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QCD@ILC

• Like LEP before it, ILC will be a wonderful machine for
precision QCD studies

• Precision meaurements of αs

• Event shape distributions, jets.
• Hadronization effects
• Heavy quarks

• Precision QCD is necessary for many new physics studies
(and for precise determinations of mtop, mW)

• Our understanding of QCD is incomplete, new studies and
more data are important

• LEP unfinished jobs −→ GigaZ
• Hadronization beyond modelling
• Universality of power corrections, shape functions
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QCD for new physics: Grand Unification
(from: P. Zerwas)
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Controlling QCD effects for SM/BSM physics

• Multijet final states are commonplace
• Trilinear Higgs coupling via e+e− → HHZ (up to 6 jets)
• Top Yukawa coupling via e+e− → tt̄H
• SUSY final states (t̃˜̄t → jets + missing energy)

• Understanding jet definition and dynamics is necessary
• Jet algorithm, size dependence, hadronization corrections.
• Flavor tagging crucial ↔ Define jet flavor (Banfi et al.)

• Precision observables require refined QCD analysis:
resummations, effective theories

• Mtop from threshold scan (see A. Hoang)
• MW from WW production (see G. Zanderighi)
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(Non)Perturbative QCD after LEP/SLC

• Theoretical progress in QCD has continued after LEP/SLC.
• Achieved: NNLO event shape distributions, jet cross sections
• QCD models: non-perturbative corrections to event shape

distributions, shape functions

• Experimental analysis has almost stopped (LHC beckons ...)

• Existing data not fully exploited
• More precise future data (GigaZ?)
−→ powerful constraints on hadronization models

• Do we need power corrections at ILC?(
αs(500 GeV)

π

)2

' 0.00093 ,
ΛQCD

500 GeV ' 0.0005.

• For permille accuracy: we do.
• Much larger impact in selected regions in phase space
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NNLO event shape distributions

(from: T. Gehrmann et al., arXiv:0709.1608)

The perturbative thrust distribution vs. LEP data The perturbative thrust distribution at ILC
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Resummation and power correction effects

A fit of LEP data for the heavy jet mass distribution with a shape
function from thrust (Gardi, Rathsman).
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Impact of nonperturbative corrections

Different observables behave differently, understanding necessary
(M. Dasgupta, G. Salam).
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On event shape distributions

Examples

• Thrust: T = maxn̂

P
i|~pi·n̂|P
i|~pi| ; τ = 1− T .

→ n̂ is used to define several other shape variables.

• C-parameter: C = 3− 3
2

∑
i,j

(pi·pj)
2

(pi·q) (pj ·q) .

→ does not require maximization procedures.

• Broadening: B`,r =
P

i∈H`,r
|~pi×n̂|

2
P

i |~pi|

→ select or combine hemispheres.

• Angularity: τa = 1
Q

∑
i(p⊥)ie−|ηi|(1−a) .

→ recently introduced, one-parameter family.



QCD@ILC Angularities Hadronization for jets Perspective

Angularities

• Definition: τa = 1
Q

∑
i (p⊥)i e−|ηi|(1−a) .

Also: τa = 1
Q

∑
i ωi (sin θi)

a (1− | cos θi|)1−a ,

• Some properties
• τ0 = 1− T ; τ1 = B .
• a < 2 for IR safety.
• a < 1 for simplicity of resummation (recoil negligible).

• For negative a, high rapidity particles (w.r.t. the thrust axis)
are weighted less: better collinear behavior.

• At one loop, with the thrust axis given by particle i,

τa = (1−xi)
1−a/2

xi

[
(1− xj)1−a/2(1− xk)a/2 + (j ↔ k)

]
.
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Resumming Sudakov logarithms

Infrared and collinear emission dominates the two-jet limit

• Large double logarithms of the variable vanishing in the
two-jet limit (L = log τ ;L = log C ; . . .) enhance finite orders
→ need to resum.

• A pattern of exponentiation emerges∑
k αk

s

∑2k
p ckpL

p → exp
[
Lg1(αsL)+ g2(αsL)+αsg3(αsL)+ . . .

]
• In general the Laplace transform exponentiates. For thrust∫ ∞

0

d τ e−ντ 1
σ

dσ

dτ
= exp

[∫ 1

0

du

u

(
e−uν − 1

)(
B
(
αs

(
uQ2

))
+ 2

∫ uQ2

u2Q2

dq2

q2
A
(
αs(q2)

))]
.
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Resummation for angularities

• Sudakov logs at one loop have simple scaling with a.

dσ
dτa

∣∣∣(1)
log

= 2
2−a

2
τa

CF
αs

π ln
(

1
τa

)
= 2

2−a
dσ
dτ

∣∣(1)
log

.

• Resummation is intricate. To NLL accuracy

σ̃a (ν) = exp

{
2

1∫
0

du

u

[ uQ2∫
u2Q2

dq2

q2
A
(
αs(q2)

) (
e−u1−aν(q/Q)a

− 1
)

+
1
2
B
(
αs(u Q2)

) (
e−u ν2/(2−a)

− 1
)]}

.

• General a-dependence of Sudakov logs is nontrivial.

g1(x, a) = − 4
β0

2− a

1− a

A(1)

x

[
1− x

2− a
ln (1− x)

−
(

1− x

2− a

)
ln
(

1− x

2− a

)]
.
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Scaling for the shape function

An analysis of power corrections for angularities using the shape
function approach (Berger, Sterman) shows a remarkable scaling.

• As done for thrust, focus on small τa, large ν, set IR
factorization scale µ, expand in powers of ν/Q (soft),
neglecting ν/Q2 (collinear). In this case

S
(a)
NP(ν/Q, µ) = 2

∫ µ2

0

dq2

q2
A
(
αs(q2)

) ∫ q/Q

q2/Q2

du

u

(
e−u1−aν(q/Q)a

− 1
)

' 1
1− a

∞∑
n=1

1
n!

(
− ν

Q

)n

λn(µ2) ,

• The full result suggested by the resummation can be
expressed in terms of two shape functions

σ̃a (ν) = σ̃a,PT (ν, µ) f̃a,NP

(
ν
Q , µ

)
g̃a,NP

(
ν

Q2−a , µ
)

,
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• Leading power corrections are described by f̃a,NP and obey

f̃a,NP

(
ν
Q , µ

)
=
[
f̃0,NP

(
ν
Q , µ

)]1/(1−a)

.

• Scaling can be traced to boost invariance in the eikonal limit.
A renormalon calculation breaks boost invariance but scaling
survives in the Sudakov limit. DGE (Berger, LM) yields

Bsoft
a (ν, u) = 1

1−a

[
2 e5u/3 sin πu

πu Γ(−2u)
(
ν2u − 1

)
2
u

]
• Collinear contribution shows an intricate structure of

fractional power corrections in DGE, but they are suppressed
by ν/Q2−a, consistent with resummation.

• Scaling is a testable prediction with existing
LEP data. ILC, GigaZ provide lever arm, precision.
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Testing the scaling rule

The scaling rule is a prediction waiting for data analysis ... in the
meantime, it can be compared with PYTHIA output (Berger).
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Hadronization for jets, in hadron collisions
M. Cacciari, M. Dasgupta, LM, G. Salam

• Consider the single inclusive distribution for a jet observable
O(y, pT , R), with an effective jet radius R =

√
(∆y)2 + (∆φ)2.

• Measure the effect on the distribution of single soft gluon
emission by each hard dipole at power accuracy.

• Define R-dependent power correction

∆O±ij(R) ≡
Z
±

dη
dφ

2π

Z µf

µc

dκ
(ij)
T

αs

“
κ
(ij)
T

”
kT

˛̨̨̨
˛̨ ∂kT

∂κ
(ij)
T

˛̨̨̨
˛̨ pi · pj

pi · k pj · k
δO
±

(kT , η, φ) .

• Express leading power R dependence in terms of (universal?)
moment of coupling A

A
`
µf
´

=

Z µf

0

dk⊥

k⊥
αs(k⊥) · k⊥

• Note: only the final state dipole would contribute in e+e−

annihilation
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Radius dependence: pT distribution

Let O = ξT ≡ 1− 2pT /
√

S. In this case

• In-In dipole

∆ξT,12(R) = −4√
S

Z
+

dη
dφ

2π
αs(kt)

dkt

kt
kt cos φ = −

4
√

S
A(µf )

 
R2

2
−

R4

16
+

R6

384
+ . . .

!
.

• In-Jet dipoles

∆ξT,1j(R) = −

s
2

S

Z
η2+φ2<R2

dη
dφ

2π
αs(κt)

dκt

κt
κt

cos φ e
3η
2

(cosh η − cos φ)
3
2

=
2
√

S
A(µf )

„
2

R
−

5

8
R +

23

1536
R

3
+ . . .

«

• Jet-Recoil dipole

∆ξT,jr(R) = 2√
S
A(µf )

“
2
R

+ 1
2 R + 1

96 R3 + . . .
”

• In-Recoil dipoles

∆ξT,1r(R) = − 2√
S
A(µf )

“
1
8 R2 − 9

512 R4 − 73
24576 R6 + . . .

”
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Radius dependence: mass distribution

For comparison, let O = νJ ≡ M2
J/S. Now only gluons recombined

with the jet contribute, and one finds nonsingular R dependence.

• In-In dipole

∆νJ,12(R) = 1√
S
A(µf )

“
1
4 R4 + 1

4608 R8 +O
“

R12
””

,

• In-Jet dipoles

∆νJ,1j(R) = 1√
S
A(µf )

“
R + 3

16 R3 + 125
9216 R5 + 7

16384 R7 +O
“

R9
””

,

• Jet-Recoil dipole

∆νJ,jr(R) = 1√
S
A(µf )

“
R + 5

576 R5 +O
“

R9
””

,

• In-Recoil dipoles

∆νJ,1r(R) = 1√
S
A(µf )

“
1
32 R4 + 3

256 R6 + 169
589824 R8 +O

“
R10

””
.
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Power corrections by MonteCarlo

The analytical estimate of power corrections provided by
resummation is valid near threshold. It can be compared with
numerical estimates from QCD-inspired MonteCarlo models of
hadronization.

• Run MC at parton level (p), hadron level without UE (h)
and finally with UE (u)

• Select events with hardest jet in chosen pT range, identify two
hardest jets, define for each hadron level

∆p
(h/u)
T = 1

2

(
p
(h/u)
T,1 + p

(h/u)
T,2 − p

(p)
T,1 − p

(p)
T,2

)
.

∆p
(u−h)
T = ∆p

(u)
T −∆p

(h)
T .

• Compare results for different jet algorithms,
hadronization models, parton channels.
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MC power corrections: comparing jet algorithms
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MC power corrections: quark channel
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MC power corrections: gluon channel
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Perspective

• ILC is very useful for QCD (even more so in GigaZ mode)

• QCD is a necessary tool for ILC

• Hadronization matters even at large
√

s

• LEP left unfinished work: analytic hadronization models
make testable predictions.

• Scaling rule for shape function for angularities
• Singular R-dependence of hadronization corrections for jets

• We should be ready to take full advantage of a wonderful
precision machine for both SM and BSM physics.
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