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Bhabha Scattering and Luminosity-I
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I Effective tool for the Luminosity measurement @ e+e− colliders

σexp ≡ N

L
L =

N

σbh-th
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Bhabha Scattering and Luminosity-II

I In the region employed for L measurements the Bhabha scattering
cross section is large and QED dominated

I SABH is employed at LEP and ILC, while LABH is employed at
colliders operating at

√
s = 1 − 10GeV

I Due to beam-beam interactions, at ILC the colliding energy
√

s shows
a continuous spectrum: the LABH can also be used to determine the
luminosity spectrum

Andrea Ferroglia (Zürich U.) Bhabha Scattering at NNLO GGI Sep.’07 4 / 37



Bhabha Scattering and Luminosity-II

I In the region employed for L measurements the Bhabha scattering
cross section is large and QED dominated

I SABH is employed at LEP and ILC, while LABH is employed at
colliders operating at

√
s = 1 − 10GeV

I Due to beam-beam interactions, at ILC the colliding energy
√

s shows
a continuous spectrum: the LABH can also be used to determine the
luminosity spectrum

The accuracy of the theoretical evaluation of the Bhabha scattering cross
section directly affects the luminosity determination
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Bhabha Scattering and Luminosity-II

I In the region employed for L measurements the Bhabha scattering
cross section is large and QED dominated

I SABH is employed at LEP and ILC, while LABH is employed at
colliders operating at

√
s = 1 − 10GeV

I Due to beam-beam interactions, at ILC the colliding energy
√

s shows
a continuous spectrum: the LABH can also be used to determine the
luminosity spectrum

The accuracy of the theoretical evaluation of the Bhabha scattering cross
section directly affects the luminosity determination

=⇒ calculation of radiative corrections
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Warning

M = −

I In this talk we consider the QED process only

I We consider differential cross-sections summed over the spins of the final
state particles and averaged over the spin of the initial ones

dσ0(s, t)

dΩ
=

α2

s
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s2
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st +
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2
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]
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1

st
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Virtual Corrections to the Cross Section -I

dσ(s, t)

dΩ
=

dσ0(s, t)

dΩ
+
(α

π

) dσ1(s, t)

dΩ
+
(α

π

)2 dσ2(s, t)

dΩ
+ O

(

(α/π)3
)

The O(α3) virtual corrections (one-loop × tree-level) are well known (in the full
SM), no problem in keeping me 6= 0

M. Consoli (1979),

M. Böhm, A. Denner, and W. Hollik (1988),

M. Greco (1988),...

(α

π

) dσV
1 (s, t)

dΩ
=

s

16

∑

spin

{(

−
)∗

× + c.c. + · · ·
}
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Virtual Corrections to the Cross Section -II

Order α4 corrections:

I Contributions from two-loop × tree-level and one-loop × one-loop

I Can be divided in three sets,
i) with a closed electron loop,
ii) closed heavy(er) flavor loop, and
iii) photonic (without fermion loops)

(α

π

)2 dσV
2 (s, t)

dΩ
=

s

16

∑

spin

{(

−
)∗

× + c.c.

+

(

−
)∗

× + c.c. + · · ·
}
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2-Loop QED diagrams

(suppressing fermionic arrows)

Fermion loop corrections, Photonic corrections

Boxes: known exactly for me 6= 0, known only in the for me = 0
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Status

If one sets me = 0 from the start, all the integrals are known, and the
calculation of the NNLO corrections to the cross-section can be done

Z. Bern et al. (’00)
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Status

If one sets me = 0 from the start, all the integrals are known, and the
calculation of the NNLO corrections to the cross-section can be done
When keeping me 6= 0 it is possible to calculate the corrections
involving a closed electron loop (α4(Nf = 1))

R. Bonciani et al. (’04-’05)
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Status

If one sets me = 0 from the start, all the integrals are known, and the
calculation of the NNLO corrections to the cross-section can be done
When keeping me 6= 0 it is possible to calculate the corrections
involving a closed electron loop (α4(Nf = 1))
By starting from the me = 0 calculation, it is possible to calculate the
α4 photonic corrections up to terms of order m2

e/s

A. Penin (’05)
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Status

If one sets me = 0 from the start, all the integrals are known, and the
calculation of the NNLO corrections to the cross-section can be done
When keeping me 6= 0 it is possible to calculate the corrections
involving a closed electron loop (α4(Nf = 1))
By starting from the me = 0 calculation, it is possible to calculate the
α4 photonic corrections up to terms of order m2

e/s
By employing the MB technique to expand the MIs, it was possible to
calculate the NNLO corrections involving a closed fermion loop in the
limit s, t, u � m2

f � m2
e .

S. Actis et al. (’07)
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Status

If one sets me = 0 from the start, all the integrals are known, and the
calculation of the NNLO corrections to the cross-section can be done
When keeping me 6= 0 it is possible to calculate the corrections
involving a closed electron loop (α4(Nf = 1))
By starting from the me = 0 calculation, it is possible to calculate the
α4 photonic corrections up to terms of order m2

e/s
By employing the MB technique to expand the MIs, it was possible to
calculate the NNLO corrections involving a closed fermion loop in the
limit s, t, u � m2

f � m2
e .

Actually, starting from the massless cross section, it is possible to
reconstruct both photonic and fermion loop corrections in the limit
s, t, u � m2

f � m2
e .

T. Becher and K. Melnikov (’07)
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Status

If one sets me = 0 from the start, all the integrals are known, and the
calculation of the NNLO corrections to the cross-section can be done

When keeping me 6= 0 it is possible to calculate the corrections
involving a closed electron loop (α4(Nf = 1))

By starting from the me = 0 calculation, it is possible to calculate the
α4 photonic corrections up to terms of order m2

e/s

By employing the MB technique to expand the MIs, it was possible to
calculate the NNLO corrections involving a closed fermion loop in the
limit s, t, u � m2

f � m2
e .

Actually, starting from the massless cross section, it is possible to
reconstruct both photonic and fermion loop corrections in the limit
s, t, u � m2

f � m2
e .

By exploiting the collinear structure of the virtual corrections
involving an “heavy flavor” fermion, it is possible to calculate the
exact dependence of the cross section on mf .

R. Bonciani, A. F., and A. Penin (hopefully soon)
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α4 Corrections With a Closed Electron Loop

All the two-loop graphs including a closed electron loop can be calculated
also keeping me 6= 0 and without relying on any approximation or
expansion

I The relevant integrals can be reduced to combination of a relatively
small set of Master Integrals employing the Laporta algorithm

I The MIs (including the ones for the box) can be evaluated employing
the differential equation method

R. Bonciani et al.(’03-’04)
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O(α4(NF = 1)) Corrections - Virtual Diagrams

⊗ Born
Amplitude

⊗ Born
Amplitude

⊗ Born
Amplitude

⊗ Born
Amplitude

⊗ ⊗
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O(α4(NF = 1)) Virtual Corrections

In the O(α4(NF = 1)) corrections to the CS

I both UV and IR divergences are regularized within the DIM REG
scheme

I the UV renormalization is carried out in the on-shell scheme

I the graphs are at first calculated in the non physical region s < 0 and
then analytically continued to the physical region s > 4m2

e

I the cross section can be expressed in terms of HPLs and 2dHPLs with
arguments

x =

√
s −

√

s − 4m2
e√

s +
√

s − 4m2
e

y =

√

4m2
e − t −

√
−t

√
−t +

√

4m2
e − t

z =

√

4m2
e − u −

√
−u

√
−u +

√

4m2
e − u

(1 − z)2

z
=

1

x
(x − y) (x − 1/y)
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O(α4(NF = 1)) Corrections - Soft Photon-I

After UV renormalization, the virtual CS still includes poles in D − 4, of IR
origin, that can be eliminated by adding the contribution of the soft
photon emission diagrams
In order to cancel the IR divergent terms in the virtual cross section at
O(α3) and O(α4(NF = 1)) it is sufficient to consider the contribution of
the single photon emission graphs

e−(p1) + e+(p2) −→ e−(p3) + e+(p4) + γ(k) k0 < ω
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O(α4(NF = 1)) Corrections - Soft Photon-II

The soft emission cross section at O(α4(NF = 1)) is

dσS
2 (s, t,m2)

dΩ
=

dσD
1 (s, t,m2)

dΩ

4
∑

i ,j=1

Jij

where σD
1 is the interference of the tree level soft emission with

Remember: σD
1 is finite (after UV renormalization)
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O(α4(NF = 1)) Corrections - Soft Photon-III

It is possible to understand how the cancellation of the IR poles works
from a diagrammatic point of view:

⊗ + J12 ⊗ = IR fin

⊗ + J12 ⊗ = IR fin

⊗ + (J13 + J11) ⊗ = IR fin
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O(α4) Photonic Corrections

With the same techniques employed in obtaining the O(α4(NF = 1))
non-approximated differential CS, it is possible to calculate the photonic
virtual corrections (and related soft photon emission) to the CS at order
O(α4), except for the ones arising from the the two loop photonic boxes

R. Bonciani, A. F. (’05)

⊗ Born
Amplitude

⊗ Born
Amplitude

⊗ ⊗ ⊗
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α4 Photonic Corrections-II

I The two-loop irreducible photonic vertex corrections are gauge
independent

R. Bonciani et al. (’03)

I In order to cancel the IR poles it is necessary to add also the
contribution of the double photon (soft) emission

dσ
(S)
2 (s, t, m2)

dΩ
=

1

2

dσD
0 (s, t, m2)

dΩ

 

4
X

i,j=1

Jij

!2

+
dσ

(V ,D)
1 (s, t, m2)

dΩ

 

4
X

i,j=1

Jij

!

I The one- and two-loop Dirac form factors in the t-channel are
sufficient to determine completely the small angle cross section

dσ2

dσ0
= 6(F1

(1l)(t))2 + 4F1
(2l)(t)
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α4 Photonic Corrections-m2
e/s Expansion

I Building on the BDG result and on works by A. B. Arbuzov et al., B. Tausk,
N. Glover, and J. J. van der Bij (’01) obtained the terms proportional to
L = ln m2

e/s of the full (virtual + soft) photonic CS (i. e. graphs including a
closed electron loop have been neglected)

I Recently A. Penin obtained also the constant terms of the photonic CS in
the m2

e/s expansion

Therefore, in the expansion

dσ2

dσ0
= δ

(2)
2 ln2

(

s

m2
e

)

+ δ
(1)
2 ln

(

s

m2
e

)

+ δ
(0)
2 + O

(

m2
e

s

)

δ
(2)
2 , δ

(1)
2 , and δ

(0)
2 are known

I Several partial cross-checks of this results were possible by comparing it with
the m2

e/s → 0 limit of the exact result for the photonic vertex and one-loop
by one-loop corrections
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Penin’s technique (in a Nutshell)

I Consider the amplitude of the two loop virtual corrections to the
cross-section in which collinear and IR divergencies are regularized by
me and λ: A(2)(me , λ)

I Build an auxiliary amplitude A(2)
(me , λ) with the same IR

singularities of the A(2)(me , λ) but sufficiently simple to be evaluated
in the small mass expansion

I The quantity δA(2) = A(2) −A(2)
has a finite limit when me and λ

tend to zero

I δA(2) is regularization scheme independent and it can be
reconstructed from the known results for the virtual corrections
calculated by setting me = λ = 0 from the start
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cross-section in which collinear and IR divergencies are regularized by
me and λ: A(2)(me , λ)

I Build an auxiliary amplitude A(2)
(me , λ) with the same IR

singularities of the A(2)(me , λ) but sufficiently simple to be evaluated
in the small mass expansion

I The quantity δA(2) = A(2) −A(2)
has a finite limit when me and λ

tend to zero

I δA(2) is regularization scheme independent and it can be
reconstructed from the known results for the virtual corrections
calculated by setting me = λ = 0 from the start

Finally A(2) = A(2)
(me , λ) + δA(2) + O(me , λ)
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Penin’s technique (in a Nutshell)

I Consider the amplitude of the two loop virtual corrections to the
cross-section in which collinear and IR divergencies are regularized by
me and λ: A(2)(me , λ)

I Build an auxiliary amplitude A(2)
(me , λ) with the same IR

singularities of the A(2)(me , λ) but sufficiently simple to be evaluated
in the small mass expansion

I The quantity δA(2) = A(2) −A(2)
has a finite limit when me and λ

tend to zero

I δA(2) is regularization scheme independent and it can be
reconstructed from the known results for the virtual corrections
calculated by setting me = λ = 0 from the start

Finally A(2) = A(2)
(me , λ) + δA(2) + O(me , λ)

=⇒The method cannot be applied to the α4(NF = 1) corrections
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Mass from Massless-I

As can be seen from Penin’s result, when neglecting positive powers of the
electron mass, the problem is to change the regularization scheme for the
collinear singularities:

Is it possible to calculate graphs employing DIM REG to regulate both IR
and collinear singularities and then translate a posteriori the collinear poles
into collinear logs?

Andrea Ferroglia (Zürich U.) Bhabha Scattering at NNLO GGI Sep.’07 20 / 37



Mass from Massless-I

As can be seen from Penin’s result, when neglecting positive powers of the
electron mass, the problem is to change the regularization scheme for the
collinear singularities:

Is it possible to calculate graphs employing DIM REG to regulate both IR
and collinear singularities and then translate a posteriori the collinear poles
into collinear logs?

For a generic QED/QCD process, with no closed fermion loops

M(m 6=0) =
∏

i∈{all legs}

Zi

1
2 (m, ε)M(m=0)

where Z is defined through the Dirac form factor

F (m 6=0)(Q2) = Z (m, ε)F (m=0)(Q2) + O(m2/Q2)

A. Mitov and S. Moch (’06)
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Mass from Massless-II

in QED, using SCET, it was possible to find a factorization formula that
relates massive and massless amplitudes also in presence of fermion loops,
as long as s, |t|, |u| � m2

f � m2
e

F (m 6=0)(Q2) = Z (m, ε) S(Q2,m, ε) F (m=0)(Q2) + O(m2/Q2)

T. Becher and K. Melnikov (’07)

S(Q2, m, ε) = 1 + a2
0m

−4ε ln

(

Q2

m2

)(

− 1

12
+

5

36ε
− 7

27
− π2

72
+ O(ε)

)

Z (m, ε) = 1 + a0m
−2ε
e

[

1

2ε2
+

1

4ε
+

π2

24
+ 1 + ε

(

2 +
π2

48
− ζ(3)

6

)

+ε2

(

4 − ζ(3)

12
+

π4

320
+

π2

12

)

+ O(ε3)

]

+ O(a2
0)

Andrea Ferroglia (Zürich U.) Bhabha Scattering at NNLO GGI Sep.’07 21 / 37



Mass from Massless-III

with this technique Becher and Melnikov could calculate all the NNLO
corrections in the limit s, |t|, |u| � m2

f � m2
e

dσ

dΩ
=

α2

s

(

1 − r + r2

r

)[

1 +
α

π
δ1 +

(α

π

)2
δ2

]

(r = 1/2(1− cos θ))

δ2 = δ
photonic
2 + δ

electron loop
2 + δ

heavy flavor loop
2

photonic corrections in agreement with A. Penin (’05)

electron loop corrections in agreement with R. Bonciani et al

(’04)

“heavy flavor” loop corrections in agreement with S. Actis et al

(’07)

Andrea Ferroglia (Zürich U.) Bhabha Scattering at NNLO GGI Sep.’07 22 / 37



Mass from Massless-III

with this technique Becher and Melnikov could calculate all the NNLO
corrections in the limit s, |t|, |u| � m2

f � m2
e

dσ

dΩ
=

α2

s

(

1 − r + r2

r

)[

1 +
α

π
δ1 +

(α

π

)2
δ2

]

(r = 1/2(1− cos θ))

δ2 = δ
photonic
2 + δ

electron loop
2 + δ

heavy flavor loop
2

photonic corrections in agreement with A. Penin (’05)

electron loop corrections in agreement with R. Bonciani et al

(’04)

“heavy flavor” loop corrections in agreement with S. Actis et al

(’07)
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Beyond s � m
2
f

In any realistic case the approximation s, |t|, |u| � m2
e is more than enough

However, in the case of corrections with a closed heavy fermion loop, it is
not always true that s, |t|, |u| � m2

f
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In any realistic case the approximation s, |t|, |u| � m2
e is more than enough

However, in the case of corrections with a closed heavy fermion loop, it is
not always true that s, |t|, |u| � m2

f

for example

I τ loop at KLOE, where
√

s = 1GeV < mτ

I top quark loop at ILC, where
√

s ≈ 500GeV and m2
t /t,m

2
t /u < 1 just

in the angular region 40o < θ < 140o
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Beyond s � m
2
f

In any realistic case the approximation s, |t|, |u| � m2
e is more than enough

However, in the case of corrections with a closed heavy fermion loop, it is
not always true that s, |t|, |u| � m2

f

for example

I τ loop at KLOE, where
√

s = 1GeV < mτ

I top quark loop at ILC, where
√

s ≈ 500GeV and m2
t /t,m

2
t /u < 1 just

in the angular region 40o < θ < 140o

It would be nice to calculate the NNLO corrections including an heavy
fermion loop retaining the exact dependence on mf

s, |t|, |u|,m2
f � m2

e

this is a non trivial problem involving four-scale two-loop boxes . . .

=⇒
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Cancellation of the Collinear Poles

What is the collinear structure of these corrections?

δ2 = δC
2 (s, t,m2

f ) ln

(

s

m2
e

)

+ δR
2 (s, t,m2

f ) + O
(

m2
e

s

)

there is just a single collinear logarithm
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Cancellation of the Collinear Poles

What is the collinear structure of these corrections?

δ2 = δC
2 (s, t,m2

f ) ln

(

s

m2
e

)

+ δR
2 (s, t,m2

f ) + O
(

m2
e

s

)

there is just a single collinear logarithm

It is possible to show that the collinear logarithm arises from trivial
reducible graphs only
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The Calculation of the Boxes

The sum of the one-particle irreducible diagrams has a regular behavior in
the small electron mass me
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This means that we can set me = 0 from the beginning, getting rid of one
scale

Andrea Ferroglia (Zürich U.) Bhabha Scattering at NNLO GGI Sep.’07 25 / 37



The Calculation of the Boxes

The sum of the one-particle irreducible diagrams has a regular behavior in
the small electron mass me

This means that we can set me = 0 from the beginning, getting rid of one
scale

+ = Free of collinear poles

u = −s − t

Andrea Ferroglia (Zürich U.) Bhabha Scattering at NNLO GGI Sep.’07 25 / 37



The Calculation of the Boxes

The sum of the one-particle irreducible diagrams has a regular behavior in
the small electron mass me

This means that we can set me = 0 from the beginning, getting rid of one
scale

+ = Free of collinear poles

u = −s − t

After UV renormalization, the only remaining poles are the IR (soft) ones
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Technical Details

R. Bonciani, A. F., and A. Penin (soon)

I It was possible to calculate the boxes for me = 0 and obtain the cross
section for generic s, |t|, |u|,m2

f � m2
e

I We employed IBPs and Differential Eq. Method

I The result can be expressed in terms of HPL and a few GHPLs of a
new class. The latter can be expressed in closed form in terms of
polylogs

I by expanding the exact result it was possible to recover the result of
Actis al and Becher Melnikov

I With the exact dependence of the cross section on mf we can get
numbers for the τ loop at intermediate energies and top loop at ILC
energies

Andrea Ferroglia (Zürich U.) Bhabha Scattering at NNLO GGI Sep.’07 26 / 37



Results - Expansion
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Summary & Conclusions

I A precise knowledge of the Bhabha scattering cross section (both at
small and large angle) is crucial in order to determine the luminosity
at ILC

I In the last few years the NNLO QED corrections for me 6= 0 were
extensively studied

I The calculation of NNLO QED radiative corrections required the use
of a number of powerful tools for the calculation of multi-loop
diagrams: IBPs & Laporta-Remiddi Algorithm, Differential Equation
Method, Mellin-Barnes techniques, study of the factorization
properties, etc.

I The calculation of the virtual + soft NNLO QED corrections is
basically complete (but some work still needs to be done, ex. soft pair
production)
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at ILC

I In the last few years the NNLO QED corrections for me 6= 0 were
extensively studied

I The calculation of NNLO QED radiative corrections required the use
of a number of powerful tools for the calculation of multi-loop
diagrams: IBPs & Laporta-Remiddi Algorithm, Differential Equation
Method, Mellin-Barnes techniques, study of the factorization
properties, etc.

I The calculation of the virtual + soft NNLO QED corrections is
basically complete (but some work still needs to be done, ex. soft pair
production)

The result obtained need to be critically compared/interfaced with the
existing Monte Carlo generators (talk by C. Carloni Calame)
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Auxiliary Slides
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The Laporta-Remiddi Algorithm

Consider the virtual corrections to a given physical quantity

I Using projector techniques or summing over spins get rid of the
Dirac/Lorentz structure of the Feynman diagrams numerators

→ v(p2)

[

F1(Q
2)γµ +

1

2m
F2(Q

2)σµνQν

]

u(p1)

I The “form factors” we want to calculate are linear combinations of a
(huge) number of scalar integrals

I The scalar integrals are related via Integration By Parts (and other)
identities

I Building the IBPs for growing powers of the propagators and scalar
products the number of equations grows faster that the number of
unknown: one finds a system of equations which is apparently
over-constrained

I Solving the system of IBPs (in a problem with a small number of
scales) one finds that only a few of the scalar integrals above (if any)
are independent: the MIs.
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∫

D
Dk1DDk2

S
n1
1 · · · Snq

q

Dm1
1 · · · Dmt

t

S → scalar products ki · pj

D → propagators
(
∑

k +
∑

p)2 + M2
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∫

D
Dk1DDk2

∂

∂k
µ
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[

vµ Sn1
1 · · · Snq

q
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t

]
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The Differential Equation Method

For each Master Integral belonging to a given topology F
(t)
i

I One can take the derivative of a given integrals with respect to the
external momenta pi

p
µ
j

∂

∂p
µ
i

F
(t)
i =

∫

D
Dk1DDk2 p

µ
j

∂

∂p
µ
i

Sn1
1 · · · Snq

q

Dm1
1 · · · Dmt

t

I The integral are regularized, therefore we can apply the derivative to
the integrand in the r. h. s. and use the IBPs to rewrite it as a linear
combination of the MIs

I On the left hand side one can rewrite the derivatives with respect to
the external momenta as functions of the derivatives with respect to
the Mandelstam invariants of the problem

I One can solve the system to get differential equation(s)

I Fix somehow the initial condition(s) (ex. knowing the behavior of the
integral at s = 0) and solve the DE(s)
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µ
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∂
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k
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µ
j

∑

ξ

∂sξ
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µ
k

∂
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Harmonic Polylogarithms (HPL)

E. Remiddi, J. Vermaseren (1999); E. Remiddi, T. Gehrmann (2001)

Functions of the variable x and a set of indices ~a with weight w ;
each index can assume values 1, 0,−1

H(a; x)

Definitions: w = 1

H(1; x) =

∫ x

0

dt

1 − t
= − ln (1 − x)

H(0; x) = ln x

H(−1; x) =

∫ x

0

dt

1 + t
= ln (1 + x)

d

dx
H(a; x) = f (a; x) f (1; x) =

1

1 − x
f (0; x) =

1

x
f (−1; x) =

1

1 + x
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HPLs: Definitions

Definitions: w > 1

if ~a = 0, 0, . . . , 0 (w times) H(~0w ; x) =
1

w !
lnw x

else H(i ,~a; x) =

∫ x

0

dtf (i ; t)H(~a; t)

consequences:
d

dx
H(i ,~a; x) = f (i ; x)H(~a; t) H(~a /∈ ~0; 0) = 0

a few examples @ w = 2

H(0, 1; x) =

∫ x

0

dtf (0; t)H(1; t) = −
∫ x

0

dt
1

t
ln (1 − t) = Li2(x)

H(1, 0; x) =

∫ x

0

dtf (1; t)H(0; t) =

∫ x

0

dt
1

1− t
ln t

= − ln x ln (1 − x) + Li2(x)
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HPLs as a Generalization of the Nielsen’s
PolyLogs

The HPLs include the Nielsen’s PolyLogs

Sn,p(x) =
(−1)n+p−1

(n + p)!p!

Z 1

0

dt

t
lnn−1

t lnp(1 − xt) Lin(x) = Sn−1,1(x)

Lin(x) = H(~0n−1, 1; x)

Sn,p(x) = H(~0n,~1p ; x)

but the HPLs are a larger set of functions: from w = 4 one finds things as

H(−1, 0, 0, 1; x) =

∫ x

0

dt

1 + t
Li3(x) /∈

∑

Nielsen’s PolyLogs
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The HPLs Algebra

Shuffle Algebra:

H(~p; x)H(~q; x) =
∑

~r=~p]~q

H(~r ; x)

some examples

H(a; x)H(b; x) = H(a, b; x) + H(b, a; x)

H(a; x)H(b, c ; x) = H(a, b, c; x) + H(b, a, c ; x) + H(b, c , a; x)

Product Ids:

H(m1, . . . , mq; x) = H(m1; x)H(m2, . . . , mq ; x)

− H(m2, m1; x)H(m3, . . . , mq; x)

+ · · · + (−1)q+1H(mq , . . . , m1; x)
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2-dimensional Harmonic Polylogarithms
(2dHPL)

E. Remiddi, T. Gehrmann (2000)

As for the HPLs, they are obtained by repeated integration over a new set of
factors depending on a second variable.

f (−y ; x) =
1

x + y
f (−1/y ; x) =

1

x + 1/y

G (i ,~a; x) =

∫ x

0

dtf (i ; t)G (~a; t)

a few examples:

G (−y ; x) =

Z x

0

dz

z + y
= ln

„

1 +
x

y

«

G (−1/y ; x) =

Z x

0

dz

z + 1/y
= ln (1 + xy)

G (−y , 0; x) = ln x ln

„

1 +
x

y

«

+ Li2

„

−

x

y

«
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2-dimensional Harmonic Polylogarithms
(2dHPL)-II

The 2dHPLs share the properties of the HPLs

Up to w = 3 (our case) the 2dHPLs can be expressed in terms of ln,Li2,Li3,S1,2

The analytic properties of both HPLs & 2dHPLs are know
Codes for their numerical evaluation are available

E. Remiddi, T. Gehrmann (2001-2002)
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