SUSY@ILC

Abdelhak DJOUADI (LPT Orsay/Next Southampton)

- 1. Probing SUSY
- 2. Precision SUSY measurements at the ILC
 - 3. Determining the SUSY Lagrangian
 - 4. Summary

From the physics chapter of the ILC Reference Design Report: "Physics at the ILC", August 2007.

1. Introduction: motivations for low-energy SUSY

If SUSY is to solve some of the most severe problems of the SM:

We need light SUSY particles: $M_{\mathrm{S}} \lesssim 1$ TeV.

The hierarchy problem: radiative corrections to the Higgs masses

$$\Delta \mathbf{M_H^2} = \frac{\lambda_{\mathbf{f}}^2 \mathbf{N_f}}{4\pi^2} \bigg[(\mathbf{m_f^2} - \mathbf{M_S^2}) \mathrm{log} \bigg(\frac{\boldsymbol{\Lambda}}{\mathbf{M_S}} \bigg) + 3\mathbf{m_f^2} \mathrm{log} \bigg(\frac{\mathbf{M_S}}{\mathbf{m_f}} \bigg) \bigg] + \mathcal{O} \left(\frac{1}{\boldsymbol{\Lambda^2}} \right)$$

- The unification problem: the slopes of the $lpha_i$ SM gauge couplings need to be fixed early enough to meet at $M_{GUT}\sim 2 imes 10^{16}$ GeV.
- The dark matter problem: the electrically neutral, weakly interacting, stable LSP should have a mass $\lesssim \mathcal{O}(1$ TeV) for Ωh^2 to match WMAP.

In this case, sparticles are accessible at future machines.

- We expect great discoveries at the LHC.
- We will have a great deal of exciting physics to do at the ILC.

1. Introduction: SUSY models

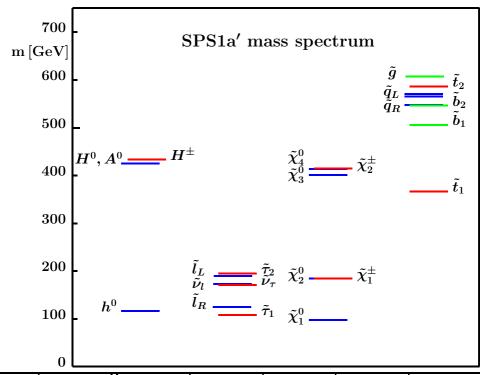
Focus mainly on the Minimal Supersymmetric Standard Model (MSSM):

- minimal gauge group: SU(3)×SU(2)×U(1),
- ullet minimal particle content: 3 fermion families and 2 Φ doublets,
- ullet R= $(-1)^{(2s+L+3B)}$ parity is conserved,
- minimal set of terms (masses, couplings) breaking "softly" SUSY.

To reduce the number of the (too many in general) free parameters:

- impose phenomenological constraints: \mathcal{O} (20) free parameters,
- unified models, O(5) parameters (mSUGRA: $\mathbf{m_0}, \mathbf{m_{\frac{1}{2}}}, \mathbf{A_0}, \tan\beta, \epsilon_\mu$),

In this talk, I will concentrate on the MSSM with gravity mediated breaking.


But, one should not forget that:

- -- other possibilities are models with GMSB/AMSB....
- -- the impact of relaxing some MSSM basic assumptions can be large
- -- other scenarios are possible (strings, right-handed neutrinos,...)

There is a need for model independent analyses...

1. Introduction: example of SUSY spectrum

SPS1a':
$$m_{1/2} = 250 GeV, m_0 = 70 GeV, A_0 = -300 GeV, \tan \beta = 10, \mu > 0$$

$\widetilde{p}/mass$											
SPS1a [']											
SPS1a	96	177	176	143	202	186	133	206	185	379	492

1. Introduction: probing SUSY

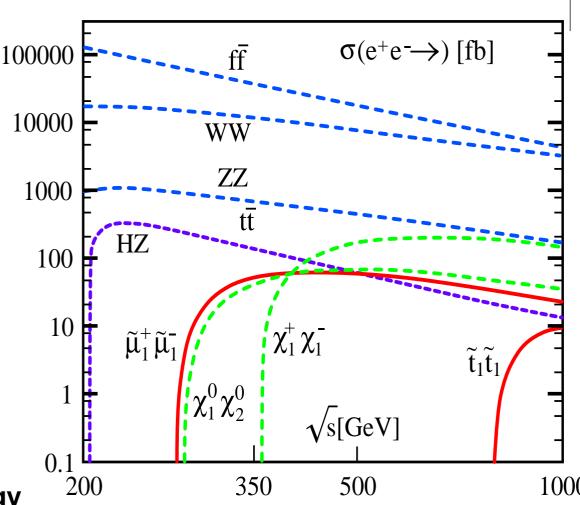
All these particles will be produced at the LHC (direct/cascades)...

These particles can also be produced directly at the ILC...

But producing these new states is not the whole story! We need to:

- measure the masses and mixings of the newly produced particles, their decay widths, branching ratios, production cross sections, etc...;
- verify that there are indeed superpartners and, thus, determine their spin and parity, gauge quantum numbers and their couplings;
- reconstruct the low–energy soft–SUSY breaking parameters with the smallest number of assumptions (model independent way);
- ultimately, unravel the fundamental SUSY breaking mechanism and shed light on the physics at the very high energy scale.
- make the connection to cosmology and predict the relic density.

To achieve this goal, a combination of LHC and ILC is mandatory!


1. Introduction: the role of the ILC

At the LHC:

- copious \tilde{q}/\tilde{g} production
- $-\,\widetilde\ell/\chi$ from cascades
- complicated topologies
- very large backgrounds
- difficult environment.

At the ILC:

- direct $\widetilde{\ell}/\chi$ production
- large production rates
- good signal to bkg ratios
- very clean environment
- possibility of tuning energy
- initial beam polarization
- more collider options...

Charginos: mixtures of the charged higgsinos and gauginos

$$\tilde{\mathbf{W}}^{\pm}, \tilde{\mathbf{h}}_{\mathbf{2/1}}^{\pm} \longrightarrow \chi_{\mathbf{1}}^{\pm}, \chi_{\mathbf{2}}^{\pm}$$

The general chargino mass matrix, in terms of M_2 , μ and an eta, is

$$\mathcal{M}_{\mathbf{C}} = \begin{bmatrix} M_2 & \sqrt{2}M_W s_{\beta} \\ \sqrt{2}M_W c_{\beta} & \mu \end{bmatrix}, \mathbf{s}_{\beta} \equiv \sin \beta \mathbf{etc}$$

• Neutralinos: mixtures of the neutral higgsinos and gauginos

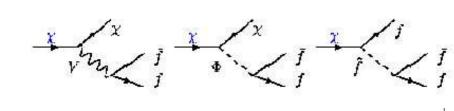
$$\tilde{\mathbf{B}}, \tilde{\mathbf{W}}_{\mathbf{3}}, \tilde{\mathbf{H}}_{\mathbf{1}}^{\mathbf{0}}, \tilde{\mathbf{H}}_{\mathbf{2}}^{\mathbf{0}} \longrightarrow \chi_{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4}}^{\mathbf{0}}$$

The 4x4 mass matrix depends on $\mu, \mathbf{M_2}, aneta, \mathbf{M_1}$; given by:

$$\mathcal{M}_{\mathbf{N}} = \begin{bmatrix} 0 & M_2 & M_Z s_W c_\beta & M_Z s_W s_\beta \\ -M_Z s_W c_\beta & M_Z c_W c_\beta & 0 & -\mu \end{bmatrix}$$

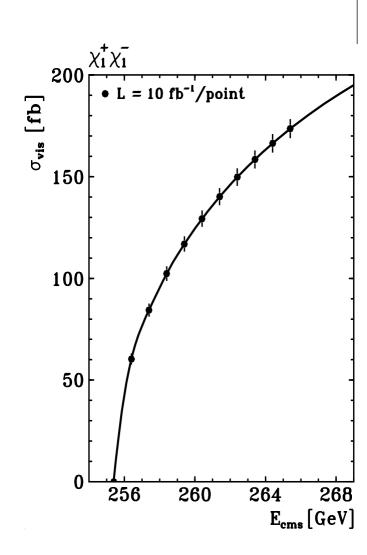
$$\mathcal{M}_{\mathbf{N}} = \begin{bmatrix} 0 & M_2 & M_Z c_W c_\beta & -M_Z c_W s_\beta \\ -M_Z s_W s_\beta & -M_Z c_W s_\beta & -\mu & 0 \end{bmatrix}$$

ILC-Florence, 12/09/2007


SUSY@ILC - A. Djouadi - p.7/23

 χ production: χ_{i} χ_{i}

- $e^+e^- o \chi_i^\pm \chi_i^\pm$: s-channel γ, Z and t-channel $\tilde{\nu}_e$; large σ for i=j
- ullet $e^+e^- o \chi_i^0\chi_j^0$: s–channel Z and t–channel $ilde{e}$; $\sigma=\mathcal{O}(10$ fb).
- $-e^{\pm}$ beam polarization selects various production channels
- cross section for χ^\pm rises steeply near threshold, $\sigma \propto eta$
- cross sections for χ^0 rise less steeply in general, $\sigma \propto \beta^3$


χ decays:

- in general $\chi_{\mathbf{i}} o \mathbf{V} \chi_{\mathbf{j}}, \mathbf{\Phi} \chi_{\mathbf{j}}, \mathbf{f} \mathbf{f}$
- possibility of cascade decays

Measurement of χ^{\pm}/χ^0 masses:

- from a threshold scan, $\Delta m_{\chi_1^\pm} \sim$ 50 MeV for $m_{\chi_1^\pm} \sim$ 200 GeV as steep rise $\sigma \propto \beta$.
- $\Delta m_{\chi_1^\pm} \sim 0.1\%$ in continuum from dijet mass in $e^+e^- \to \chi_1^+\chi_1^- \to \ell^\pm \nu q \bar q' \chi_1^0 \chi_1^0$
- from dijet mass, ${\bf m}_{\chi_1^0}$ determination with precision $\Delta(m_{\chi_1^\pm}-m_{\chi_1^0})\!=\!\mathcal{O}(50)$ MeV.
- for small $m_{\chi_1^\pm}-m_{\chi_1^0}$, use $e^+e^-\to\chi_1^+\chi_1^-\gamma$ to measure both $m_{\chi_1^\pm}/m_{\chi_1^0}$ from spectra.
- $\begin{array}{l} \bullet \ e^+e^- \to \chi_2^0\chi_1^0 \to \ell^+\ell^-\chi_1^0\chi_1^0 \ \text{allows an} \\ \text{accuracy } \Delta(m_{\chi_2^0}\!-\!m_{\chi_1^0})\!=\!\mathcal{O}(0.1\%) \end{array}$

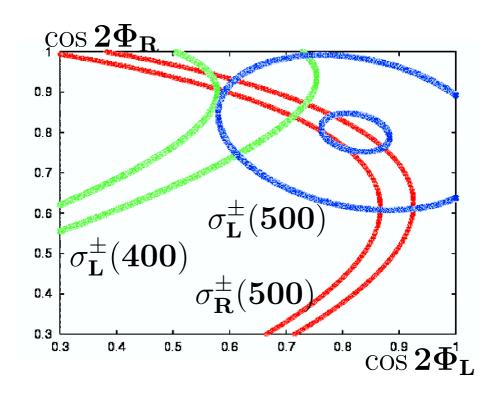
Determination of spin:

- idea from excitation curve and angular distribution from production,
- sure with angular distributions of polarized χ decays with $\mathbf{e}_{\mathbf{pol}}^{\pm}$.

Determination of Majorana nature of neutralinos:

- guess from eta^3 threshold behavior of $\sigma({f e^+e^-}
 ightarrow \chi_{f i}^{f 0} \chi_{f i}^{f 0})$,
- $e^- e^-
 ightarrow ilde{e}^- ilde{e}^-$ occurs only because Majorana χ^0 exchange.

Verification of the SUSY identity of gauge/Yukawa couplings:


- production cross sections for $\chi^0,\chi^\pm\propto\hat{g}(e\tilde{e}\chi^0),\hat{g}(e\tilde{\nu}\chi^\pm)$,
- combing with $\tilde{\ell}$ production, $\Delta \tilde{g} = 0.7\%$ and $\Delta \tilde{g}' = 0.2\%$

Determination of the chargino/neutralino mixing angles:

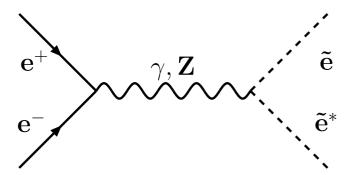
- $\sigma({f e^+e^-} o \chi_{f i}^+\chi_{f j}^-)$ is binomial in the χ^\pm mixing angles ${f cos2}\phi_{f L,R}$
- ightarrow determined in a model independent way using polarized e^\pm beams

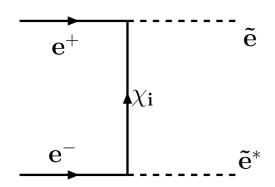
(neutralino mixing from χ^0 production/decay, see Jan Kalinowski).

SPS1a:
$$\mathbf{c_{2\phi_L}}\!=\![0.62,0.72],\mathbf{c_{2\phi_R}}\!=\![0.87,0.91]$$
 at 95% CL at $\sqrt{s}\!=\!\frac{1}{2}$ TeV

- CPC: $e^+e^- o \chi^+_i \chi^-_j$ alone allows to determine basic parameters;
- sneutrinos can be probed up to masses of 10 TeV with polarization.
- CPV: $e^+e^- o \chi_{\bf i}^0\chi_{\bf j}^0$ would be needed (with direct probe of CPV).

Sfermion system described by $\tan\beta,\mu$ and 3 param.for each species: $m_{{\bf \tilde f_r}},m_{{\bf \tilde f_R}}$ and $A_{\bf f}.$ For 3d generation, mixing $\propto m_{\bf f}$ to be included.


$$\mathcal{M}_{\tilde{\mathbf{f}}}^{2} = \begin{pmatrix} m_{f}^{2} + m_{\tilde{f}_{L}}^{2} + (I_{f}^{3L} - e_{f}s_{W}^{2})M_{Z}^{2}c_{2\beta} & m_{f}A_{f} - \mu(\tan\beta)^{-2I_{f}^{3L}} \\ m_{f}A_{f} - \mu(\tan\beta)^{-2I_{f}^{3L}} & m_{f}^{2} + m_{\tilde{f}_{R}}^{2} + e_{f}s_{W}^{2}M_{Z}^{2}c_{2\beta} \end{pmatrix}$$

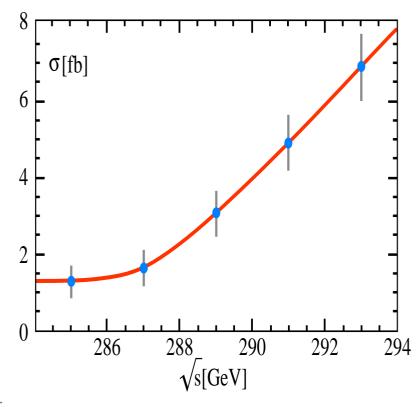

They are diagonalized by 2×2 rotation matrices of angle θ_f , which turn the current eigenstates \tilde{f}_L, \tilde{f}_R into the mass eigenstates \tilde{f}_1, \tilde{f}_2 .

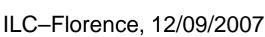
$$m_{\tilde{f}_{1,2}}^2 = m_f^2 + \tfrac{1}{2} \left[m_{LL}^2 + m_{RR}^2 \mp \sqrt{(m_{LL}^2 - m_{RR}^2)^2 + 4 m_f^2 X_f^2} \, \right]$$

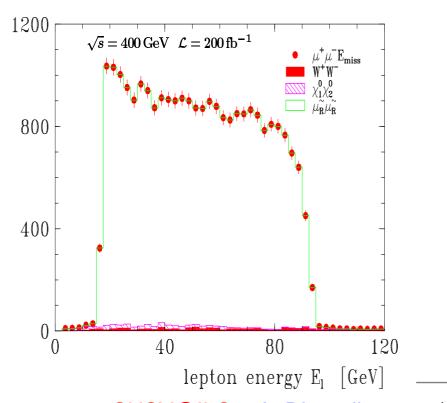
Note: mixing very strong in stop sector, $X_{\mathbf{t}} = A_{\mathbf{t}} - \mu \cot \beta$ and generates mass splitting between $\tilde{\mathbf{t}}_1, \tilde{\mathbf{t}}_2$, leading to light $\tilde{\mathbf{t}}_1$; mixing in sbottom/stau sectors also for large $X_{\mathbf{b},\tau} = A_{\mathbf{b},\tau} - \mu \tan \beta$.

 $ilde{\ell}$ production:

- $e^+e^- \to \tilde{\mu}^+\tilde{\mu}^-/\tilde{\tau}^+\tilde{\tau}^-/\tilde{\nu}_{\mu,\tau}\tilde{\nu}_{\mu,\tau}$: s-channel γ ,Z exchange;
- ullet ${f e}^+{f e}^- o {f ilde e}^+{f ilde e}^-$: s–channel γ , Z and t–channel χ^0 exchange;
- $e^+e^- o ilde{
 u}_e ilde{
 u}_e$: s-channel Z and t-channel χ^\pm exchange;


Again, in this case:


- ${
 m e}^{\pm}$ beam polarization selects various channels/chiralities for $\widetilde{e}, \widetilde{
 u}_e$;
- $\tilde{e}_{L/R}$ production in $e_{L/R}^{-}e_{L/R}^{-}$ collisions;
- cross sections for $ilde{\mathbf{e}}, ilde{
 u}_{\mathbf{e}}$ rise steeply near threshold, $\sigma \propto eta$,
- cross sections for 2d/3d generation rise less steeply, $\sigma \propto eta^3$.


Slepton decays: in general $ilde{\ell} o \ell \chi_{f 1}^{f 0}$ with possible cascades.

Slepton mass measurement from threshold scan and in continuum:

- polarized e^+e^- : $\Delta m_{ ilde{e}_{
 m R}}=0.2$ GeV and $\Delta \Gamma_{ ilde{e}_{
 m R}}=0.25$ GeV;
- improvement by 4 using e^-e^- but 2 times worse for $\tilde{\mu}$ in e^+e^- ;
- from E_ℓ spectra in $ilde\ell\to\ell\chi_1^0$ decays, 0.1% precision for $m_{ ilde\ell}$ and $m_{\chi_1^0}$;
- $ilde
 u_e$ more involved, $m_{ ilde
 u}$ at 1% from $e^+e^- o ilde
 u_e ilde
 u_e o
 u_e \chi_1^0 e^\pm \chi_1^\mp$

SUSY@ILC - A. Djouadi - p.14/23

Slepton spin determination: conceptually very simple in e^+e^- :

- hint from the P-wave onset of the excitation curve (not sufficient),
- the $\sin^2\!\theta$ behavior of the cross section (for $ilde{
 m e}$, near threshold).

Coupling determination: check of the SUSY identity $g_{\mathbf{gauge}} = \mathbf{\tilde{g}}_{Yukawa}$:

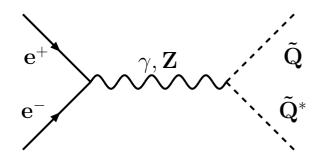
- from $\tilde{\mathbf{e}}$ and $\tilde{\nu}_{\mathbf{e}}$ production cross sections (t–channel contributions),
- also in χ^\pm and χ^0 production (works also for heavy $\widetilde{\ell}$).

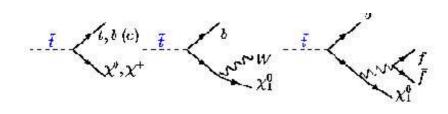
In the case of $\tilde{\tau}$: $\tilde{\tau}$ mixing and final state τ slightly complicate pattern:

- mass determination as above for $\tilde{\mu}$ but accuracy \sim 3 times worse,
- complication ($\gamma\gamma$ bkg) when $ilde{ au}_1$ almost degenerate with the LSP χ_1^0 ,
- mixing $\theta_{\tilde{\tau}}$ measurable from $\sigma(\mathbf{e^+e^-} \to \tilde{\tau}_1 \tilde{\tau}_1)$ with \neq beam polarization,
- polarization of τ -lepton measurable and helps for model discrimination,
- μ , A_{τ} and an eta can be determined from $\sigma(\tilde{\tau}\tilde{\tau})$ and au polarization
- $\mathbf{H}, \mathbf{A} \to \tilde{ au}_1 \tilde{ au}_2$ decays give extra information ($A_{ au}$ measurement)...

Third generation $ilde{Q}= ilde{t}_1, ilde{b}_1$: possibly lightest squarks due to mixing.

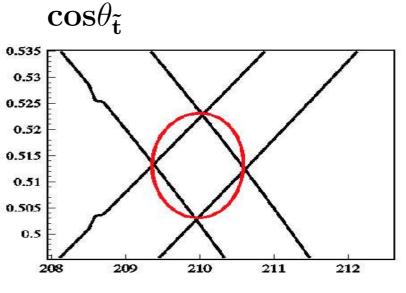
- In particular, t_1 is in general the lightest squark (RGE+mixing).
- Light stops needed in models with electroweak baryogenesis.
- Light stops are very difficult to detect at the LHC (large tt bkg).

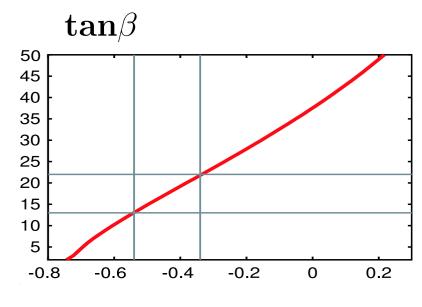

$\widetilde{\mathbf{Q}}$ production at ILC:


$$e^+e^-
ightarrow ilde{t}_1 ilde{t}_1$$
 and $ilde{b}_1 ilde{b}_1$:

via s-channel γ ,Z exchange

$ilde{\mathbf{t}}_1$ decays:


- if heavy, two–body $ilde{\mathbf{t}}_{\mathbf{1}}
 ightarrow \mathbf{t} \chi_{\mathbf{1}}^{\mathbf{0}}, \mathbf{b} \chi_{\mathbf{1}}^{+}$,
- otherwise multi-body decays,
- or loop induced $ilde{t}_1
 ightarrow c \chi_1^0$ decays.



Phenomenology of \tilde{t}_1 and \tilde{b}_1 at the ILC similar to that of $\tilde{ au}_1$:

- Masses and mixing obtained from production with polarized beams, ex: study of $\sigma(e^-_Re^+_L,e^-_Le^+_R \to \tilde{t}_1\tilde{t}_1)$ for $\tilde{t}_1 \to b\chi_1^\pm,c\chi_1^0$ at 500 GeV.
- Top quark polarization in \tilde{t}_1, \tilde{b}_1 decays provides crucial information ex: top polarization in $e_L^+e_R^- o \tilde{b}_1\tilde{b}_1 o t\chi_1^- + \bar{t}\chi_1^+$ at $\sqrt{s}=1$ TeV.

 ${
m P}_{{ ilde{f b}_1} o{f t}\chi_1^\pm}$ ___

ILC-Florence, 12/09/2007

SUSY@ILC - A. Djouadi - p.17/23

2. Precision SUSY measurements: summary

From analyses at ILC with $\sqrt{
m s}=0.5$ –1 TeV and 10–1000 fb $^{-1}$ luminosity:

	m [GeV]	Δm	Comments			
χ_1^{\pm}	183.7	0.55	simulation threshold scan, 100 ${ m fb}^{-1}$			
$\begin{bmatrix} \chi_1^{\pm} \\ \chi_2^{\pm} \\ \chi_1^{0} \end{bmatrix}$	415.4	3	estimate $\chi_1^\pm\chi_2^\mp$, spectra $\chi_2^\pm o Z\chi_1^\pm, W\chi_1^0$			
χ_1^0	97.7	0.05	combination of all methods			
χ_2^0	183.9	1.2	simulation threshold scan $\chi_2^0\chi_2^0$, 100 fb $^{-1}$			
$\chi_3^{\overline{0}}$	400.5	3–5	spectra $\chi^0_3 o Z \chi^0_{1,2}$, $\chi^0_{2,4} \chi^0_3$, 750 GeV, $\gtrsim 1~{ m ab}^{-1}$			
$\begin{bmatrix} \chi_2^0 \\ \chi_2^0 \\ \chi_3^0 \\ \chi_4^0 \end{bmatrix}$	413.9	3–5	\parallel spectra $\chi_4^0 o W\chi_1^\pm$, $\chi_{2,3}^0\chi_4^0$, 750 GeV, $\gtrsim 1$ ab $^{-1}$			
\tilde{e}_R	125.3	0.05	$ m e^-e^-$ threshold scan, 10 fb $^{-1}$			
\tilde{e}_L	189.9	0.18	${f e^-e^-}$ threshold scan 20 fb $^{-1}$			
$ ilde{ u}_e$	172.5	1.2	simulation energy spectrum, 500 GeV, 500 ${ m fb}^{-1}$			
$ ilde{\mu}_R$	125.3	0.2	simulation energy spectrum, 400 GeV, 200 ${ m fb}^{-1}$			
$ ilde{\mu}_L$	189.9	0.5	estimate threshold scan, 100 ${ m fb}^{-1}$			
$ ilde{ au}_1$	107.9	0.24	simulation energy spectra, 400 GeV, 200 ${ m fb}^{-1}$			
$ ilde{ au}_2$	194.9	1.1	estimate threshold scan, 60 fb $^{-1}$			
$ ilde{t}_1$	366.5	1.9	estimate b-jet spectrum, $\mathbf{m}_{\min}(\mathbf{ ilde{t}_1})$, 1TeV, 1 ab $^{-1}$			

3. Determination of the SUSY parameters:

Once m_i, σ, P_i are measured, determine the low–energy SUSY parameters from inversion of the mass and cross section formulae:

Chargino/neutralino system: see Jan Kalinowski

$$\begin{split} \mathbf{M_1} &= \sqrt{\Sigma_i m_{\chi_i^0}^2 - \mathbf{M_2^2} - \mu^2 - 2\mathbf{M_Z^2}}, \mathbf{M_2} = \mathbf{M_W} \sqrt{\Sigma - \Delta \big[\mathbf{c_{2\phi_R}} + \mathbf{c_{2\phi_L}} \big]} \\ |\mu| &= \mathbf{M_W} \sqrt{\Sigma + \Delta \big[\mathbf{c_{2\phi_R}} + \mathbf{c_{2\phi_L}} \big]}, \quad \tan \beta = \sqrt{(1 + \Delta')/(1 - \Delta')} \\ \text{with } \Delta &= \frac{m_{\chi_2^\pm}^2 - m_{\chi_1^\pm}^2}{4\mathbf{M_W^2}}, \Delta' = \Delta \big(\mathbf{c_{2\phi_R}} - \mathbf{c_{2\phi_L}}, \Sigma = \frac{m_{\chi_2^\pm}^2 + m_{\chi_1^\pm}^2}{2\mathbf{M_W^2}} - 1. \end{split}$$

Sfermion system: see Barbara Mele

$$\mathbf{m_{\tilde{\mathbf{f}}_{L,R}}^2} = \mathbf{M_{\tilde{\mathbf{f}}_{L,R}}^2} + \mathbf{M_{Z}^2} \cos 2\beta \left(\mathbf{I_{L,R}^3} - \mathbf{Q_f} \sin^2 \theta_{\mathbf{W}} \right) + \mathbf{m_{f}^2}$$
$$\mathbf{A_f} - \mu (\tan \beta)^{-2\mathbf{I_3^f}} = (\mathbf{m_{\tilde{\mathbf{f}}_1}^2} - \mathbf{m_{\tilde{\mathbf{f}}_2}^2})/(2\mathbf{m_f}) \cdot \sin 2\theta_{\tilde{\mathbf{f}}}$$

• Higgs system: see e.g. Marco Battaglia

Precise
$$M_h$$
 measurement: $M_h^2 = M_Z^2 |\cos 2\beta|^2 + \frac{3g^2}{2\pi^2} \frac{m_t^4}{M_W^2} \log \frac{m_{\tilde{t}}^2}{m_t^2}$

Also:
$$e^+e^- \to t\bar{t}\Phi, b\bar{b}\Phi, \chi\chi\Phi, \tau\tau \to \Phi, \Phi \to \tilde{\tau}_1\tilde{\tau}_2, \Phi \to \chi\chi, ...$$

3. Determination of SUSY parameters: summary

In reality, life is more complicated than the tree-level results above:

complete analysis with sophisticated programs: Sfittino, Sfitter, ...

	Δ LHC	Δ ILC	Δ LHC+ILC	SPS1a	Δ LHC+ILC	SPS1a [']
$\tan \beta$	±9.1	±0.3	± 0.2	10	± 0.3	10
$\mid \mu \mid$	± 7.3	\pm 2.3	\pm 1.0	344.3	±1.1	396
M_A	fixed	\pm 0.9	\pm 0.8	399.1	\pm 0.8	372
A_t	±91	\pm 2.7	\pm 3.3	-504.9	\pm 24.6	-565
M_1	± 5.3	\pm 0.1	\pm 0.1	102.2	\pm 0.1	103.3
M_2	± 7.3	\pm 0.7	\pm 0.2	191.8	\pm 0.1	193.2
M_3	±15	fixed	±11	589.4	± 7.8	571.7
$M_{ ilde{ au}_L}$	fixed	\pm 1.2	±1.1	197.8	±1.2	179.3
$M_{ ilde{e}_L}$	± 5. 1	\pm 0.2	\pm 0.2	198.7	\pm 0.18	181.0
$M_{ ilde{e}_R}$	\pm 5.0	\pm 0.05	\pm 0.05	138.2	\pm 0.2	115.7
$M_{\tilde{Q}3_L}$	±110	\pm 4.4	\pm 39	501.3	±4.9	471.4
$M_{\tilde{Q}1_L}$	±13	fixed	\pm 6.5	553.7	\pm 5.2	525.8
$M_{ ilde{d}_R}$	±20	fixed	±15	529.3	±17.3	505.7

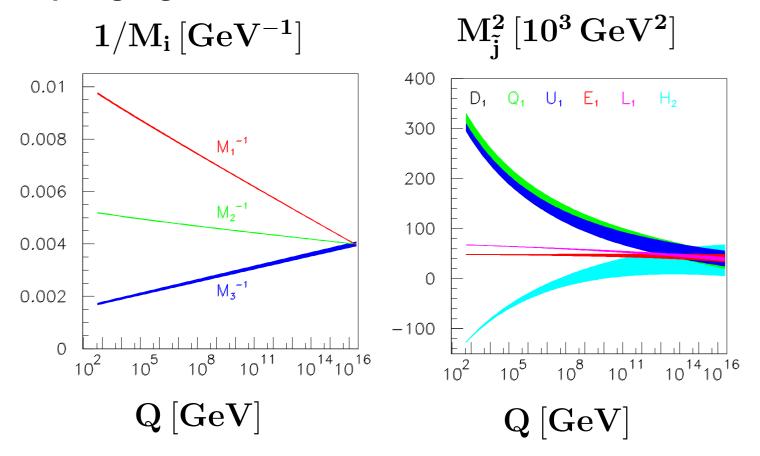
3. Determination of SUSY parameters

Once the low–energy SUSY parameters have been obtained, try to determine the SUSY parameters at the very high scale ($M_{\rm GUT}, M_{\rm P}$):

- pin-down the model/SUSY-breaking (mSUGRA, AMSB, GMSB, ..),
- determine the few fundamental unified parameters of the model.

Example of mSUGRA, using all previous measurements at LHC/ILC:

	SPS1a	LHC	ILC	LHC+ILC	SPS1a [/]	LHC+ILC
m_0	100	± 4.0	± 0.09	± 0.08	70	0.2
$oxed{egin{array}{c} \mathbf{m_{1/2}} \end{array}}$	250	± 1.8	± 0.13	± 0.11	250	0.2
aneta	10	± 1.3	± 0.14	± 0.14	10	0.3
$\mathbf{A_0}$	-100	± 31.8	± 4.43	± 4.13	-300	13


The same type of analysis in other breaking schemes/other models.

To be absolutely sure: only with model dependent analyses at ILC!

3. Determination of SUSY parameters:

One can check the fundamental assumptions at high (GUT) scale.

For example: gaugino and scalar mass unification in mSUGRA....

Also, check that one is in accord with cosmology (see G. Bélanger): use precise determinantion of SUSY parameters to predict Ωh^2 .

4. Summary

If SUSY is the solution to the SM pbs: SUSY particles should be light.—Colored and non-colored sparticles observable (very?) soon at LHC.

The ILC will be needed as it will provide crucial additional information:

- very clean environment, large production rates with low backgrounds,
- tunable energy to perform threshold scans and increase rates,
- beam polarization which allow to select various channels,
- ullet additional options (e $^-e^-, \gamma\gamma, e\gamma$) for complementary studies,
 - ⇒ high–precision analyses and a true probe of SUSY phenomena.

Only coherent/combined analyses of LHC+ILC data will allow for:

- better/model independent reconstruction of low energy SUSY paramete
- connect weak-scale SUSY with more fundamental physics at GUT scale,
- provide input to predict the LSP density and connection with cosmolog

Here: gave illustration of ILC "performance" in mSUGRA-type MSSM.

Many interesting analyses/physics can also be done in other scenarios!