Monte Carlo Generators for International Linear Collider Physics

Stefano Moretti

NExT Institute (Southampton/RAL)

ILC Physics in Florence

Motivations

Monte Carlo tools

- ⋆ general purpose Monte Carlo's
- * ad-hoc, dedicated Monte Carlo's
- Physics results (and issues)

Conclusions

글 🕨 🖌 글

Six (and more) fermions at LC

LEP1 was the factory for two-body processes

$$\sqrt{s} = M_Z \longrightarrow Z \to f\bar{f} \ (f = q, \ell)$$

LEP2 was the factory for four-body processes

$$\sqrt{s} \ge 2M_V \longrightarrow VV \to f\bar{f}f'\bar{f}' (V=W,Z)$$

• at LC ($\sqrt{s} = 0.35$ -1 TeV) higher multiplicities available (6f)

$$e^{+}e^{-} \rightarrow t\bar{t} \rightarrow (bW^{+})(bW^{-}) \qquad (\text{top physics}) \\ \rightarrow ZH \rightarrow (f\bar{f})(VV) \qquad (\text{Higgs-stralhung}) \\ \rightarrow \nu_{e}\bar{\nu}_{e}[e^{+}e^{-}]H \rightarrow \nu_{e}\bar{\nu}_{e}[e^{+}e^{-}](VV) \qquad (\text{VBF}) \\ \rightarrow W^{+}W^{-}Z[ZZZ] \rightarrow (f\bar{f})(f'\bar{f}')(f''\bar{f}'') \qquad (\text{QGCs}) \\ \rightarrow ZHH \rightarrow (f\bar{f})(b\bar{b})(b\bar{b}) \qquad (H \text{ self couplings}) \\ \rightarrow \nu_{e}\bar{\nu}_{e}[e^{+}e^{-}]HH \rightarrow \nu_{e}\bar{\nu}_{e}[e^{+}e^{-}](b\bar{b})(b\bar{b}) \qquad (idem)$$

Six (and more) fermions at LC (II)

• ... and more !

$$e^+e^- \rightarrow t\bar{t}H \rightarrow 8f (top - Yukawa)$$

• Add 2HDM:

 $e^+e^- \rightarrow AH \rightarrow (b\bar{b})(VV) \rightarrow 6f$ (Pseudoscalar – Higgs)

$$e^+e^- \rightarrow H^+H^- \rightarrow (t\bar{b})(\tau^-\bar{\nu}_{\tau}) \rightarrow 6f$$
 (Charged – Higgs)
 $\rightarrow (t\bar{b})(\bar{t}b) \rightarrow 8f$ (ditto)

• Add SUSY:

 $e^+e^- \rightarrow \text{Sparticles} \rightarrow \text{ a jungle of fermions } !$

$$(e.g., e^+e^- \to \tilde{t}\tilde{t}^* \to \mathsf{6f} + 2 \mathsf{LSPs})$$

Computational tools are highly needed to investigate the sensitivity of experiments and the feasibility of physics studies.

Many multi-purpose MC's are available

- general MC Pythia, Herwig, Isajet: via resonant ("signal") subprocesses (e.g. *tt*,*ZH*,...), *production* ⊗ *decay*
 - + QCD (QED) Parton Shower (PS), hadronisation, etc.
 - + MC@NLO started
 - no irreducible background, no complete matrix elements, factorisation in NWA
- multi-purpose (for generic final states, not tuned for 6f, 8f, etc.) parton level generators/integrators
 - complete ME (at tree-level): irreducible background and interferences included
 - + (semi-)automated, given a model all processes implemented
 - not tuned, not efficient, in general not high-precision tools
 - A QCD PS & hadronisation can be easily included by means of the Les Houches Standard Accord

Some examples

- ★ CompHEP/CalcHEP (Boos et al.; Pukhov et al.)
- * Grace + Bases/Spring (Minami Tateya group)
- Helas/MadGraph/MadEvent (Hagiwara, Murayama, Watanabe; Stelzer, Long; Maltoni, Stelzer): see Maltoni's talk
- * Whizard+ O'Mega/MadGraph/CompHEP (Kilian; M. Moretti, Ohl, Reuter; Boos et al.)
- * AmegiC++ (Krauss, Kuhn, Schumann, Soff) also ApaciC++ (PS) \rightarrow Sherpa MC
- Helac/Phegas (Papadopoulos; Kanaki, Papadopoulos; Papadopoulos, Worek)
- SM implemented by all, plus MSSM, NMSSM, etc. in some cases: SUSY Les Houches Accord also defined

• □ ▶ • @ ▶ • E ▶ • E ▶

Flow chart example (Whizard)

Developed specifically for 6f physics \rightarrow ideal for precision studies

- eett6f (Kolodziej)
 - \star for $e^+e^- \rightarrow t \bar{t} \rightarrow b \bar{b} + 4 f$, including QCD
- Lusifer (Dittmaier, Roth)
 - $\star\,$ all 6f final states (massless fermions), ISR, QCD but not $lpha_s^2$
- Sixfap (Gangemi, Montagna, M. Moretti, Nicrosini, Piccinini)
 - ★ in principle all 6f (massive fermions), based on ALPHA, no QCD
- Sixphact (Accomando, Ballestrero, Pizzio), same family as LHC programs Phase (Accomando, Maina, Ballestrero) & Phantom (Ballestrero, Belhouari, Bevilacqua, Kashkahn, Maina)
 - * all CC 6f (massive, not top), based on Phact (Ballestrero, Maina): now superseeded by Phantom for ILC (see talk by Bevilacqua)
- Sixrad (S. Moretti)
 - ★ for QCD final states (f = q) at $\mathcal{O}(\alpha_s^4)$. Only jets can be observed, need to add also gluonic final states (e.g. $q\bar{q}q'\bar{q}'q''\bar{q}''$ requires also $q\bar{q}q'\bar{q}'gg$ and $q\bar{q}gggg$). Interface to showering mandatory for phenomenological studies
- lot of work in the italian community

In the context of the "Extended Joint Ecfa/Desy Study on Physics and Detector for a Linear e^+e^- Collider" (started April 2003), a round of tuned comparison among some of the generators was performed.

Some results on $e^+e^- \rightarrow t \bar{t} \rightarrow {\rm 6f}$

• Full set of diagrams vs. signal diagrams vs. narrow-width approximation (NWA) for $e^+e^- \rightarrow \mu^+\nu_\mu\mu^-\bar{\nu}_\mu b\bar{b}$ (from eett6f):

\sqrt{s} [GeV]	$\sigma_{\sf full}[\sf fb]$	$\sigma_{\sf signal}[\sf fb]$	σ_{NWA} [fb]
360	4.416(6)	4.262(1)	4.624(2)
500	6.705(6)	6.354(2)	6.400(7)
800	3.538(29)	3.058(2)	2.973(4)

 \hookrightarrow Full calculation necessary for proper signal definition (see later on)

Various full calculations (\sqrt{s} =500 GeV, agreed cuts, m_f =0):

$\sigma_{full}[fb]$	AMEGIC++	eett6f	Lusifer	PHEGAS	SIXFAP	Whizard
$ u_e e^+ e^- \bar{\nu}_e b \bar{b}$	5.879(8)	5.862(6)	5.853(7)	5.866(9)	5.854(3)	5.875(3)
$ u_e e^+ \mu^- ar{ u}_\mu b ar{b}$	5.827(4)	5.815(5)	5.819(5)	5.822(7)	5.815(2)	5.827(3)
$ u_{\mu}\mu^{+}\mu^{-}ar{ u}_{\mu}bar{b}$	5.809(5)	5.807(3)	5.809(5)	5.809(5)	5.804(2)	5.810(3)
$ u_{\mu}\mu^{+} au^{-}ar{ u}_{ au}bar{b}$	5.800(3)	5.820(3)	5.800(4)	5.798(4)	5.798(2)	5.796(3)
$ u_\mu\mu^+dar{u}bar{b}$	17.209(9)	17.275(28)	17.171(24)	17.204(18)		
last no QCD:	17.097(8)	17.106(15)	17.095(11)	17.107(18)	17.096(4)	17.103(8)

Very good agreement among the codes!

Image: A matrix and a matrix

Tuned comparisons (III)

More top-quark channels

Final state	QCD	AMEGIC++ [fb]	HELAC [fb]
$bar{b}uar{d}dar{u}$	yes	32.90(15)	33.05(14)
	yes	49.74(21)	50.20(13)
	no	32.22(34)	32.12(19)
	no	49.42(44)	50.55(26)
$bar{b}uar{u}gg$	-	11.23(10)	11.136(41)
_	-	9.11(13)	8.832(43)
$bar{b}gggg$	-	18.82(13)	18.79(11)
	-	24.09(18)	23.80(17)
$bar{b}uar{d}e^-ar{ u}_e$	yes	11.460(36)	11.488(15)
	yes	17.486(66)	17.492(41)
	no	11.312(37)	11.394(18)
_	no	17.366(68)	17.353(31)
$b\bar{b}e^+ u_ee^-ar{ u}_e$	-	3.902(31)	3.885(7)
_	-	5.954(55)	5.963(11)
$b\bar{b}e^+ u_e\mu^-ar{ u}_\mu$	-	3.847(15)	3.848(7)
	-	5.865(24)	5.868(10)
$b ar{b} \mu^+ u_\mu \mu^- ar{ u}_\mu$	-	3.808(16)	3.861(19)
	-	5.840(30)	<u><</u> •5.839(12) ≡ ► <
-v-T)		MC Deview	Contombox

S. Moretti (NExT)

September 14, 2007

11/24

Tuned comparisons (IV)

Vector fusion with Higgs exchange			
Final state	QCD	AMEGIC++ [fb]	HELAC [fb]
$e^-e^+uar{u}dar{d}$	yes	0.6842(85)	0.6858(31)
	yes	1.237(15)	1.265(5)
	no	0.6453(62)	0.6527(35)
	no	1.206(14)	1.2394(75)
$e^-e^+u\bar{u}e^-e^+$	_	6.06(36)e-03	6.113(87)e-03
	_	6.58(23)e-03	6.614(80)e-03
$e^-e^+uar{u}\mu^-\mu^+$	-	9.24(12)e-03	9.04(11)e-03
	_	9.25(17)e-03	9.145(74)e-03
$ u_e ar{ u}_e u ar{d} dar{u}$	yes	1.15(3)	1.176(6)
	yes	2.36(7)	2.432(12)
	no	1.14(3)	1.134(5)
	no	2.35(7)	2.429(13)
$ u_e ar{ u}_e u ar{d} e^- ar{ u}_e$	_	0.426(11)	0.4309(48)
	_	0.916(30)	0.9121(48)
$ u_e ar{ u}_e u ar{d} \mu^- ar{ u}_\mu$	_	0.425(12)	0.4221(30)
	-	0.878(27)	0.8888(47)

S. Moretti (NExT)

-2

イロト イポト イヨト イヨト

Tuned comparisons (V)

Vector fusion without Higgs exchange			
Final state	QCD	AMEGIC++ [fb]	HELAC [fb]
$e^-e^+uar{u}dar{d}$	yes	0.4838(50)	0.4842(25)
	yes	1.0514(97)	1.0445(51)
	no	0.4502(31)	0.4524(23)
	no	1.0239(79)	1.0227(43)
$e^-e^+u\bar{u}e^-e^+$	-	3.757(98)e-03	3.577(43)e-03
	-	4.082(56)e-03	4.214(46)e-03
$e^-e^+uar{u}\mu^-\mu^+$	-	5.201(61)e-03	5.119(70)e-03
	-	5.805(67)e-03	5.828(49)e-03
$ u_e ar{ u}_e u ar{d} dar{u}$	yes	0.15007(53)	0.15070(64)
	yes	0.4755(21)	0.4711(24)
	no	0.12828(42)	0.12793(55)
	no	0.4417(19)	0.4398(21)
$ u_e ar{ u}_e u ar{d} e^- ar{ u}_e$	-	0.04546(13)	0.04564(19)
	-	0.16033(63)	0.16011(78)
$ u_e ar{ u}_e u ar{d} \mu^- ar{ u}_\mu$	-	0.04230(12)	0.04180(16)
	_	0.14383(53)	0.14439(65)

-2

イロト イロト イヨト イヨト

Tuned comparisons (VI)

Higgs production through Higgs-strahlung			
Final state	QCD	AMEGIC++ [fb]	HELAC [fb]
$\mu^-\mu^+\mu^-ar{ u}_\mu e^-ar{ u}_e$	_	0.03244(27)	0.03210(15)
	-	0.03747(29)	0.03749(32)
$\mu^-\mu^+ u ar{d} e^- ar{ u}_e$	-	0.0924(8)	0.09306(46)
	-	0.1106(22)	0.10901(66)
$\mu^-\mu^+\mu^-\mu^+e^-e^+$	-	2.828(67)e-03	2.923(52)e-03
	-	2.731(65)e-03	2.691(42)e-03
$\mu^-\mu^+uar{u}dar{d}$	yes	0.2534(24)	0.2540(16)
	yes	0.2634(22)	0.2642(15)
	no	0.2441(23)	0.2471(15)
	no	0.2593(22)	0.2589(14)
$\mu^-\mu^+uar{u}uar{u}$	yes	1.125(8)e-02	1.135(22)e-02
	yes	8.767(65)e-03	8.978(58)e-03
	no	7.929(57)e-03	8.078(92)e-03
	no	6.098(35)e-03	6.013(26)e-03

2

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Tuned comparisons (VII)

Backgrounds to Higgs-strahlung			
QCD	AMEGIC++ [fb]	HELAC [fb]	
_	0.01845(14)	0.01843(13)	
-	0.03054(23)	0.03092(19)	
-	0.05284(57)	0.05209(33)	
_	0.08911(53)	0.08925(48)	
-	2.204(52)e-03	2.346(49)e-03	
_	2.280(66)e-03	2.277(62)e-03	
yes	0.1412(10)	0.1404(11)	
yes	0.2092(12)	0.2075(13)	
no	0.1358(20)	0.1341(12)	
no	0.2040(12)	0.2015(11)	
yes	5.937(24)e-03	5.937(25)e-03	
yes	6.134(29)e-03	6.108(27)e-03	
no	2.722(10)e-03	2.710(11)e-03	
no	3.290(12)e-03	3.303(12)e-03	
	cground: QCD - - - - yes yes no no yes yes no no yes yes no no no	Amegical QCD AMEGIC++ [fb] - 0.01845(14) - 0.03054(23) - 0.05284(57) - 0.08911(53) - 2.204(52)e-03 - 2.280(66)e-03 yes 0.1412(10) yes 0.2092(12) no 0.2040(12) yes 5.937(24)e-03 yes 6.134(29)e-03 no 2.722(10)e-03 no 3.290(12)e-03	

-2

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト ・

Tuned comparisons (VIII)

Triple Higgs coupling				
Final state	QCD	AMEGIC++ [fb]	HELAC [fb]	
$\mu^-\mu^+ b \overline{b} b \overline{b}$	yes yes no no	2.560(26)e-02 3.096(60)e-02 1.711(55)e-02 2.34(12)e-02	2.583(26)e-02 3.019(43)e-02 1.666(28)e-02 2.36(10)e-02	

Backgrounds	to tri	ple Hiaas	coupling

Final state	QCD	AMEGIC++ [fb]	HELAC [fb]
$\mu^{-}\mu^{+}b\overline{b}b\overline{b}$	yes	7.002(32)e-03	7.044(22)e-03
	yes	6.308(24)e-03	6.364(21)e-03
	no	2.955(11)e-03	2.972(12)e-03
	no	3.704(15)e-03	3.695(13)e-03

2

Tuned comparisons (IX)

Gleisberg, Krauss, Papadopoulos, Schaelicke, Schumann '03

• Results are statistically consistent: for each process i = 1, ...88 the deviation $s^{(i)}$ of two resulting cross sections $\sigma_{\rm H}^{(i)}$ and $\sigma_{\rm A}^{(i)}$ is

MC Review

Signal definition, top physics example

Top signal:

 $bar{b} l
u_\ell \ell'
u_{\ell'} \sim 10\% \;, \qquad bar{b} q ar{q}' \ell
u_\ell \sim 45\% \;, \qquad bar{b} + 4q \quad \sim 45\%$

Signatures with one $b\bar{b}$ pair:

CC only	CC and NC	NC only
$b \bar{b} u d \bar{c} s$	$b ar{b} u d ar{u} d$	$bar{b}uar{u}sar{s}$, $bar{b}car{c}dar{d}$
$b \overline{b} \overline{u} d c \overline{s}$	$b\overline{b}c\overline{s}\overline{c}s$	$bar{b}uar{u}uar{u}$, $bar{b}car{c}car{c}$
		$b\overline{b}d\overline{d}d\overline{d}$, $b\overline{b}s\overline{s}s\overline{s}$
		$bar{b}uar{u}car{c}$, $bar{b}dar{d}sar{s}$

 Top "signal" diagram is present only in the first two columns. Other diagrams (e.g. with Higgs) are defined as "background"

S. Moretti (NExT)

MC Review

Signal definition, top physics example (II)

• integrated cross section ($m_t = 175 \text{ GeV}, m_H = 185 \text{ GeV}$)

- ISR (with QED SF) and beam-strahlung distort considerably the shape
- Background: 30% at threshold and 10% above it
- off-shellness: from 15% to 1%

S. Moretti (NExT)

MC Review

3 > 4 3

Signal definition, top physics example

√s = 350 GeV

 cross section at threshold (strongly) depends on the value of the Higgs mass

S. Moretti (NExT)

Signal definition, Higgs physics example

• Signal $e^+e^- \rightarrow q\bar{q}\ell^+\ell^-\nu\bar{\nu}$ (resonant and not resonant H)

- Background: all the rest, e.g. $e^+e^- \rightarrow ZZZ$
- Separation in signal and background can be meaningless

Signal definition, Higgs physics example (II)

- Signal: diagrams with resonant *H*
- Background: all diagrams without *H* as internal line
- $M_{e^+e^-}, M_{q\bar{q}} >$ 70 GeV, $5^{\circ} < \vartheta_{\pm} < 175^{\circ}$

S. Moretti (NExT)

σ (fb)

MC Review

Higgs physics: again on NWA

$$R = 2(\sigma_{sig} - \sigma_{NWA}) / (\sigma_{sig} + \sigma_{NWA})$$

- off-shellness can reach the 15% effect
- full calculation is mandatory for 1% accuracy

S. Moretti (NExT)

September 14, 2007 23 / 24

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- LC will be a multi-particle factory
- with six and eight fermion final states, a detailed study of top and Higgs particles is possible
- many Monte Carlo tools are available
 - ★ general purpose MC event generators
 - ★ general purpose MC parton calculators/integrators
 - * ad-hoc generators for 6f physics, needed for precision studies
- due to code complexity, comparison among independent results is really important
- full implementation and optimisation always preferable to approximation
- when detector emulation software for the 4 concepts will be available, full physics studies will be possible

(日)