	sensitivity	LHC	(500)	(1000)
SPS1a'	bulk / co-an	$\tilde{\chi}\tilde{\chi} \rightarrow \tau \tau, bb$ / co-an	$ ilde{ au}, ilde{b}$	10%	3%	2%
LCC2	focus point	$\tilde{\chi}\tilde{\chi} \rightarrow WW, ZZ$	$ ilde{V} ilde{H}$ mix	80%	14%	8%
LCC3	$ ilde{ au}\tilde{\chi}$ co-ann.	$ ilde{ au} \tilde{\chi} o au \gamma$	$M[ilde{ au} - ilde{\chi}_1^0]$	176%	50%	18%
LCC4	A funnel	$\tilde{\chi}\tilde{\chi} \to A$	M_A, Γ_A	405%	85%	19%

LCC Project [Baltz ea] / SPA Project [Bélanger ea]

<u>Note</u> : in bottom-up approach [ILC/LHC potential not fully exploited yet]

:: significant improvement if over-all picture under better control: msugra analyses : $8/18/19\% \rightarrow 3/7/5\%$ [DCR]

• <u>GRAVITINO CDM</u>:

 \tilde{G} lightest susy particle : GMSB ~ 10 GeV down to 1 eV SUGRA ~ 10 to 100 GeV

Primack ea, Buchmüller ea,

Feng ea, Hamaguchi ea,

Ambrosanio, Blair

Ellis ea

<u>lifetime NLSP</u>: $\tau[\tilde{\ell} \to \ell + \tilde{G}] = const \times M_{\tilde{G}}^2 M_{Pl}^2 / M_{\tilde{\ell}}^5$ or other modes

> potentially visible NLSP decay length even up to macroscopic lifetime of order 10^3 sec

 \Rightarrow suggesting special experimental efforts to catch the long-lived sleptons and to measure their decay properties

<u>supergravity</u> : collider / in conjunction with cosmological measurements <u>sugra coupling determined from lifetime measurements</u> Bu

Buchmüller ea Martyn

4. SUMMARY

ILC can contribute uniquely to solutions of key questions in physics ...

Electroweak Symmetry Breaking: establish Higgs mechanism sui generis for generating mass

Extra Space Dimensions: basic questions: Λ_{Pl} and #Dnew states, mixing of SM world with new world

<u>Cosmology Connection</u>: determine nature of CDM particles establish elements of origin of matter-asymmetry in Universe

 \dots and unravel the underlying laws of nature in the energy domain up to TeV. 27

