New observables in high energy photon Collisions

Orlando Panella

Istituto Nazionale di Fisica Nucleare Sezione di Perugia

In collaboration with: M. Cannoni (Univ. di Perugia), D. A. Anipko, I. F. Ginzburg, K. A. Kanishev, A. V. Pak, (Siberian insitute of Mathematics, Novosibirsk)

ILC PHYSICS IN FLORENCE

GGI September 12-14, 2007

<ロト <回ト < 注ト < 注ト = 注

Outline	Distributions and observables	Cascade process	$\mathbf{Results}$	Conclusions/Outlook
			0 00 000	

1 INTRODUCTION

- **2** DISTRIBUTIONS AND OBSERVABLES
- **3** CASCADE PROCESS

4 Results

- Total Quantites
- Effect of photon spectra
- Dependence on cut $p_{\perp\mu}^c$

$\mathbf{Outline}$	Introduction	Distributions and observables	Cascade process	$\mathbf{Results}$	Conclusions/Outlook
				0 00 000	

OUTLINE

1 INTRODUCTION

2 DISTRIBUTIONS AND OBSERVABLES

3 CASCADE PROCESS

A RESULTS

- Total Quantites
- Effect of photon spectra
- Dependence on cut $p_{\perp u}^c$

5 CONCLUSIONS/OUTLOOK

Outline	Introduction	Distributions and observables	Cascade process	$\mathbf{Results}$	Conclusions/Outlook
	● 000			0 00 000	

The ILC has the very interesting option of providing us with a Photon Collider (very high energy polarized photon beams [compton back-scattering]

The Standard Model (SM) cross section of $\gamma\gamma \rightarrow W^+W^-$ at center of mass energy greater than 200 GeV remains constant of about 80 pb up to higher energies and practically independent on photon polarization.

At $\sqrt{s} > 200$ GeV this cross section is more than 10 times larger than the cross section of W production in e^+e^- mode, $\sigma_{e^+e^- \to W^+W^-}$. It will ensure very high event rate at the anticipated luminosity .

The distributions of W^+ and W^- in $\gamma\gamma \to W^+W^-$ are charge symmetrical, their polarizations are determined by the polarization of initial photons. The distribution of muons in subsequent decay of polarized $W^{\pm} \to \mu^{\pm}\nu$

The distribution of muons in subsequent decay of polarized $W^+ \rightarrow \mu^+ \nu$ is asymmetrical [due to P violation in the SM].

Outline	Introduction	Distributions and observables	Cascade process	$\mathbf{Results}$	Conclusions/Outlook
	0000			0 00 000	

Charge asymmetries appear in processes like

$$\gamma\gamma
ightarrow \mu^+\mu^-
u_\mu ar
u_\mu$$
, $\gamma\gamma
ightarrow W^\pm\mu^\mp
u$

and are due to P nonconservation in the SM.

We also consider cascade processes like:

$$\gamma\gamma
ightarrow au\mu
u
u
u$$
 ($\gamma\gamma
ightarrow W au
u$) $ightarrow \mu^+ \mu^-
u
u
u$ ($W \mu
u
u
u$)

(with $\tau \to \mu \nu_{\mu} \nu_{\tau}$ decay) produce the same observable final state enhancing total event rate by 37%(17%).

Photon spectra are non-monochromatic. Photons with energy $E_{\gamma} < E_{\gamma}^{max}/\sqrt{2}$ are non-polarized. How this fact reduce asymmetry?

$\mathbf{Outline}$	Introduction	Distributions and observables	Cascade process	$\mathbf{Results}$	Conclusions/Outlook
	0000			0 00 000	

DIAGRAMS FOR $\gamma \gamma \rightarrow \mu^+ \mu^- \nu_\mu \bar{\nu}_\mu \ (\gamma \gamma \rightarrow \overline{W \mu \nu \nu})$

- (1) 3 double-resonant diagrams (DRD)
- (2) 4 single-resonant diagrams (SRD_W)
- (3) 4 single resonant diagrams (SRD $_{\mu}$
- (4) 6 diagrams with Z radiation
- (5) 2 multi-peripheral non-resonant diagrams

SRD (2)/DRD (1) is about 5%. The interference SRD, DRD is destructive. $[(3)+(4)+(5)]/[DRD (1)] \ll 1$. DRD contribution covers almost 98.7 % cross section. (The equal $W^+_{-\overline{u}}$ is described by only first

(The $\gamma\gamma \rightarrow W^+ \mu^- \bar{\nu}$ is described by only first 3 groups.)

Outline	Introduction	Distributions and observables	Cascade process	Results	Conclusions/Outlook
	0000			0 00 000	

We used CalcHEP for calculations.

FOR EACH OBSERVED PARTICLE:

Cut in escape angle $\boldsymbol{\theta}$

 $\pi - \theta_0 > \theta > \theta_0$ with $\theta_0 = 10 \text{ mrad}$,

Cut in transverse momentum p_{\perp} :

$$p_{\perp} > p^{c}_{\perp \mu} \qquad ext{with} \qquad p^{c}_{\perp \mu} = 10 \,\, ext{GeV}$$

(with higher $p_{\perp\mu}^c$ up to 140 GeV).

These simultaneous cuts allow many backgrounds to be eliminated.

The number of generated events = anticipated annual number $\simeq 10^6$ events,

This, in the non-monochromatic case, is the # of events generated by photons with $E_{\gamma} > E_{\gamma}^{max}/\sqrt{2}$.

Outline Introduction	Distributions and observables	Cascade process	$\mathbf{Results}$	Conclusions/Outlook
			0 00 000	

OUTLINE

1 INTRODUCTION

2 DISTRIBUTIONS AND OBSERVABLES

3 CASCADE PROCESS

4 Results

- Total Quantites
- Effect of photon spectra
- Dependence on cut $p_{\perp\mu}^c$

5 CONCLUSIONS/OUTLOOK

Outline	Distributions and observables	Cascade process	$\mathbf{Results}$	Conclusions/Outlook
	0000		0	
			000	

DIFFERENCE BETWEEN DISTRIBUTIONS OF POSITIVE AND NEGATIVE MUONS IN $\gamma_{\lambda_1}\gamma_{\lambda_2} \rightarrow W\mu\nu$ (NO CUTS)

Both photons are left polarized, $\gamma_-\gamma_-$

Negative μ distribution.

Positive μ distribution.

Orlando Panella New observables in high energy photon collisions

Outline	Distributions and observables	Cascade process	$\mathbf{Results}$	Conclusions/Outlook
	0000		0 00 000	

First photon is left polarized, second is right polarized, $\gamma_-\gamma_+$

Negative μ distribution.

Positive μ distribution.

Note: the distributions are mirror-symmetric.

Outline	Distributions and observables	Cascade process	$\mathbf{Results}$	Conclusions/Outlook
	0000		0 00 000	

For $\gamma \gamma \rightarrow W^{\pm} \mu^{\pm} + \nu$'s processes we considered normalized mean values of longitudinal p_{\parallel}^{\mp} and transverse p_{\perp}^{\mp} momenta of muons:

$$P_{L}^{\pm} = \frac{\int p_{\parallel}^{\pm} d\sigma}{E_{\gamma}^{max} \int d\sigma}, \quad P_{T}^{\pm} = \frac{\int p_{\perp}^{\pm} d\sigma}{E_{\gamma}^{max} \int d\sigma},$$

and taken their relative difference as a measure of charge asymmetry:

$$\Delta_L = \frac{P_L^- - P_L^+}{P_L^- + P_L^+}, \quad \Delta_T = \frac{P_T^- - P_T^+}{P_T^- + P_T^+}$$

Outline	Distributions and observables	Cascade process	Results	Conclusions/Outlook
	0000		0	
			000	

• Quantities for $\gamma_+\gamma_+$ and $\gamma_-\gamma_+$ can be obtained with $\mu^+ \leftrightarrow \mu^-$ exchange for P_N and with sign change for Δ_N .

• Experimental uncertainty (δexp) is expected to be $\gtrsim \delta_{MC}$ the statistical uncertainty of Monte Carlo simulations (Comphep).

	NI	P_N^-	P_N^+	Δ_N
$\gamma_{\lambda_1}\gamma_{\lambda_2}$	IN	δP_N^-	δP_N^+	$\delta \Delta_N$
	1	0.606	0.201	0.501
	L	0.29%	0.55%	0.57%
'γ_'γ_	т	0.333	0.159	0.335
	1	0.61%	0.28%	0.44%
	1	0.223	0.609	-0.463
	L	0.82%	0.19%	0.47%
$\gamma + \gamma -$	т	0.164	0.262	-0.231
		0.08%	0.31%	0.76%

Charge asymmetry quantities and statistical uncertainties for $\gamma_{\lambda_1}\gamma_{\lambda_2} \rightarrow W\mu\nu$. Monochromatic case. $\sqrt{s_{\gamma\gamma}} = 500 \text{ GeV}$

Our numbers $\delta P_{L,T}$, $\delta \Delta_{L,T}$ will thus provide a lower bound to to the experimental uncertainty $(\delta P_{L,T})_{exp}$, $(\delta \Delta_{L,T})_{exp}$.

$\mathbf{Outline}$	Distributions and observables	Cascade process	$\mathbf{Results}$	Conclusions/Outlook
			0 00 000	

OUTLINE

1 INTRODUCTION

2 DISTRIBUTIONS AND OBSERVABLES

3 CASCADE PROCESS

A RESULTS

- Total Quantites
- Effect of photon spectra
- Dependence on cut $p_{\perp\mu}^c$

5 CONCLUSIONS/OUTLOOK

Outline	Distributions and observables	Cascade process	$\mathbf{Results}$	Conclusions/Outlook
		0000	0 00 000	

CASCADE PROCESS

Muons with missing transverse momentum can appear via processes

$$\gamma\gamma
ightarrow au^+ \mu^-
u_ au ar{
u}_\mu \left(\gamma\gamma
ightarrow W au
u
ight)$$

followed by $\tau \rightarrow \mu \nu_{\mu} \nu_{\tau}$.

TOTAL EVENT RATE ENHANCEMENT

• for
$$\gamma \gamma \rightarrow W \mu + \nu' s$$
: $B \equiv Br(\tau \rightarrow \mu \nu \nu) = 17\%$

• for $\gamma \gamma \rightarrow \mu^+ \mu^- + \nu' s$: $2B + B^2 \approx 37$ %.

Calculation of such processes (6 or more final particles) is a computationally challenging task.

Reasonable (DRD) approximations provides high enough accuracy for our purposes.

A B M A B M

Outline	Distributions and observables	Cascade process	$\mathbf{Results}$	Conclusions/Outlook
		0000	0 00 000	

In the frame of DRD each τ is produced from W decay $\Rightarrow \tau$ polarisation is known and we are allowed to *convolute* generated distribution of τ in $\gamma\gamma \rightarrow W\tau\nu$ with distribution of μ in τ decay:

$$f = \frac{4}{\pi E_{\tau} m_{\tau}^4} \left[(3m_{\tau}^2 - 4pk)pk + ks \cdot m_{\tau} (4pk - m_{\tau}^2) \right] d\Gamma$$

Here k and p are 4-momenta of
$$\mu$$
 and τ .
Spin of τ : $\pm s/2$, $s = \frac{1}{\sqrt{2}} \left(\frac{p_{\nu} m_{\tau}}{(p p_{\nu})} - \frac{p}{m_{\tau}} \right) \begin{cases} + \text{ for } \tau^+, \\ - \text{ for } \tau^-. \end{cases}$

ESSENTIAL FEATURE

Decay $\tau \to \mu \nu_{\tau} \nu_{\mu}$ involves 3 particles, the effective mass of the $\nu \bar{\nu}$ system $m_{\nu\nu}$ varies from 0 to m_{τ} \Rightarrow the μ distribution is *contracted* in comparison with τ distribution: $E_{\mu} \leq E_{\tau} (1 - m_{\nu\nu}^2/m_{\tau}^2).$

DISTRIBUTIONS OF μ IN CASCADE PROCESS

Muon distribution in $\gamma_-\gamma_- \rightarrow W \mu \nu \nu \nu$

Muon distribution in $\gamma_+\gamma_- \rightarrow W \mu\nu\nu\nu$ left – μ^- , right – μ^+

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ◆ のへで

Full (DRD+cascade) distributions of μ

Total muon distribution in $\gamma_-\gamma_- o W\mu + \nu's$

Total muon distribution in $\gamma_+\gamma_- \rightarrow W\mu + \nu's$ left $-\mu^-$, right $-\mu^+$

200

Outline	Distributions and observables	Cascade process	$\mathbf{Results}$	Conclusions/Outlook
		00000	0 00 000	

Contribution of cascade process relative to the cross-section of the main process.

Orlando Panella New observables in high energy photon collisions

Outline	Distributions and observables	Cascade process	Results	Conclusions/Outlook
			0 00 000	

OUTLINE

1 INTRODUCTION

DISTRIBUTIONS AND OBSERVABLES

3 CASCADE PROCESS

4 Results

- Total Quantites
- Effect of photon spectra
- Dependence on cut $p_{\perp\mu}^c$

5 CONCLUSIONS/OUTLOOK

Outline		Distributions and observables	Cascade process	$\mathbf{Results}$	Conclusions/Outlook
				00 000	
Total Or	antites				

- \bullet Cascade process changes μ distribution only at small momenta.
- \bullet Asymmetry parameters decrease by $\lesssim 3\%$

$\gamma_{\lambda_1}\gamma_{\lambda_2}$	Ν	P_N^-	P_N^+	Δ_N
$\gamma_{-}\gamma_{-}$	L	0.548	0.164	0.539
	T	0.311	0.142	0.374
$\gamma_+\gamma$	L	0.199	0.513	-0.440
	Т	0.152	0.232	-0.207

Total charge asymmetry quantities.

• Applied cuts reduce the contribution of cascade process more than the main contribution \Rightarrow reduce inaccuracy of DRD approximation in the description of charge asymmetry at increasing values of $p_{\perp\mu}^c$.

Outline		Distributions and observables	Cascade process	$\mathbf{Results}$	Conclusions/Outlook
				• 0 000	
Effect of	photon spectr	a			

PHOTON SPECTRA

High energy part $E_{\gamma} > E_{\gamma}^{max}/\sqrt{2}$ is obtained from ideal one (*Compton spectrum*) with known factor dependent on photon energy and distance conversion point – collision point. The polarization distribution on energy is the same as in the ideal case (Ginzburg, Kotkin). At lower energies factorization is broken, polarization disappears. Details depend strongly on real collision scheme.

To take into account this behavior, we used factorized spectra, for $E_{\gamma} > E_{\gamma}^{max}/\sqrt{2}$ (Ginzburg, Kotkin), for $E_{\gamma} < E_{\gamma}^{max}/\sqrt{2}$ – ideal Compton spectrum without geometrical factors, no polarization.

Luminosity was normalized for product of high energy photon fluxes.

Outline	Introducti 0000	on Distributi 0000	ions and observ	vables Cascad 00000	ер	orocess Resu O O OOO	lts Conclu 0	ısions/Outlook
Effect of	photon sp	ectra						
$\gamma_{\lambda_1}\gamma_{\lambda_2}$	N	$P_N^- \delta P_N^-$	$\begin{array}{c} P_N^+ \\ \delta P_N^+ \end{array}$	$\Delta_N \\ \delta \Delta_N$		$P_N^- \delta P_N^-$	$P_N^+ \delta P_N^+$	$\Delta_N \\ \delta \Delta_N$
	L	0.606 0.29%	0.201 0.55%	0.501 0.57%		0.365 0.31%	0.157 0.22%	0.398 0.18%
$\gamma_{-}\gamma_{-}$	Т	0.333 0.61%	0.159 0.28%	0.335 0.44%		0.284 0.38%	0.179 0.11%	0.228 0.81%
$\gamma_+\gamma$	L	0.223 0.82%	0.609 0.19%	-0.463 0.47%		0.174 0.24%	0.338 0.28%	-0.321 0.43%
	Т	0.164 0.08%	0.262 0.31%	-0.231 0.76%		0.200 0.09%	0.236 0.16%	-0.082 0.42%

Monochromatic case

Non-monochromatic case

Charge asymmetry quantities and their uncertainties for $\gamma_{\lambda_1}\gamma_{\lambda_2} \rightarrow W \mu \nu$, $p_{\perp \mu}^c = 10$ GeV.

In the non-monochromatic case charge asymmetry quantities are reduced typically by a factor 1.3-1.5, their computed uncertainties do not change very much.

The $p_{\perp\mu}^c$ dependence of resulting cross sections for different photon polarizations:

Outline		Distributions and observables	Cascade process	Results	Conclusions/Outlook
				0	
				000	
Depende	ence on cut p^{c}				

New Physics is expected to be switched on at large transverse momenta. We study the dependence of asymmetry on the cut $p_{\perp \mu}^c$.

The $p_{\perp\mu}^c$ dependence of asymmetry. Left – Δ_L , right – Δ_T , blue – $\gamma_-\gamma_-$, green – $\gamma_-\gamma_+$ and $\gamma_+\gamma_-$, red – $\gamma_+\gamma_+$

$\mathbf{Outline}$		Distributions and observables	Cascade process	$\mathbf{Results}$	Conclusions/Outlook
				ŏŏo	
Depende	nce on cut p^{c}				

The asymmetry Δ_L does not decrease appreciably with increasing values of the momentum cut $p_{\perp\mu}^c$.

The asymmetry $\Delta_{\mathcal{T}}$ instead decreases faster.

Outline	Distributions and observables	Cascade process	Results	Conclusions/Outlook
			0 00 000	

OUTLINE

1 INTRODUCTION

2 DISTRIBUTIONS AND OBSERVABLES

3 CASCADE PROCESS

4 Results

- Total Quantites
- Effect of photon spectra
- Dependence on cut $p_{\perp u}^c$

5 CONCLUSIONS/OUTLOOK

Outline	Distributions and observables	Cascade process	Results	Conclusions/Outlook
			0 00 000	•

CONCLUSIONS AND OUTLOOK

- Charge Asymmetries are large and easily measurable.
- Cascade process weakly affects the asymmetry.
- The introduced quantities (especially Δ_L) are large even with large $p^c_{\perp\mu}$ cuts.
- Taking into accont the same effects for $e^+ e^-$, $e^+ \mu^-$, $\mu^+ e^-$ enhances the statistics by 4 times (it is taken into account).
- The non-monochromaticity of photon spectra decreases the charge asymmetries but leaves them large enough.

We plan to use the charge asymmetries in the study of New Physics effects (e.g. MSSM). We hope that they will help!!