BHABHA SCATTERING AT NNLO

Andrea Ferroglia

Universität Zürich

GGI - Firenze, 13 September '07

Andrea Ferroglia (Zürich U.)

Bhabha Scattering at NNLO

GGI Sep.'07 1 / 37

- INTRODUCTION: BHABHA SCATTERING AND LUMINOSITY
- 2 RADIATIVE CORRECTIONS TO BHABHA SCATTERING
- **3** NNLO CLOSED ELECTRON LOOP CORRECTIONS
- **4** NNLO PHOTONIC CORRECTIONS
- **(5)** NNLO CLOSED HEAVY FLAVOR LOOP CORRECTIONS

6 CONCLUSIONS

ANDREA FERROGLIA (ZÜRICH U.)

BHABHA SCATTERING AND LUMINOSITY-I

$$s \equiv -P^2 = -(p_1 + p_2)^2 = 4E^2 > 4m^2$$
 $t \equiv -Q^2 = -(p_1 - p_3)^2 = -4(E^2 - m^2)\sin^2\frac{\theta}{2} < 0$

• Effective tool for the Luminosity measurement @ e^+e^- colliders

$$\sigma_{\text{exp}} \equiv \frac{N}{L} \qquad L = \frac{N}{\sigma_{\text{bh-th}}}$$

Andrea Ferroglia (Zürich U.)

BHABHA SCATTERING AND LUMINOSITY-II

- In the region employed for L measurements the Bhabha scattering cross section is large and QED dominated
- ▶ SABH is employed at LEP and ILC, while LABH is employed at colliders operating at $\sqrt{s} = 1 10$ GeV
- ► Due to beam-beam interactions, at ILC the colliding energy √s shows a continuous spectrum: the LABH can also be used to determine the luminosity spectrum

BHABHA SCATTERING AND LUMINOSITY-II

- In the region employed for L measurements the Bhabha scattering cross section is large and QED dominated
- ▶ SABH is employed at LEP and ILC, while LABH is employed at colliders operating at $\sqrt{s} = 1 10$ GeV
- ► Due to beam-beam interactions, at ILC the colliding energy √s shows a continuous spectrum: the LABH can also be used to determine the luminosity spectrum

The accuracy of the theoretical evaluation of the Bhabha scattering cross section directly affects the luminosity determination

BHABHA SCATTERING AND LUMINOSITY-II

- In the region employed for L measurements the Bhabha scattering cross section is large and QED dominated
- ▶ SABH is employed at LEP and ILC, while LABH is employed at colliders operating at $\sqrt{s} = 1 10$ GeV
- ► Due to beam-beam interactions, at ILC the colliding energy √s shows a continuous spectrum: the LABH can also be used to determine the luminosity spectrum

The accuracy of the theoretical evaluation of the Bhabha scattering cross section directly affects the luminosity determination

\implies calculation of radiative corrections

WARNING

- In this talk we consider the QED process only
- We consider differential cross-sections summed over the spins of the final state particles and averaged over the spin of the initial ones

$$\frac{d\sigma_0(s,t)}{d\Omega} = \frac{\alpha^2}{s} \left\{ \frac{1}{s^2} \left[st + \frac{s^2}{2} + (t - 2m^2)^2 \right] + \frac{1}{t^2} \left[st + \frac{t^2}{2} + (s - 2m^2)^2 \right] + \frac{1}{st} \left[(s + t)^2 - 4m^4 \right] \right\}$$

VIRTUAL CORRECTIONS TO THE CROSS SECTION -I

$$\frac{d\sigma(s,t)}{d\Omega} = \frac{d\sigma_0(s,t)}{d\Omega} + \left(\frac{\alpha}{\pi}\right)\frac{d\sigma_1(s,t)}{d\Omega} + \left(\frac{\alpha}{\pi}\right)^2\frac{d\sigma_2(s,t)}{d\Omega} + \mathcal{O}\left((\alpha/\pi)^3\right)$$

The $\mathcal{O}(\alpha^3)$ virtual corrections (one-loop \times tree-level) are well known (in the full SM), no problem in keeping $m_e \neq 0$

```
M. Consoli (1979),
M. Böhm, A. Denner, and W. Hollik (1988),
M. Greco (1988),...
```

VIRTUAL CORRECTIONS TO THE CROSS SECTION -II

Order α^4 corrections:

- \blacktriangleright Contributions from two-loop \times tree-level and one-loop \times one-loop
- Can be divided in three sets,
 i) with a closed electron loop,
 ii) closed heavy(er) flavor loop, and
 iii) photonic (without fermion loops)

- Fermion loop corrections, Photonic corrections
- Boxes: known exactly for $m_e \neq 0$, known only in the for $m_e = 0$

- Fermion loop corrections, Photonic corrections
- Boxes: known exactly for $m_e \neq 0$, known only in the for $m_e = 0$

- Fermion loop corrections, Photonic corrections
- Boxes: known exactly for $m_e \neq 0$, known only in the for $m_e = 0$

- Fermion loop corrections, Photonic corrections
- Boxes: known exactly for $m_e \neq 0$, known only in the for $m_e = 0$

If one sets m_e = 0 from the start, all the integrals are known, and the calculation of the NNLO corrections to the cross-section can be done
 Z. Bern et al. ('00)

- If one sets $m_e = 0$ from the start, all the integrals are known, and the calculation of the NNLO corrections to the cross-section can be done
- When keeping $m_e \neq 0$ it is possible to calculate the corrections involving a closed electron loop ($\alpha^4(N_f = 1)$)

R. Bonciani et al. ('04-'05)

- If one sets $m_e = 0$ from the start, all the integrals are known, and the calculation of the NNLO corrections to the cross-section can be done
- When keeping $m_e \neq 0$ it is possible to calculate the corrections involving a closed electron loop ($\alpha^4(N_f = 1)$)
- By starting from the $m_e = 0$ calculation, it is possible to calculate the α^4 photonic corrections up to terms of order m_e^2/s

A. Penin ('05)

- If one sets $m_e = 0$ from the start, all the integrals are known, and the calculation of the NNLO corrections to the cross-section can be done
- When keeping $m_e \neq 0$ it is possible to calculate the corrections involving a closed electron loop ($\alpha^4(N_f = 1)$)
- By starting from the $m_e = 0$ calculation, it is possible to calculate the α^4 photonic corrections up to terms of order m_e^2/s
- By employing the MB technique to expand the MIs, it was possible to calculate the NNLO corrections involving a closed fermion loop in the limit $s, t, u \gg m_f^2 \gg m_e^2$.

S. Actis et al. ('07)

- If one sets $m_e = 0$ from the start, all the integrals are known, and the calculation of the NNLO corrections to the cross-section can be done
- When keeping $m_e \neq 0$ it is possible to calculate the corrections involving a closed electron loop ($\alpha^4(N_f = 1)$)
- By starting from the $m_e = 0$ calculation, it is possible to calculate the α^4 photonic corrections up to terms of order m_e^2/s
- By employing the MB technique to expand the MIs, it was possible to calculate the NNLO corrections involving a closed fermion loop in the limit $s, t, u \gg m_f^2 \gg m_e^2$.
- Actually, starting from the massless cross section, it is possible to reconstruct both photonic and fermion loop corrections in the limit $s, t, u \gg m_f^2 \gg m_e^2$.

T. Becher and K. Melnikov ('07)

- If one sets $m_e = 0$ from the start, all the integrals are known, and the calculation of the NNLO corrections to the cross-section can be done
- When keeping $m_e \neq 0$ it is possible to calculate the corrections involving a closed electron loop ($\alpha^4(N_f = 1)$)
- By starting from the $m_e = 0$ calculation, it is possible to calculate the α^4 photonic corrections up to terms of order m_e^2/s
- By employing the MB technique to expand the MIs, it was possible to calculate the NNLO corrections involving a closed fermion loop in the limit $s, t, u \gg m_f^2 \gg m_e^2$.
- Actually, starting from the massless cross section, it is possible to reconstruct both photonic and fermion loop corrections in the limit $s, t, u \gg m_f^2 \gg m_e^2$.
- By exploiting the collinear structure of the virtual corrections involving an "heavy flavor" fermion, it is possible to calculate the exact dependence of the cross section on m_f .

R. Bonciani, A. F., and A. Penin (hopefully soon)

- All the two-loop graphs including a closed electron loop can be calculated also keeping $m_e \neq 0$ and without relying on any approximation or expansion
 - The relevant integrals can be reduced to combination of a relatively small set of Master Integrals employing the Laporta algorithm
 - The MIs (including the ones for the box) can be evaluated employing the differential equation method

R. Bonciani et al.('03-'04)

$\mathcal{O}(\alpha^4(N_F=1))$ Corrections - Virtual Diagrams

Andrea Ferroglia (Zürich U.)

$\mathcal{O}(\alpha^4(N_F=1))$ VIRTUAL CORRECTIONS

In the $\mathcal{O}(\alpha^4(N_F = 1))$ corrections to the CS

- both UV and IR divergences are regularized within the DIM REG scheme
- ▶ the UV renormalization is carried out in the on-shell scheme
- ▶ the graphs are at first calculated in the non physical region s < 0 and then analytically continued to the physical region $s > 4m_e^2$
- the cross section can be expressed in terms of HPLs and 2dHPLs with arguments

$$x = \frac{\sqrt{s} - \sqrt{s - 4m_e^2}}{\sqrt{s} + \sqrt{s - 4m_e^2}} \quad y = \frac{\sqrt{4m_e^2 - t} - \sqrt{-t}}{\sqrt{-t} + \sqrt{4m_e^2 - t}} \quad z = \frac{\sqrt{4m_e^2 - u} - \sqrt{-u}}{\sqrt{-u} + \sqrt{4m_e^2 - u}}$$
$$\frac{(1 - z)^2}{z} = \frac{1}{x} (x - y) (x - 1/y)$$

After UV renormalization, the virtual CS still includes poles in D-4, of IR origin, that can be eliminated by adding the contribution of the soft photon emission diagrams

In order to cancel the IR divergent terms in the virtual cross section at $\mathcal{O}(\alpha^3)$ and $\mathcal{O}(\alpha^4(N_F=1))$ it is sufficient to consider the contribution of the single photon emission graphs

$$e^-(p_1) + e^+(p_2) \longrightarrow e^-(p_3) + e^+(p_4) + \gamma(k) \qquad k_0 < \omega$$

$\mathcal{O}(\alpha^4(N_F=1))$ Corrections - Soft Photon-II

The soft emission cross section at $\mathcal{O}(\alpha^4(N_F = 1))$ is

$$\frac{d\sigma_2^S(s,t,m^2)}{d\Omega} = \frac{d\sigma_1^D(s,t,m^2)}{d\Omega} \sum_{i,j=1}^4 J_{ij}$$

where σ_1^D is the interference of the tree level soft emission with

Remember: σ_1^D is finite (after UV renormalization)

Andrea Ferroglia (Zürich U.)

$\mathcal{O}(\alpha^4(N_F=1))$ Corrections - Soft Photon-III

It is possible to understand how the cancellation of the IR poles works from a diagrammatic point of view:

$\mathcal{O}(\alpha^4)$ Photonic Corrections

With the same techniques employed in obtaining the $\mathcal{O}(\alpha^4(N_F = 1))$ non-approximated differential CS, it is possible to calculate the photonic virtual corrections (and related soft photon emission) to the CS at order $\mathcal{O}(\alpha^4)$, except for the ones arising from the the two loop photonic boxes

R. Bonciani, A. F. ('05)

α^4 Photonic Corrections-II

The two-loop irreducible photonic vertex corrections are gauge independent

In order to cancel the IR poles it is necessary to add also the contribution of the double photon (soft) emission

$$\frac{d\sigma_{2}^{(S)}(s,t,m^{2})}{d\Omega} = \frac{1}{2} \frac{d\sigma_{0}^{D}(s,t,m^{2})}{d\Omega} \left(\sum_{i,j=1}^{4} J_{ij}\right)^{2} + \frac{d\sigma_{1}^{(V,D)}(s,t,m^{2})}{d\Omega} \left(\sum_{i,j=1}^{4} J_{ij}\right)$$

The one- and two-loop Dirac form factors in the *t*-channel are sufficient to determine completely the small angle cross section

$$\frac{d\sigma_2}{d\sigma_0} = 6(F_1^{(1)}(t))^2 + 4F_1^{(2)}(t)$$

Andrea Ferroglia (Zürich U.)

α^4 Photonic Corrections- m_e^2/s Expansion

- ▶ Building on the BDG result and on works by A. B. Arbuzov *et al.*, B. Tausk, N. Glover, and J. J. van der Bij ('01) obtained the terms proportional to $L = \ln \frac{m_e^2}{s}$ of the full (virtual + soft) photonic CS (i. e. graphs including a closed electron loop have been neglected)
- ▶ Recently A. Penin obtained also the constant terms of the photonic CS in the m_e^2/s expansion

Therefore, in the expansion

$$\frac{d\sigma_2}{d\sigma_0} = \delta_2^{(2)} \ln^2\left(\frac{s}{m_e^2}\right) + \delta_2^{(1)} \ln\left(\frac{s}{m_e^2}\right) + \delta_2^{(0)} + \mathcal{O}\left(\frac{m_e^2}{s}\right)$$
$$\delta_2^{(2)}, \ \delta_2^{(1)}, \ \text{and} \ \delta_2^{(0)} \ \text{are known}$$

Several partial cross-checks of this results were possible by comparing it with the $m_e^2/s \rightarrow 0$ limit of the exact result for the photonic vertex and one-loop by one-loop corrections

PENIN'S TECHNIQUE (IN A NUTSHELL)

- Consider the amplitude of the two loop virtual corrections to the cross-section in which collinear and IR divergencies are regularized by m_e and λ: A⁽²⁾(m_e, λ)
- Build an auxiliary amplitude $\overline{\mathcal{A}}^{(2)}(m_e, \lambda)$ with the same IR singularities of the $\mathcal{A}^{(2)}(m_e, \lambda)$ but sufficiently simple to be evaluated in the small mass expansion
- The quantity $\delta A^{(2)} = A^{(2)} \overline{A}^{(2)}$ has a finite limit when m_e and λ tend to zero
- δA⁽²⁾ is regularization scheme independent and it can be reconstructed from the known results for the virtual corrections calculated by setting m_e = λ = 0 from the start

Andrea Ferroglia (Zürich U.)

PENIN'S TECHNIQUE (IN A NUTSHELL)

- Consider the amplitude of the two loop virtual corrections to the cross-section in which collinear and IR divergencies are regularized by m_e and λ: A⁽²⁾(m_e, λ)
- Build an auxiliary amplitude $\overline{\mathcal{A}}^{(2)}(m_e, \lambda)$ with the same IR singularities of the $\mathcal{A}^{(2)}(m_e, \lambda)$ but sufficiently simple to be evaluated in the small mass expansion
- ► The quantity δA⁽²⁾ = A⁽²⁾ A⁽²⁾ has a finite limit when m_e and λ tend to zero
- δA⁽²⁾ is regularization scheme independent and it can be reconstructed from the known results for the virtual corrections calculated by setting m_e = λ = 0 from the start

Finally

$$\mathcal{A}^{(2)} = \overline{\mathcal{A}}^{(2)}(m_e, \lambda) + \delta \mathcal{A}^{(2)} + \mathcal{O}(m_e, \lambda)$$

PENIN'S TECHNIQUE (IN A NUTSHELL)

- Consider the amplitude of the two loop virtual corrections to the cross-section in which collinear and IR divergencies are regularized by m_e and λ: A⁽²⁾(m_e, λ)
- Build an auxiliary amplitude A⁽²⁾(m_e, λ) with the same IR singularities of the A⁽²⁾(m_e, λ) but sufficiently simple to be evaluated in the small mass expansion
- ► The quantity δA⁽²⁾ = A⁽²⁾ A⁽²⁾ has a finite limit when m_e and λ tend to zero
- δA⁽²⁾ is regularization scheme independent and it can be reconstructed from the known results for the virtual corrections calculated by setting m_e = λ = 0 from the start

Finally

$$\mathcal{A}^{(2)} = \overline{\mathcal{A}}^{(2)}(m_e,\lambda) + \delta \mathcal{A}^{(2)} + \mathcal{O}(m_e,\lambda)$$

 \implies The method cannot be applied to the $\alpha^4(N_F = 1)$ corrections

MASS FROM MASSLESS-I

As can be seen from Penin's result, when neglecting positive powers of the electron mass, the problem is to change the regularization scheme for the collinear singularities:

Is it possible to calculate graphs employing DIM REG to regulate both IR and collinear singularities and then translate a posteriori the collinear poles into collinear logs?

MASS FROM MASSLESS-I

As can be seen from Penin's result, when neglecting positive powers of the electron mass, the problem is to change the regularization scheme for the collinear singularities:

Is it possible to calculate graphs employing DIM REG to regulate both IR and collinear singularities and then translate a posteriori the collinear poles into collinear logs?

For a generic QED/QCD process, with no closed fermion loops

$$\mathcal{M}^{(m\neq 0)} = \prod_{i \in \{\mathsf{all legs}\}} Z_i^{\frac{1}{2}}(m,\varepsilon) \mathcal{M}^{(m=0)}$$

where Z is defined through the Dirac form factor

$$F^{(m\neq 0)}(Q^2) = \mathbb{Z}(m,\varepsilon) F^{(m=0)}(Q^2) + \mathcal{O}(m^2/Q^2)$$

A. Mitov and S. Moch ('06)

MASS FROM MASSLESS-II

in QED, using SCET, it was possible to find a factorization formula that relates massive and massless amplitudes also in presence of fermion loops, as long as $s, |t|, |u| \gg m_f^2 \gg m_e^2$

$$F^{(m \neq 0)}(Q^2) = Z(m, \varepsilon) S(Q^2, m, \varepsilon) F^{(m=0)}(Q^2) + \mathcal{O}(m^2/Q^2)$$

T. Becher and K. Melnikov

('07)

21 / 37

GGI SEP.'07

$$S(Q^{2}, m, \varepsilon) = 1 + a_{0}^{2}m^{-4\varepsilon} \ln\left(\frac{Q^{2}}{m^{2}}\right) \left(-\frac{1}{12} + \frac{5}{36\varepsilon} - \frac{7}{27} - \frac{\pi^{2}}{72} + \mathcal{O}(\varepsilon)\right)$$
$$Z(m, \varepsilon) = 1 + a_{0}m_{e}^{-2\varepsilon} \left[\frac{1}{2\varepsilon^{2}} + \frac{1}{4\varepsilon} + \frac{\pi^{2}}{24} + 1 + \varepsilon \left(2 + \frac{\pi^{2}}{48} - \frac{\zeta(3)}{6}\right) + \varepsilon^{2} \left(4 - \frac{\zeta(3)}{12} + \frac{\pi^{4}}{320} + \frac{\pi^{2}}{12}\right) + \mathcal{O}(\varepsilon^{3})\right] + \mathcal{O}(a_{0}^{2})$$

MASS FROM MASSLESS-III

with this technique Becher and Melnikov could calculate all the NNLO corrections in the limit $s,|t|,|u|\gg m_f^2\gg m_e^2$

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{s} \left(\frac{1-r+r^2}{r}\right) \left[1 + \frac{\alpha}{\pi}\delta_1 + \left(\frac{\alpha}{\pi}\right)^2 \delta_2\right]$$
$$(r = 1/2(1 - \cos\theta))$$

$$\delta_2 = \delta_2^{\text{photonic}} + \delta_2^{\text{electron loop}} + \delta_2^{\text{heavy flavor loop}}$$

- photonic corrections in agreement with A. Penin ('05)
- electron loop corrections in agreement with R. Bonciani *et al* ('04)
- "heavy flavor" loop corrections in agreement with S. Actis *et al* ('07)

MASS FROM MASSLESS-III

with this technique Becher and Melnikov could calculate all the NNLO corrections in the limit $s, |t|, |u| \gg m_f^2 \gg m_e^2$

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{s} \left(\frac{1-r+r^2}{r}\right) \left[1 + \frac{\alpha}{\pi}\delta_1 + \left(\frac{\alpha}{\pi}\right)^2 \delta_2\right]$$
$$(r = 1/2(1 - \cos\theta))$$

$$\delta_2 = \delta_2^{\text{photonic}} + \delta_2^{\text{electron loop}} + \delta_2^{\text{heavy flavor loop}}$$

- photonic corrections in agreement with A. Penin ('05)
- electron loop corrections in agreement with R. Bonciani et al ('04)
- "heavy flavor" loop corrections in agreement with S. Actis *et al*

MASS FROM MASSLESS-III

with this technique Becher and Melnikov could calculate all the NNLO corrections in the limit $s,|t|,|u|\gg m_f^2\gg m_e^2$

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{s} \left(\frac{1-r+r^2}{r}\right) \left[1 + \frac{\alpha}{\pi}\delta_1 + \left(\frac{\alpha}{\pi}\right)^2 \delta_2\right]$$
$$(r = 1/2(1 - \cos\theta))$$

$$\delta_2 = \delta_2^{\text{photonic}} + \delta_2^{\text{electron loop}} + \delta_2^{\text{heavy flavor loop}}$$

- photonic corrections in agreement with A. Penin ('05)
- electron loop corrections in agreement with R. Bonciani *et al* ('04)
- "heavy flavor" loop corrections in agreement with S. Actis *et al* ('07)

Beyond $s \gg m_f^2$

In any realistic case the approximation $s, |t|, |u| \gg m_e^2$ is more than enough However, in the case of corrections with a closed heavy fermion loop, it is not always true that $s, |t|, |u| \gg m_f^2$

BEYOND $s \gg m_f^2$

In any realistic case the approximation $s, |t|, |u| \gg m_e^2$ is more than enough However, in the case of corrections with a closed heavy fermion loop, it is not always true that $s, |t|, |u| \gg m_f^2$

for example

- ▶ au loop at KLOE, where $\sqrt{s} = 1 \, \text{GeV} < m_{ au}$
- ▶ top quark loop at ILC, where $\sqrt{s} \approx 500 \text{ GeV}$ and $m_t^2/t, m_t^2/u < 1$ just in the angular region $40^\circ < \theta < 140^\circ$

BEYOND $s \gg m_f^2$

In any realistic case the approximation $s, |t|, |u| \gg m_e^2$ is more than enough However, in the case of corrections with a closed heavy fermion loop, it is not always true that $s, |t|, |u| \gg m_f^2$

for example

- ▶ au loop at KLOE, where $\sqrt{s} = 1 \, \text{GeV} < m_{ au}$
- ▶ top quark loop at ILC, where $\sqrt{s} \approx 500 \text{ GeV}$ and $m_t^2/t, m_t^2/u < 1$ just in the angular region $40^\circ < \theta < 140^\circ$

It would be nice to calculate the NNLO corrections including an heavy fermion loop retaining the exact dependence on m_f

 $s, |t|, |u|, m_f^2 \gg m_e^2$

this is a non trivial problem involving four-scale two-loop boxes ...

Andrea Ferroglia (Zürich U.)

CANCELLATION OF THE COLLINEAR POLES

What is the collinear structure of these corrections?

$$\delta_2 = \delta_2^C(s, t, m_f^2) \ln\left(\frac{s}{m_e^2}\right) + \delta_2^R(s, t, m_f^2) + \mathcal{O}\left(\frac{m_e^2}{s}\right)$$

there is just a single collinear logarithm

CANCELLATION OF THE COLLINEAR POLES

What is the collinear structure of these corrections?

$$\delta_2 = \delta_2^C(s, t, m_f^2) \ln\left(\frac{s}{m_e^2}\right) + \delta_2^R(s, t, m_f^2) + \mathcal{O}\left(\frac{m_e^2}{s}\right)$$

there is just a single collinear logarithm

It is possible to show that the collinear logarithm arises from trivial reducible graphs only

The Calculation of the Boxes

The sum of the one-particle irreducible diagrams has a regular behavior in the small electron mass m_e

THE CALCULATION OF THE BOXES

The sum of the one-particle irreducible diagrams has a regular behavior in the small electron mass m_e

This means that we can set $m_e = 0$ from the beginning, getting rid of one scale

The Calculation of the Boxes

The sum of the one-particle irreducible diagrams has a regular behavior in the small electron mass m_e

This means that we can set $m_e = 0$ from the beginning, getting rid of one scale

u = -s - t

The Calculation of the Boxes

The sum of the one-particle irreducible diagrams has a regular behavior in the small electron mass m_e

This means that we can set $m_e = 0$ from the beginning, getting rid of one scale

u = -s - t

After UV renormalization, the only remaining poles are the IR (soft) ones

R. Bonciani, A. F., and A. Penin (soon)

- It was possible to calculate the boxes for m_e = 0 and obtain the cross section for generic s, |t|, |u|, m_f² ≫ m_e²
- ► We employed IBPs and Differential Eq. Method
- The result can be expressed in terms of HPL and a few GHPLs of a new class. The latter can be expressed in closed form in terms of polylogs
- by expanding the exact result it was possible to recover the result of Actis al and Becher Melnikov
- With the exact dependence of the cross section on m_f we can get numbers for the τ loop at intermediate energies and top loop at ILC energies

Results - Expansion

 $\sqrt{s} = 1 \text{ GeV}, \ \omega_{I\!R} = \sqrt{s}/2 \quad \text{black} \to \text{photonic, red} \to \text{electron, blu} \to \text{muon}$

SUMMARY & CONCLUSIONS

- A precise knowledge of the Bhabha scattering cross section (both at small and large angle) is crucial in order to determine the luminosity at ILC
- ► In the last few years the NNLO QED corrections for $m_e \neq 0$ were extensively studied
- ► The calculation of NNLO QED radiative corrections required the use of a number of powerful tools for the calculation of multi-loop diagrams: IBPs & Laporta-Remiddi Algorithm, Differential Equation Method, Mellin-Barnes techniques, study of the factorization properties, etc.
- The calculation of the virtual + soft NNLO QED corrections is basically complete (but some work still needs to be done, ex. soft pair production)

SUMMARY & CONCLUSIONS

- A precise knowledge of the Bhabha scattering cross section (both at small and large angle) is crucial in order to determine the luminosity at ILC
- ▶ In the last few years the NNLO QED corrections for $m_e \neq 0$ were extensively studied
- ► The calculation of NNLO QED radiative corrections required the use of a number of powerful tools for the calculation of multi-loop diagrams: IBPs & Laporta-Remiddi Algorithm, Differential Equation Method, Mellin-Barnes techniques, study of the factorization properties, etc.
- The calculation of the virtual + soft NNLO QED corrections is basically complete (but some work still needs to be done, ex. soft pair production)

The result obtained need to be critically compared/interfaced with the existing Monte Carlo generators (talk by C. Carloni Calame)

Andrea Ferroglia (Zürich U.)

AUXILIARY SLIDES

Andrea Ferroglia (Zürich U.) Bhabha Sc

Bhabha Scattering at NNLO

GGI Sep.'07 29 / 37

Consider the virtual corrections to a given physical quantity

 Using projector techniques or summing over spins get rid of the Dirac/Lorentz structure of the Feynman diagrams numerators

$$\overline{\nu}(p_2) \left[F_1(Q^2) \gamma^{\mu} + \frac{1}{2m} F_2(Q^2) \sigma^{\mu\nu} Q_{\nu} \right] u(p_1)$$

- The "form factors" we want to calculate are linear combinations of a (huge) number of scalar integrals
- The scalar integrals are related via Integration By Parts (and other) identities
- Building the IBPs for growing powers of the propagators and scalar products the number of equations grows faster that the number of unknown: one finds a system of equations which is apparently over-constrained

Solving the system of IBPs (in a problem with a small number of scales) one finds that only a few of the scalar integrals above (if any) are independent: the MIs.

Andrea Ferroglia (Zürich U.)

Consider the virtual corrections to a given physical quantity

- Using projector techniques or summing over spins get rid of the Dirac/Lorentz structure of the Feynman diagrams numerators
- The "form factors" we want to calculate are linear combinations of a (huge) number of scalar integrals

$$\int \mathfrak{D}^{D} k_{1} \mathcal{D}^{D} k_{2} \frac{S_{1}^{n_{1}} \cdots S_{q}^{n_{q}}}{\mathcal{D}_{1}^{m_{1}} \cdots \mathcal{D}_{t}^{m_{t}}} \qquad \begin{array}{c} S \rightarrow \text{ scalar products } k_{i} \cdot p_{j} \\ \mathcal{D} \rightarrow \text{ propagators} \\ (\sum k + \sum p)^{2} + M^{2} \end{array}$$

- The scalar integrals are related via Integration By Parts (and other) identities
- Building the IBPs for growing powers of the propagators and scalar products the number of equations grows faster that the number of unknown: one finds a system of equations which is apparently over-constrained
- Solving the system of IBPs (in a problem with a small number of scales) one finds that only a few of the scalar integrals above (if any)

Andrea Ferroglia (Zürich U.)

Bhabha Scattering at NNLO

GGI SEP.'07 30 / 37

Consider the virtual corrections to a given physical quantity

- Using projector techniques or summing over spins get rid of the Dirac/Lorentz structure of the Feynman diagrams numerators
- The "form factors" we want to calculate are linear combinations of a (huge) number of scalar integrals
- The scalar integrals are related via Integration By Parts (and other) identities

$$\int \mathfrak{D}^D k_1 \mathcal{D}^D k_2 \frac{\partial}{\partial k_i^{\mu}} \left[\mathbf{v}^{\mu} \frac{S_1^{n_1} \cdots S_q^{n_q}}{\mathcal{D}_1^{m_1} \cdots \mathcal{D}_t^{m_t}} \right] = \mathbf{0} \quad \mathbf{v}^{\mu} = k_1, k_2, p_1, \cdots, p_n$$

Building the IBPs for growing powers of the propagators and scalar products the number of equations grows faster that the number of unknown: one finds a system of equations which is apparently over-constrained

Solving the system of IBPs (in a problem with a small number of scales) one finds that only a few of the scalar integrals above (if any) are independent: the MIs.

Andrea Ferroglia (Zürich U.)

Consider the virtual corrections to a given physical quantity

- Using projector techniques or summing over spins get rid of the Dirac/Lorentz structure of the Feynman diagrams numerators
- The "form factors" we want to calculate are linear combinations of a (huge) number of scalar integrals
- The scalar integrals are related via Integration By Parts (and other) identities
- Building the IBPs for growing powers of the propagators and scalar products the number of equations grows faster that the number of unknown: one finds a system of equations which is apparently over-constrained
- Solving the system of IBPs (in a problem with a small number of scales) one finds that only a few of the scalar integrals above (if any) are independent: the MIs.

Consider the virtual corrections to a given physical quantity

- Using projector techniques or summing over spins get rid of the Dirac/Lorentz structure of the Feynman diagrams numerators
- The "form factors" we want to calculate are linear combinations of a (huge) number of scalar integrals
- The scalar integrals are related via Integration By Parts (and other) identities
- Building the IBPs for growing powers of the propagators and scalar products the number of equations grows faster that the number of unknown: one finds a system of equations which is apparently over-constrained
- Solving the system of IBPs (in a problem with a small number of scales) one finds that only a few of the scalar integrals above (if any) are independent: the MIs.

For each Master Integral belonging to a given topology $F_i^{(t)}$

 One can take the derivative of a given integrals with respect to the external momenta p_i

$$p_{j}^{\mu}\frac{\partial}{\partial p_{i}^{\mu}}F_{i}^{(t)}=\int\mathfrak{D}^{D}k_{1}\mathcal{D}^{D}k_{2}\,p_{j}^{\mu}\frac{\partial}{\partial p_{i}^{\mu}}\frac{S_{1}^{n_{1}}\cdots S_{q}^{n_{q}}}{\mathcal{D}_{1}^{m_{1}}\cdots \mathcal{D}_{t}^{m_{t}}}$$

- ▶ The integral are regularized, therefore we can apply the derivative to the integrand in the r. h. s. and use the IBPs to rewrite it as a linear combination of the MIs
- On the left hand side one can rewrite the derivatives with respect to the external momenta as functions of the derivatives with respect to the Mandelstam invariants of the problem
- One can solve the system to get differential equation(s)
- Fix somehow the initial condition(s) (ex. knowing the behavior of the integral at s = 0) and solve the DE(s)

For each Master Integral belonging to a given topology $F_i^{(t)}$

- One can take the derivative of a given integrals with respect to the external momenta p_i
- ► The integral are regularized, therefore we can apply the derivative to the integrand in the r. h. s. and use the IBPs to rewrite it as a linear combination of the MIs

$$\int \mathfrak{D}^D k_1 \mathcal{D}^D k_2 p_j^{\mu} \frac{\partial}{\partial p_i^{\mu}} \frac{S_1^{n_1} \cdots S_q^{n_q}}{\mathcal{D}_1^{m_1} \cdots \mathcal{D}_t^{m_t}} = \sum c_i F_i^{(t)} + \sum_{s \neq t} \sum_j k_j F_j^{(s)}$$

- On the left hand side one can rewrite the derivatives with respect to the external momenta as functions of the derivatives with respect to the Mandelstam invariants of the problem
- One can solve the system to get differential equation(s)
- Fix somehow the initial condition(s) (ex. knowing the behavior of the integral at s = 0) and solve the DE(s)

Andrea Ferroglia (Zürich U.)

For each Master Integral belonging to a given topology $F_i^{(t)}$

- One can take the derivative of a given integrals with respect to the external momenta p_i
- The integral are regularized, therefore we can apply the derivative to the integrand in the r. h. s. and use the IBPs to rewrite it as a linear combination of the MIs
- On the left hand side one can rewrite the derivatives with respect to the external momenta as functions of the derivatives with respect to the Mandelstam invariants of the problem

$$p_{j}^{\mu}\frac{\partial}{\partial p_{k}^{\mu}}F_{i}^{(t)}=p_{j}^{\mu}\sum_{\xi}\frac{\partial s_{\xi}}{\partial p_{k}^{\mu}}\frac{\partial}{\partial s_{\xi}}F_{i}^{(t)}$$

- One can solve the system to get differential equation(s)
- Fix somehow the initial condition(s) (ex. knowing the behavior of the integral at s = 0) and solve the DE(s)

Andrea Ferroglia (Zürich U.)

For each Master Integral belonging to a given topology $F_i^{(t)}$

- One can take the derivative of a given integrals with respect to the external momenta p_i
- The integral are regularized, therefore we can apply the derivative to the integrand in the r. h. s. and use the IBPs to rewrite it as a linear combination of the MIs
- On the left hand side one can rewrite the derivatives with respect to the external momenta as functions of the derivatives with respect to the Mandelstam invariants of the problem
- One can solve the system to get differential equation(s)

$$\frac{\partial}{\partial s} F_i^{(t)} = \sum_j c_j F_j^{(t)} + \sum_{s \neq t} \sum_l k_l F_l^{(s)}$$

Fix somehow the initial condition(s) (ex. knowing the behavior of the integral at s = 0) and solve the DE(s)

For each Master Integral belonging to a given topology $F_i^{(t)}$

- One can take the derivative of a given integrals with respect to the external momenta p_i
- The integral are regularized, therefore we can apply the derivative to the integrand in the r. h. s. and use the IBPs to rewrite it as a linear combination of the MIs
- On the left hand side one can rewrite the derivatives with respect to the external momenta as functions of the derivatives with respect to the Mandelstam invariants of the problem
- One can solve the system to get differential equation(s)
- Fix somehow the initial condition(s) (ex. knowing the behavior of the integral at s = 0) and solve the DE(s)

HARMONIC POLYLOGARITHMS (HPL)

E. Remiddi, J. Vermaseren (1999); E. Remiddi, T. Gehrmann (2001)

Functions of the variable x and a set of indices \vec{a} with weight w; each index can assume values 1, 0, -1

 $H(\mathbf{a}; \mathbf{x})$

Definitions: w = 1

$$H(1; x) = \int_0^x \frac{dt}{1-t} = -\ln(1-x)$$

$$H(0; x) = \ln x$$

$$H(-1; x) = \int_0^x \frac{dt}{1+t} = \ln(1+x)$$

$$\frac{d}{dx}H(a;x) = f(a;x) \quad f(1;x) = \frac{1}{1-x} \quad f(0;x) = \frac{1}{x} \quad f(-1;x) = \frac{1}{1+x}$$

HPLS: DEFINITIONS

Definitions: w > 1

if
$$\vec{a} = 0, 0, \dots, 0$$
 (w times) $H(\vec{0}_w; x) = \frac{1}{w!} \ln^w x$
else $H(i, \vec{a}; x) = \int_0^x dt f(i; t) H(\vec{a}; t)$

consequences: $\frac{d}{dx}H(i,\vec{a};x) = f(i;x)H(\vec{a};t)$ $H(\vec{a}\notin\vec{0};0) = 0$ a few examples @w = 2

$$H(0,1;x) = \int_0^x dt f(0;t) H(1;t) = -\int_0^x dt \frac{1}{t} \ln(1-t) = \text{Li}_2(x)$$

$$H(1,0;x) = \int_0^x dt f(1;t) H(0;t) = \int_0^x dt \frac{1}{1-t} \ln t$$

$$= -\ln x \ln(1-x) + \text{Li}_2(x)$$

Andrea Ferroglia (Zürich U.)

HPLS AS A GENERALIZATION OF THE NIELSEN'S POLYLOGS

The HPLs include the Nielsen's PolyLogs

$$S_{n,p(x)} = \frac{(-1)^{n+p-1}}{(n+p)!p!} \int_0^1 \frac{dt}{t} \ln^{n-1} t \ln^p (1-xt) \quad \text{Li}_n(x) = S_{n-1,1}(x)$$

$$\begin{array}{rcl} \mathsf{Li}_n(x) &=& H(\vec{0}_{n-1},1;x) \\ S_{n,p}(x) &=& H(\vec{0}_n,\vec{1}_p;x) \end{array}$$

but the HPLs are a larger set of functions: from w = 4 one finds things as

$$H(-1,0,0,1;x) = \int_0^x \frac{dt}{1+t} \operatorname{Li}_3(x) \notin \sum \operatorname{Nielsen's PolyLogs}$$

Andrea Ferroglia (Zürich U.)

THE HPLS ALGEBRA

• Shuffle Algebra:

$$H(\vec{p};x)H(\vec{q};x) = \sum_{\vec{r}=\vec{p}\uplus\vec{q}}H(\vec{r};x)$$

some examples

$$H(a; x)H(b; x) = H(a, b; x) + H(b, a; x)$$

$$H(a; x)H(b, c; x) = H(a, b, c; x) + H(b, a, c; x) + H(b, c, a; x)$$

• Product Ids:

$$H(m_1, ..., m_q; x) = H(m_1; x)H(m_2, ..., m_q; x) - H(m_2, m_1; x)H(m_3, ..., m_q; x) + ...+ (-1)^{q+1}H(m_q, ..., m_1; x)$$

Andrea Ferroglia (Zürich U.) Bhabh

2-DIMENSIONAL HARMONIC POLYLOGARITHMS (2DHPL)

E. Remiddi, T. Gehrmann (2000)

As for the HPLs, they are obtained by repeated integration over a new set of factors depending on a second variable.

$$f(-y;x) = \frac{1}{x+y} \quad f(-1/y;x) = \frac{1}{x+1/y}$$
$$G(i,\vec{a};x) = \int_0^x dt f(i;t) G(\vec{a};t)$$

a few examples:

$$G(-y;x) = \int_0^x \frac{dz}{z+y} = \ln\left(1+\frac{x}{y}\right) \quad G(-1/y;x) = \int_0^x \frac{dz}{z+1/y} = \ln(1+xy)$$
$$G(-y,0;x) = \ln x \ln\left(1+\frac{x}{y}\right) + \text{Li}_2\left(-\frac{x}{y}\right)$$

Andrea Ferroglia (Zürich U.)

2-DIMENSIONAL HARMONIC POLYLOGARITHMS (2DHPL)-II

The 2dHPLs share the properties of the HPLs Up to w = 3 (our case) the 2dHPLs can be expressed in terms of ln,Li₂,Li₃,S_{1,2}

The analytic properties of both HPLs & 2dHPLs are know Codes for their numerical evaluation are available

E. Remiddi, T. Gehrmann (2001-2002)