Florence, September 12-14, 2007

 f_L, f_R

main reference :

INTERNATIONAL LINEAR COLLIDER

REFERENCE DESIGN REPORT

ILC Global Design Effort and AUGUST, 2007 World Wide Study

(and references therein)

my apologies to all (many) whose results I am showing without explicitely quoting their work ! ILC can add a lot of information after discovery of SUSY at LHC → *precision measurements* in the light part of the spectrum, expecially *sleptons and ew gauginos*

- *masses, decay widths, cross sections, mixing angles ...*
- are they really the SUSY partners ?

→ check spin and parity, gauge quantum numbers and couplings

reconstruct the low-energy SUSY breaking parameters

$ilde{f}_L, ilde{f}_R$ spin-0 partner of chiral fermions f_L, f_R

$$\mathcal{M}_{\tilde{f}}^2 = \begin{pmatrix} m_{\tilde{f}_L}^2 & a_{\tilde{f}}^* m_f \\ a_{\tilde{f}} m_f & m_{\tilde{f}_R}^2 \end{pmatrix}$$
$$m_{\tilde{f}_i}^2 = M_{\tilde{F}_i}^2 + m_Z^2 \cos 2\beta \left(I_{f_i}^3 - Q_f \sin^2 \theta_W\right) + m_f^2$$
$$a_{\tilde{f}}^2 = A_{\tilde{f}} - \mu^* (\tan \beta)^{-2I_f^3} \qquad A_{\tilde{f}}^2 = |A_{\tilde{f}}| e^{i\varphi_{A_{\tilde{f}}}}$$
$$\mu = |\mu| e^{i\varphi_{\mu}}$$

mixing between L and R states important when :

$$\begin{split} \Delta_{\tilde{f}} &= m_{\tilde{f}_L}^2 - m_{\tilde{f}_R}^2 \leq |a_{\tilde{f}} m_f| \quad \text{(not for selectron and smuons)} \\ \tilde{f}_1 &= \tilde{f}_L e^{i\varphi_{\tilde{f}}} \cos \theta_{\tilde{f}} + \tilde{f}_R \sin \theta_{\tilde{f}} \quad m_{\tilde{f}_{1,2}}^2 = (m_{\tilde{f}_L}^2 + m_{\tilde{f}_R}^2 \mp [\Delta_{\tilde{f}}^2 + 4|a_{\tilde{f}} m_f|^2]^{1/2})/2 \\ \tilde{f}_2 &= -\tilde{f}_L \sin \theta_{\tilde{f}} + \tilde{f}_R e^{-i\varphi_{\tilde{f}}} \cos \theta_{\tilde{f}} \quad & \tan \theta_{\tilde{f}} = (m_{\tilde{f}_1}^2 - m_{\tilde{f}_L}^2)/|a_{\tilde{f}} m_f| \\ \varphi_{\tilde{f}} &= \arg(A_{\tilde{f}} - \mu^*(\tan \beta)^{-2I_f^3}) \end{split}$$

Barbara Mele

SUSY in the bulk region (SPS1a)

- A scenario with many SUSY signal at LHC and LC has been studied extensively (SPS1a)
- LHC sees coloured superpartners directly and uncoloured ones in cascades

• ILC sees most uncoloured superpartners

$$m_0 = 100 \text{ GeV}, \qquad m_{1/2} = 250 \text{ GeV},$$

 $\tan \beta = 10, \qquad A = -100 \text{ GeV}, \qquad \mu > 0,$

(mSUGRA) (R parity conserved)

most studies done here !

$ ilde{\ell}$	$m \; [{ m GeV}]$	decay	${\cal B}$
\tilde{e}_R	143.0	$ ilde{\chi}_1^0 e^-$	1.000
\tilde{e}_L	202.1	$ ilde{\chi}_1^0 e^-$	0.490
		$ ilde{\chi}_2^0 e^-$	0.187
		$\tilde{\chi}_1^- \nu_e$	0.323
$\tilde{ u}_e$	186.0	$ ilde{\chi}_1^0 u_e$	0.885
		$ ilde{\chi}_2^0 u_e$	0.031
		${ ilde \chi}_1^+ e^-$	0.083
$ ilde{\mu}_R$	143.0	$ ilde{\chi}_1^0\mu^-$	1.000
$ ilde{\mu}_L$	202.1	$ ilde{\chi}_1^0\mu^-$	0.490
		$ ilde{\chi}_2^0 \mu^-$	0.187
		$ ilde{\chi}_1^- u_\mu$	0.323
$\widetilde{ u}_{\mu}$	186.0	$ ilde{\chi}_1^0 u_\mu$	0.885
		$ ilde{\chi}_2^0 u_\mu$	0.031
		$ ilde{\chi}_1^+\mu^-$	0.083
$ ilde{ au}_1$	133.2	$ ilde{\chi}_1^0 au^-$	1.000
$ ilde{ au}_2$	206.1	$ ilde{\chi}^0_1 au^-$	0.526
		$ ilde{\chi}_2^0 au^-$	0.174
		$ ilde{\chi}_1^- u_{ au}$	0.300
$\tilde{\nu}_{ au}$	185.1	${ ilde \chi_1^0 u_ au}$	0.906
		$ ilde{\chi}_1^+ au^-$	0.067
			5

$$\begin{split} M_{\tilde{g}} &= 595.2, \quad \mu = 352.4, \quad M_A = 393.6, \quad \tan\beta = 10, \quad M_1 = 99.1, \quad M_2 = 192.7 \\ M_{\tilde{q}1_L} &= M_{\tilde{q}2_L} = 539.9, \quad M_{\tilde{d}_R} = 519.5, \quad M_{\tilde{u}_R} = 521.7, \quad M_{\tilde{e}_L} = 196.6, \quad M_{\tilde{e}_R} = 136.2, \\ M_{\tilde{q}3_L} &= 495.9, \quad M_{\tilde{b}_R} = 516.9, \quad M_{\tilde{t}_R} = 424.8, \quad M_{\tilde{\tau}_L} = 195.8, \quad M_{\tilde{\tau}_R} = 133.6, \\ A_t &= -510.0, \quad A_b = -772.7, \quad A_\tau = -254.2 \end{split}$$

sleptons produced mostly in pairs

$$egin{array}{rcl} ilde{\ell}^- & othermal{-} & ilde{\chi}^0, \,
u_\ell \, ilde{\chi}^- \ ilde{
u}_\ell & othermal{-} &
u_\ell \, ilde{\chi}^0, \, \ell^- \, ilde{\chi}^+ \end{array}$$

Charged slepton production in continuum

→ note! beam polarization enhances different chiral states ! here we assume : $\mathcal{P}_{e^-} = \pm 0.8$ $\mathcal{P}_{e^+} = \pm 0.6$

if χ mass is known, exploit momentum correlations :

exp problems for selectrons :

a) overlap of $\tilde{e}_R^- \tilde{e}_L^+$, $\tilde{e}_R^- \tilde{e}_R^+$, $\tilde{e}_L^- \tilde{e}_L^+$ flat energy distributions b) large SM bckgr

double subtraction of the spectra (for opposite P_e): $(E_{e^-} - E_{e^+})_{e_R^-} - (E_{e^-} - E_{e^+})_{e_L^-}$

disentangle $e_{R,L}^- e^+ \rightarrow \tilde{e}_R \tilde{e}_L$ from all charge symmetric bckgr

(clean) endpoint from \tilde{e}_R and \tilde{e}_L decays easily measurable

$$\delta m_{\tilde{e}_R,\,\tilde{e}_L} \sim 0.8 \,\mathrm{GeV}$$

Large mixing expected in the tau sector

 au_1 is the lightest sleptons !

$$e_L^+ e_R^- \rightarrow \tilde{\tau}_1^+ \tilde{\tau}_1^- \rightarrow \tau^+ \tilde{\chi}_1^0 \tau^- \tilde{\chi}_1^0$$

neutrinos in $\tau \rightarrow \mu \nu \nu$ spoil flat E_l dist<u>r</u>ibution : $\sqrt{s} = 400 \, {
m GeV} \ {\cal L} = 200 \, {
m fb}^{-1}$ 600 $\tau \to 3\pi\nu$ $\tau \to \rho \nu_{\tau}, \ 3\pi \nu_{\tau}$ $\tau^{-}E_{miss}$ 400 $\delta m_{\tilde{\tau}_1} = 0.3 \text{ GeV}$ (if $\mathcal{m}_{\widetilde{\chi}_1^0}$ known) 200 $m_{ ilde{ au}_2}$ still an open problem ! SPS 1a difficult to disentangle au_2 2060 80 40100 decay products from T_1 3-prong $E_{3\pi}$ [GeV]

Charged slepton production in continuum

→ note! beam polarization enhances different chiral states ! here we assume : $\mathcal{P}_{e^-} = \pm 0.8$ $\mathcal{P}_{e^+} = \pm 0.6$

Production at threshold

shape of x-sections carries information on masses and quantum numbers !

Polarized beams + $\mathcal{L} = 50 \text{ fb}^{-1}$, two parameter fit gives $\delta m_{\tilde{e}_R} = 0.20 \text{ GeV}$ $\delta \Gamma_{\tilde{e}_R} = 0.25 \text{ GeV}$ (highly correlated)

- factor-2 worse for $\tilde{\mu}_R \tilde{\mu}_R$

$$\begin{array}{rcl} & - e_R^- e_R^- \to \tilde{e}_R \tilde{e}_R & \mathcal{L} = 5 \ \mathrm{fb}^{-1} \\ & \delta m_{\tilde{e}_R} = 0.050 \ \mathrm{GeV} & \delta \Gamma_{\tilde{e}_R} = 0.045 \ \mathrm{GeV} \end{array}$$

 $> \text{ combined with } \mathbb{E}_{\ell} \text{ spectrum in continuum } \tilde{e}_R^+ \tilde{e}_R^- \text{ gives } \delta m_{\tilde{\chi}_1^0} = 0.05 \text{ GeV}$ $> \delta m_{\tilde{\mu}_R} < 0.05 \text{ GeV}$

Spin determination

$\sin^2 \theta$ law in slepton angular distribution unique signal of spin-0 character ! (for selectron: close to threshold)

(P-wave excitation : a necessary but not sufficient condition !)

chiral quantum numbers

t-channel production $e_R^- e_R^+ \to \tilde{e}_R^- \tilde{e}_L^+ \quad e_L^- e_L^+ \to \tilde{e}_L^- \tilde{e}_R^+$

for polarized beams lepton charge associated to L,R quantum numbers \rightarrow E_l spectrum distinguishes \tilde{e} chirality

both beams must be polarized to separate s-channel

check SUSY coupling structure

SUSY requires SM gauge couplings $g(Vff) = \overline{g}(V\tilde{f}\tilde{f})$ also equal to Yukawa couplings $\hat{g}(\tilde{V}f\tilde{f})$

couplings extracted from cross section measurements

mixing angles measurement

dominant decay mode $\tilde{\tau}_1 \to \tilde{\chi}_1^0 \tau$ useful to measure a large $\tan\beta$ (difficult in other sectors !)

for large higgsino component in the neutralino au polarisation from $ilde{ au}$ decays

is a sensitive function of stau mixing, neutralino mixing and $\tan \beta$ spectra of $\tau^{\pm} \rightarrow \rho^{\pm} \nu$ and $\rho^{\pm} \rightarrow \pi^{\pm} \pi^{0}$

squarks in general out of reach !

 $\begin{aligned} \sigma(e_R^- e_L^+ &\to \tilde{t}_1 \tilde{t}_1) \\ \sigma(e_L^- e_R^+ &\to \tilde{t}_1 \tilde{t}_1) \\ \mathcal{L} &= 2 \cdot 500 \text{ fb}^{-1} \\ \sqrt{s} &= 500 \text{ GeV} \end{aligned}$

in case the lightest stop is really light, excellent control on masses and mixings

R-parity violation

 \bigcirc in general $R_p = (-1)^{3B+L+2S}$ assumed conserved missing energy signature no strong theoretical justification superpotential admits R-parity violating terms $W_{R_p} = \underbrace{\epsilon_i L_i H_u}_{ijk} \underbrace{\lambda_{ijk} L_i L_j \bar{E}_k}_{ijk} + \underbrace{\lambda'_{ijk} L_i Q_j \bar{D}_k}_{ijk} + \underbrace{\lambda''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k}_{ijk}$ $\delta L \neq 0$ $\delta L \neq 0$ $\delta L \neq 0$ $\delta B \neq 0$ phenomenology changes drastically (LSP decays !): $E_{miss} \rightarrow multi-lepton, multi-jet$ final states (observable!) can provide framework for describing mass and mixing in the SM ν sector (mixing between neutrinos and neutralinos generates v masses)

single sparticle production

$$e^+e^- \rightarrow \tilde{\nu} \rightarrow \ell \bar{\ell}, \ \ell^{\pm} \tilde{\chi}_j^{\mp}$$

(for not too small \mathbb{R}_p)

(enhanced by beam polarization)

interference with Bhabha scattering

 $e^+e^- \rightarrow \tilde{\chi}_1^{\pm}\mu^{\mp}$

Summary from mass precision in SPSa1

	$m \; [{ m GeV}]$	$\Delta m [\text{GeV}]$	Comments
$\tilde{\chi}_1^{\pm}$	176.4	0.55	simulation threshold scan , 100 fb $^{-1}$
$\tilde{\chi}_2^{\pm}$	378.2	3	estimate $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^{\mp}$, spectra $\tilde{\chi}_2^{\pm} \rightarrow Z \tilde{\chi}_1^{\pm}, W \tilde{\chi}_1^0$
$\tilde{\chi}_1^0$	96.1	0.05	combination of all methods
$ ilde{\chi}^0_2$	176.8	1.2	simulation threshold scan $\tilde{\chi}_2^0 \tilde{\chi}_2^0$, 100 fb ⁻¹
$ ilde{\chi}^0_3$	358.8	3 – 5	spectra $\tilde{\chi}_3^0 \to Z \tilde{\chi}_{1,2}^0, \ \tilde{\chi}_2^0 \tilde{\chi}_3^0, \tilde{\chi}_3^0 \tilde{\chi}_4^0, 750 \text{ GeV}, > 1000 \text{ fb}^{-1}$
$ ilde{\chi}_4^0$	377.8	3 – 5	spectra $\tilde{\chi}_4^0 \to W \tilde{\chi}_1^{\pm}$, $\tilde{\chi}_2^0 \tilde{\chi}_4^0, \tilde{\chi}_3^0 \tilde{\chi}_4^0$, 750 GeV, > 1000 fb ⁻¹
\tilde{e}_R	143.0	0.05	e^-e^- threshold scan, 10 fb ⁻¹
\tilde{e}_L	202.1	0.2	e^-e^- threshold scan 20 fb ⁻¹
$\tilde{\nu}_e$	186.0	1.2	simulation energy spectrum, 500 GeV, 500 fb $^{-1}$
$ ilde{\mu}_R$	143.0	0.2	simulation energy spectrum, 400 GeV, 200 fb $^{-1}$
$ ilde{\mu}_L$	202.1	0.5	estimate threshold scan, 100 fb ^{-1} [36]
$ ilde{ au}_1$	133.2	0.3	simulation energy spectra, 400 GeV, 200 fb $^{-1}$
$ ilde{ au}_2$	206.1	1.1	estimate threshold scan, 60 fb $^{-1}$ [36]
$ ilde{t}_1$	379.1	2	estimate <i>b</i> -jet spectrum, $m_{\min}()$, 1TeV, 1000 fb ⁻¹

Conclusions

ILC has a great potential for probing both the main characteristics and the fine-structure of the scalar SUSY partners of SM fermions.