ILC Physics in Florence

Neutralino Dark Matter and τ polarization: a way to distinguish SUSY-GUT from CMSSM

Lorenzo Calibbi Universidad de Valencia

Firenze, 12/09/2007

First part: SUSY-GUTs, SUSY see-saw and Neutralino DM

based on L.C., Y. Mambrini, S. Vempati, arXiv:0704.3518 [hep-ph]

Neutralino DM and τ polarization

Neutralino Dark Matter

Lightest eigenvalue:

$$\tilde{\chi}_1^0 = Z_{11}\tilde{B} + Z_{12}\tilde{W}_3 + Z_{13}\tilde{H}_d^0 + Z_{14}\tilde{H}_u^0$$

R-parity makes the LSP stable \rightarrow candidate for CDM

Relic density (WMAP):

$$0.087 \lesssim \Omega_{DM} h^2 \lesssim 0.138$$

Neutralino DM and τ polarization

CMSSM and three WMAP "corridors"

CMSSM:

$$m_0, M_{1/2}, A_0, \tan \beta \longrightarrow M_{\text{GUT}} \simeq 2 \times 10^{16} \,\text{GeV}$$

Mostly "Bino":

$$\tilde{\chi}_1^0 = Z_{11}\tilde{B} + Z_{12}\tilde{W}_3 + Z_{13}\tilde{H}_d^0 + Z_{14}\tilde{H}_u^0$$

Small annihilation cross-section \rightarrow too large relic density

$$0.087 \lesssim \Omega_{DM} h^2 \lesssim 0.138$$

Peculiar conditions to enhance cross-section are needed!

CMSSM and three WMAP "corridors"

CMSSM:

$$m_0, M_{1/2}, A_0, \tan \beta \longrightarrow M_{\text{GUT}} \simeq 2 \times 10^{16} \,\text{GeV}$$

Mostly "Bino":

$$\tilde{\chi}_1^0 = Z_{11}\tilde{B} + Z_{12}\tilde{W}_3 + Z_{13}\tilde{H}_d^0 + Z_{14}\tilde{H}_u^0$$

• Stau coannihilation:

$$\tilde{\chi}_1^0 + \tilde{\tau}_1 \to \tau + Z_0(\gamma)$$

 \rightarrow close to the "stau LSP" region

 $m_{\tilde{\chi}_1^0} \simeq m_{\tilde{\tau}_1}$

• A-pole funnel:

$$\tilde{\chi}_1^0 + \tilde{\chi}_1^0 \to f + \bar{f}$$

$$2 m_{\tilde{\chi}_1^0} \simeq m_{A^0}$$

• Focus point: for small $\mu \rightarrow$ close to the "no EWSB" region ($\mu^2 < 0$) enhancement of the higgsino components

Neutralino DM and τ polarization

CMSSM and three WMAP "corridors"

CMSSM:

$$m_0, M_{1/2}, A_0, \tan \beta \longrightarrow M_{\text{GUT}} \simeq 2 \times 10^{16} \,\text{GeV}$$

Mostly "Bino": $\tilde{\chi}_1^0 = Z_{11}\tilde{B} + Z_{12}\tilde{W}_3 + Z_{13}\tilde{H}_d^0 + Z_{14}\tilde{H}_u^0$

• Stau coannihilation:

$$\tilde{\chi}_1^0 + \tilde{\tau}_1 \to \tau + Z_0(\gamma)$$

 \rightarrow close to the "stau LSP" region

 $m_{\tilde{\chi}_1^0} \simeq m_{\tilde{\tau}_1}$

• A-pole funnel:

$$\tilde{\chi}_1^0 + \tilde{\chi}_1^0 \to f + \bar{f}$$

$$2 m_{\tilde{\chi}_1^0} \simeq m_{A^0}$$

• Focus point: for small $\mu \rightarrow$ close to the "no EWSB" region ($\mu^2 < 0$) enhancement of the higgsino components

Neutralino DM and τ polarization

$$W_{\rm MSSM} = Y^u \ Q \ u^c \ h_u + Y^d \ Q \ d^c \ h_d + Y^e \ L \ e^c \ h_d + \mu \ h_u \ h_d$$

$$10 = \begin{pmatrix} 0 & u^{c} & -u^{c} & -u & -d \\ -u^{c} & 0 & u^{c} & -u & -d \\ u & -u^{c} & 0 & -u & -d \\ u & u & u & 0 & e^{c} \\ d & d & d & -e^{c} & 0 \end{pmatrix}_{L}^{c} = \begin{pmatrix} d^{c} \\ d^{c} \\ e \\ \nu \end{pmatrix}_{L}^{c}$$

$$W_{SU(5)_{RN}} = Y^{u} \ 10 \ 10 \ 5_{u} + Y^{d} \ 10 \ \overline{5} \ \overline{5}_{d} + Y^{\nu} \ \overline{5} \ 1 \ 5_{u} + M_{R} \ 1 \ 1 + \mu \ 5_{u} \ \overline{5}_{d}$$

Neutralino DM and τ polarization

$$W_{\rm MSSM} = Y^{u} Q u^{c} h_{u} + Y^{d} Q d^{c} h_{d} + Y^{e} L e^{c} h_{d} + \mu h_{u} h_{d}$$

$$10 = \begin{pmatrix} 0 & u^{c} & -u^{c} & -u & -d \\ -u^{c} & 0 & u^{c} & -u & -d \\ u & -u^{c} & 0 & -u & -d \\ u & u & u & 0 & e^{c} \\ d & d & d & -e^{c} & 0 \end{pmatrix}_{L}^{c} = \begin{pmatrix} d^{c} \\ d^{c} \\ e \\ \nu \end{pmatrix}_{L}^{c}$$

$$W_{SU(5)_{RN}} = Y^u \ 10 \ 10 \ 5_u + Y^d \ 10 \ \overline{5} \ \overline{5}_d + Y^\nu \ \overline{5} \ 1 \ 5_u + M_R \ 1 \ 1 + \mu \ 5_u \ \overline{5}_d$$

Neutralino DM and τ polarization

$$W_{\rm MSSM} = Y^{u} Q u^{c} h_{u} + Y^{d} Q d^{c} h_{d} + Y^{e} L e^{c} h_{d} + \mu h_{u} h_{d}$$

$$10 = \begin{pmatrix} 0 & u^{c} & -u^{c} & -u & -d \\ -u^{c} & 0 & u^{c} & -u & -d \\ u & -u^{c} & 0 & -u & -d \\ u & u & u & 0 & e^{c} \\ d & d & d & -e^{c} & 0 \end{pmatrix}_{L}^{c} = \begin{pmatrix} d^{c} \\ d^{c} \\ e \\ \nu \end{pmatrix}_{L}^{c}$$

$$W_{SU(5)_{RN}} = Y^{u} 10 \ 10 \ 5_{u} + Y^{d} \ 10 \ \overline{5} \ \overline{5}_{d} + Y^{\nu} \overline{5} \ 1 \ 5_{u} + M_{R} \ 1 \ 1 + \mu \ 5_{u} \ \overline{5}_{d}$$

Neutralino DM and τ polarization

Neutralino DM and τ polarization

II)

Neutralino DM and τ polarization

Neutralino DM and τ polarization

Neutralino DM and τ polarization

Neutralino DM and τ polarization

DM phenomenology in $\overline{SU(5)_{RN}}$

WMAP allowed points

Neutralino DM and τ polarization

WMAP allowed points

Neutralino DM and τ polarization

Neutralino DM and τ polarization

Neutralino DM and τ polarization

Neutralino DM and τ polarization

Neutralino DM and τ polarization

The other CMSSM "corridors" ?

• A-pole funnel

 $\tan\beta\simeq 45-50$

no more upper bound on the LSP mass

• Focus point

not present up to 5 TeV

$\tan\beta = 50$

Neutralino DM and τ polarization

Second part: τ polarization

Neutralino DM and τ polarization

Tau polarization:

$$\mathcal{P}_{\tau} = \frac{\operatorname{Br}(\tilde{\tau}_i \to \tilde{\chi}_n^0 \tau_R) - \operatorname{Br}(\tilde{\tau}_i \to \tilde{\chi}_n^0 \tau_L)}{\operatorname{Br}(\tilde{\tau}_i \to \tilde{\chi}_n^0 \tau_R) + \operatorname{Br}(\tilde{\tau}_i \to \tilde{\chi}_n^0 \tau_L)}$$

M. Nojiri, PRD 51 (1995) 6281 [hep/ph/9412374]

Tau polarization in stau decays

$$\tilde{\chi}_n^0 = Z_{n1}\tilde{B} + Z_{n2}\tilde{W}_3 + Z_{n3}\tilde{H}_d^0 + Z_{n4}\tilde{H}_u^0$$

$$m_{\tilde{\tau}}^2 = \begin{pmatrix} m_{\text{LL}}^2 & m_{\text{LR}}^2 \\ m_{\text{LR}}^2 & m_{\text{RR}}^2 \end{pmatrix} = \mathcal{R}^T \begin{pmatrix} m_{\tilde{\tau}_1}^2 & 0 \\ 0 & m_{\tilde{\tau}_2}^2 \end{pmatrix} \mathcal{R}; \quad \mathcal{R} = \begin{pmatrix} \cos\theta_\tau & \sin\theta_\tau \\ -\sin\theta_\tau & \cos\theta_\tau \end{pmatrix}$$

$$\tilde{\tau}_1 = \tilde{\tau}_R \sin\theta_\tau + \tilde{\tau}_L \cos\theta_L$$

$$\tilde{\tau}_2 = \tilde{\tau}_R \cos\theta_\tau - \tilde{\tau}_L \sin\theta_L$$

$$m_{\text{LL}}^2 \approx (1 - \rho_L)m_0^2 + c_L M_{1/2}^2$$

$$m_{\text{RR}}^2 \approx (1 - \rho_R)m_0^2 + c_R M_{1/2}^2$$

$$m_{\rm LR}^2 = m_\tau (A_\tau - \mu \tan \beta) \approx -m_\tau \mu \tan \beta$$

The same parameters which are crucial for coannihilation

Neutralino DM and τ polarization

Tau polarization in stau decays

Neutralino DM and τ polarization

Tau polarization in stau decays

Neutralino DM and τ polarization

• τ has hadronic decay modes, such as $\tau \to \pi v_{\tau}$, ρv_{τ} , $a_1 v_{\tau}$. The CM angular distribution of decay meson (π ; v = ρ , a_1) depends on τ polarization:

$$\frac{1}{\Gamma_{\pi}} \frac{d\Gamma_{\pi}}{d\cos\theta} = \frac{1}{2} (1 + P_{\tau}\cos\theta)$$
$$\frac{1}{\Gamma_{v}} \frac{d\Gamma_{vL,T}}{d\cos\theta} = \frac{\frac{1}{2}m_{\tau}^{2}, m_{v}^{2}}{m_{\tau}^{2} + 2m_{v}^{2}} (1 \pm P_{\tau}\cos\theta),$$

Hagiwara, Martin, Zeppenfeld '90 Bullock, Hagiwara, Martin '91 D.P. Roy '92

• ILC can determine τ polarization, using inclusive 1-prong channel.

Useful variable:

$$R = p_{\pi\pm}/p_{\tau-\text{jet}}$$

$$\sqrt{s} = 350 \,\text{GeV}, \ m_{\tilde{\tau}_1} = 150 \,\text{GeV}, \ m_{\tilde{\chi}_1^0} = 100 \,\text{GeV}$$

$$p_{\tau-\text{jet}}^T > 25 \text{ GeV}, \ \cos \theta_{\tau-\text{jet}} < 0.75$$

R. Godbole, M. Guchait, D.P. Roy, PLB **618**, 193, 2005. $\frac{19}{10} = 0.25$ $\frac{0.25}{0.1}$ $\frac{0.15}{0.1}$ $\frac{0.1}{0.05}$ $\frac{0.1}{0.1}$ $\frac{0.1}{0.05}$ $\frac{0.1}{0.1}$ $\frac{0.1$

Neutralino DM and τ polarization

- *t* polarization for the points lying in the stau coannihilation region
- Polarization not able to distinguish the two models
- Only possibility perhaps the upper limit on the neutralino-stau masses

L.C., R. Godbole, Y. Mambrini, S. Vempati in preparation

Neutralino DM and τ polarization

• τ polarization changes sign in CMSSM, while in $SU(5)_{RN}$ is always positive

- This is due to a small enhancement of the polarization in $SU(5)_{RN}$, together with the upper bound on the neutralino mass
- At least, it is possible to exclude $SU(5)_{RN}$ if negative polarization is measured

L.C., R. Godbole, Y. Mambrini, S. Vempati in preparation

• τ polarization changes sign in CMSSM, while in $SU(5)_{RN}$ is always positive

- This is due to a small enhancement of the polarization in $SU(5)_{RN}$, together with the upper bound on the neutralino mass
- At least, it is possible to exclude $SU(5)_{RN}$ if negative polarization is measured

L.C., R. Godbole, Y. Mambrini, S. Vempati in preparation

• A-pole funnel region: we cannot distinguish CMSSM and $SU(5)_{RN}$ using the channels above

• In $SU(5)_{RN}$ a channel forbidden in CMSSM is open: lightest stau decaying in the second neutralino. This is again a consequence of the GUT enhancement of the stau mass

L.C., R. Godbole, Y. Mambrini, S. Vempati in preparation

Neutralino DM and τ polarization

• In CMSSM, some peculiar relations among parameters are needed to have the correct relic density

• GUT running and/or presence of RH neutrinos can destabilize such relations

• In $SU(5)_{RN}$ relic density requirements put severe constraints on the allowed range of tan β (> 35); coannihilations branch shows a peculiar phenomenology and upper bound on the LSP mass in some regions of the parameter space

• The polarization of the τ from the decay of the staus can be measured at the ILC

• In the stau coannihilation region τ polarization can distinguish between CMSSM and $SU(5)_{RN}$. The difference is a pure GUT effect

• In the A-funnel region of $SU(5)_{RN}$, the decay $\tilde{\tau}_1 \to \tilde{\chi}_2^0 \tau$ is possible, while it is kinematically forbidden in CMSSM.

Neutralino DM and τ polarization