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S. Simula
INFN - Roma 3

workshop on ApeNext: Computational Challenges

   and First Physics Results

GGI, Florence (Italy), February 8th-10th, 2007

Lattice QCD and flavor physics (I):
determination of Vus

thanks to: D. Becirevic, D. Guadagnoli, G. Isidori, V. Lubicz, G. Martinelli,
                 F. Mescia, M. Papinutto, C. Tarantino, G. Villadoro

1)     motivations;

2) (quenched) lattice QCD results for K→ π and Σ → n form factors;

3) preliminary results with ApeNext.
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MOTIVATIONS

* Vus is a fundamental parameter of the Standard Model playing a central role in the CKM matrix

* the most accurate test of CKM unitarity comes from low-energy s → u and d → u semileptonic transitions

nuclear SFT Vud = 0.97377 ± 0.00027 ~ 0.03%( )
K
3 decays Vus = 0.2257 ± 0.0021 ~ 1%( )

PDG (‘06) values

inclusive/exclusive B decays Vub = 0.00367 ± 0.00015

Vud
2 + Vus

2 + Vub
2 −1= − 8 ± 5Vud ± 9Vus( ) ⋅10−3

Wolfenstein parameterization

λ = sinθc = Vus

CKM unitarity:
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* the most accurate determination of  |Vus| comes still from K
3 decays, even if alternative approaches, like

   Kµ2 (W. Marciano (‘04)) or τ-decays (see A. Pich (‘06)), are becoming more competitive

* the crucial role is played by the conservation of the vector current in the SU(3) limit and by the Ademollo-Gatto
   (AG) theorem, which guarantees that SU(3)-breaking effects in f+(0) should appear only at second order in the
   breaking parameter (ms - m)

* experiments measure the product |Vus f+(0)| = 0.21686 (49) quite accurately (~ 0.2%) (Flavianet (‘06)) and
   thus the relevant hadronic ingredient is the vector f.f. at zero-momentum transfer f+(0)

* χPT expansion of the vector form factor at zero momentum transfer, f+(0)

f+ 0( ) = 1+ f2 + f4 +O p8( )

Vector Current Conservation

- f4 is AG protected, O[(ms - m)2], but has the largest theoretical uncertainties (~ 50%)

f2 = -0.023 (LEC and renorm. scale independent)

* the present uncertainty on |Vus| (~1%) is almost totally due to the theoretical uncertainty on f+(0) (~0.8%)
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- SPQcdR coll. (‘05): from (quenched) lattice QCD

f+ (0) = 0.960 ± 0.005stat. ± 0.007syst. + quenching error

preliminary unquenched results for f+(0)

JLQCD (‘05): 0.952 (6) [Nf=2, Mπ ~ 500 MeV]

RBC (‘06): 0.968 (9) (6) [Nf=2, Mπ ~ 400 MeV]

FNAL/MILC/HPQCD (‘05): 0.962 (6) (9) [Nf=2+1]

UKQCD/RBC (‘06):  0.961 (5) [Nf=2+1, Mπ ~ 400 MeV]

- Leutwyler-Roos (‘84): from quark model (overlap of K and π wave functions)

f+ (0) = 0.961 ± 0.008

- Post and Schilcher (‘01), Bijnens and Talavera (‘03), Cirigliano et al. (‘06): from NNLO [O(p6)] ChPT +
  1/Nc expansion

f+ (0) = 0.984 ± 0.012

our goal is to reach an accuracy better than 1% with
unquenched simulations at Mπ < 400 MeV
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Step 1: consider the double ratio:
              (initial and final mesons at rest)

R0 ≡
CKπ
0 tx , ty( ) ⋅CπK

0 tx , ty( )
CKK
0 tx , ty( ) ⋅Cππ

0 tx , ty( ) ty→∞,
tx − ty→∞

⎯ →⎯⎯⎯
π V 0 K ⋅ K V 0 π
K V 0 K ⋅ π V 0 π

∝ f0 qmax
2( )⎡⎣ ⎤⎦

2

1. high-precision evaluation of the scalar form factor f0[q2
max] obtained using a suitable ratio of

correlation functions

2. extrapolation to q2 = 0 to get f+(0) = f0(0) (determination of the slope λ0)

3. subtraction of the leading chiral logs [study of Δf = f+(0) - 1 - f2] and extrapolation to physical
masses

review of our strategy for K
3 decays

essential features of the double ratio

1. independent of renormalization constants;

2. exactly normalized at 1 in the SU(3) limit;

3. statistical fluctuations strongly cancel out;

4. improved at O[a2(ms - m

)2] thanks to the

K ⇔ π symmetry.

1% scale !!!

≡ a2 MK
2 − Mπ

2( )

qmax
2 = MK − Mπ( )2

 

β = 6.2 (a−1
 2.6 GeV )

230 (quenched) gauge confs.
Clover fermions
0.5 < MPS (GeV ) < 1
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linear fit: f0(q2) = f (0) (1 + λ0 q2)

quadratic fit: f0(q2) = f (0) (1 + λ0 q2 + c0 q4)

monopole fit: f0(q2) = f (0) / (1 - λ0 q2)

 monopole fit: f+(q2) = f (0) / (1 - λ+ q2)

***** comparison of slopes in units of (Mπ)2 *****

lattice (extrapolated):

FlaviaNet (‘06):

� 

λ+ = 0.025±0.002 λ0 = 0.012±0.002
λ+ = 0.02454 ± 0.00126 λ0 = 0.01314 ± 0.00140

f(0) = f+(0) = f0(0)

Step 2: study the momentum dependence of the f.f.’s

≈ 15 ÷ 20%

extrapolation of f0 q2( )
from q2 = qmax

2  to q2 = 0
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… and get the vector form factor at zero-momentum transfer

≡ a4 MK
2 − Mπ

2( )2

f (0) = f+ (0) = f0 (0) = 1+O MK
2 − Mπ

2( )2⎡
⎣

⎤
⎦ (AG theorem)

1% scale

black dots: results
obtained from a
quadratic fit in q2
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Δf q ≡ f 0( ) −1− f2
q = O MK

2 − Mπ
2( )2⎡

⎣
⎤
⎦Step 3: subtraction of leading chiral logs in (quenched) ChPT

 and extrapolation of the “AG slope”                                                   to physical meson massesR ≡ Δf q a2MK
2 − a2Mπ

2( )2

 linear fit: R = A + B x
 quadratic fit: R = A + B x + C x2

log fit: R = A + B x + C log(x)

x = a2 ( MK
2 + Mπ

2)

the dominant contributions
to the systematic error come
from the uncertainties on the
momentum and mass
dependencies of the (scalar)
form factor

Δf q = −0.017 ± 0.005 stat .( ) ± 0.007 syst .( )

� 

f
+
K0π−

0( ) = 0.960±0.005 stat .( ) ±0.007 syst .( ) = 0.960±0.009

+ quenching error (~ 1%)
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Vus from hyperon semileptonic decays

- both vector and axial f.f.’s are involved:

′B ( ′p ) V µ B(p) = u ′p( ) f1 q
2( )γ µ − f2 q

2( ) iσ
µνqν
′M +M

+ f3 q
2( ) qµ

′M +M
⎧
⎨
⎩

⎫
⎬
⎭
u p( )

′B ( ′p ) Aµ B(p) = u ′p( ) g1 q
2( )γ µ − g2 q

2( ) iσ
µνqν
′M +M

+ g3 q
2( ) qµ

′M +M
⎧
⎨
⎩

⎫
⎬
⎭
γ 5 u p( )

� 

q = p− ′ p 

- a total of six (real) f.f.’s for each octect transition, but

Γ rate ∝ Vus
2 f

1

2 1+ 3 g1
2

f1
2 + 4

′M −M
M '+M

g1
f1

g2
f1

⎧
⎨
⎩

⎫
⎬
⎭

      SU(3) limit
    f1(0) = CGB’B

       g2(0) = 0

- f1(0) is AG protected, but g1(0) and g2(0) are not AG protected
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* recent analysis from Cabibbo, Swallow and Winston (‘04):

1) the ratio g1(0) / f1(0) is extracted from data,
2) SU(3) symmetry is assumed for f1(0) [as well as for g2(0)].

* experiments measure the product |Vus f1(0)|
        - crucial hadronic ingredient: the vector f.f. at zero-momentum transfer f1(0)
        - existing analyses make assumptions on the other f.f.’s

f1
SU(3)(0) = CGB’B

(quenched) lattice study of all the f.f.’s for the weak decay Σ− → n e− νe

f1 0( )
f1
SU (3) 0( ) = 1    (CSW)

<1    (quark model)
>1    (1/Nc exp ansion)

[NPB (‘06)]
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Step 1 + Step 2                 get the vector form factor at zero-momentum transfer, f1(0)

red dots: dipole fits in q2

blue squares: monopole fits in q2

black diamonds: f+(0) results for K
3

lines: linear fits consistent with
          the AG theorem

  

� 

∝ ms −m( )2

SU(3)-breaking effects in
hyperon decays can be
determined on the lattice
with a high precision
comparable to the one
achieved for K3 decays

K3
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define the AG slope: R MK ,Mπ( ) ≡ f1 0( ) +1
a4 MK

2 −Mπ
2( )2

f1
Σ−n (0) = −0.948 ± 0.015stat . ± 0.025syst . + quenching error

+ chiral loops

 K3 decay

uncertainties from q2 and mass
dependencies (~ 2 ÷ 3%)

smooth polynomial fits in the
hadron masses ---> estimate of
local terms only in the chiral
expansion (no chiral loops)
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Chiral corrections in Heavy Baryon ChPT

- recent NLO analysis by G. Villadoro (‘06)

***** convergence is quite poor  *****

LECs appear at
O(p4) thanks to
AG theorem !!!
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- basic problem: octet-decuplet mixing (1/2+ - 3/2+)

 
if Δ >> ΛQCD  0.25 GeV decuplet corrections can be reabsorbed into LECs

 but, in the real world Δ  0.25 GeV, and the decuplet-octet-meson coupling constant C≈1.6

one contribution atO p2( ) : − 3.1%

two contributions atO p3( ): −1.8% from decuplet mass shifts
−38% from octet mass shifts

* model-independent estimate of leading chiral loops is not yet possible

* assuming that decuplet contributions can be reabsorbed into LECs, one has

chiral loops: − 4 ± 4( )%
local terms: + 5.2 ±1.5stat . ± 2.5syst .( )%

partial cancellation

f1
Σ−n (0) = −0.988 ± 0.029lattice ± 0.040HBChPTour estimate: + quenching error

~3% ~4%

breakdown of HBChPT ?
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final results for all the f.f.’s at q2 = 0

5.5 ± 0.9    (gen. GT + AWI)

0.0    (SU(3) limit)

0.0    (SU(3) limit)

-1.71 ± 0.26    (experiment)

-0.269 ± 0.047    (SU(3) limit)

-1.0    (SU(3) limit)

* small SU(3)-breaking effects on f1(0) and g1(0)/f1(0) (within large errors)

* large SU(3)-breaking effects on g2(0) (as well as on f3(0))

* large uncertainties from the extrapolation to physical quark masses and from HBChPT

   (if applicable at all !)

* lower quark masses as much as possible;

* improve the precision in the determination of the momentum dependence of f.f.’s

both K
3 and hyperon decays:
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2001 (Ukawa): the Berlin wall TFlops − years ≈ 3.1
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TFlops − years ≈ 0.03
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2006 (Del Debbio et al.):

(Nf = 2 Wilson fermions)* tremendous improvement of algorithms in the last years

* continuous increase of CPU performances (Moore’s law)

* several choices of fermionic actions: standard Wilson, O(a)-improved Wilson, twisted-mass, staggered,

                                                               domain-wall, overlap, …

Mπ ~ 300 MeV

Nf = 2 twisted-mass Wilson
fermions at maximal twist

(see Karl’s talk)

hep-lat/0701012
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80 Nf=2 gauge configurations

at β = 3.9 and V T = 24^3 48

with a µsea = a µval = 0.0040

preliminary run on ApeNext

* evaluation of   < π | Vµ | K >   on the lattice

- three-point correlation function:
  

� 

CKπ
µ

tx , ty( ) = d x d y 0 T Pπ x( )V µ y( )P
K
† 0( )[ ] 0 e−i p ⋅  y +i ′  p ⋅(  y − x )∫

- two-point correlation functions:
  

� 

GK π( ) tx( ) = d x 0 T PK π( ) x( )P
K π( )
† 0( )[ ] 0 e

−i p K π( )⋅
 x ∫

- plateaux in the ratio: CKπ
µ tx , ty( ) GK ty( ) ⋅Gπ tx − ty( )⎡⎣ ⎤⎦ tx→∞

tx − ty→∞
⎯ →⎯⎯⎯ ∝ π V µ K

PK π( ) x( ): interpolating PS fields

- basic ingredient: the quark propagator Dαβ
ab x, z( )

β ,b,z
∑ Sβγ

bc z, y( ) = δαγ δac δ xy

standard method, point-to-all Sαβ
ab x,0( ),    versus    stochastic estimate of all-to-all Sαβ

ab x, y( )

pion form factor

(thanks to C. Michael)
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* preliminary ETMC results (80 confs) for the scalar form factor f0(q2
max)

~ 0.3%
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CONCLUSIONS

* in the last couple of years the SPQcdR collaboration has shown that lattice QCD can play an important
   role in the determination of the Cabibbo angle from kaon and hyperon semileptonic decays;

* this achievement has been made possible by the development of a suitable strategy that allows the
  determination of the vector form factor at zero-momentum transfer, f+(0), with an overall 1% precision;

* the main limitations are the use of the quenched approximation and of relatively high values of the
   simulated quark masses (Mπ > 500 MeV);

* the increase of computational power offered by ApeNext  and the remarkable improvement of several
  algorithms on the lattice represent a clear opportunity to remove such limitations;

* using the ETMC unquenched gauge configurations and working at pion masses of ~ 300 MeV an accuracy
   on f+(0) well below 1% can be reached, allowing a quite stringent check of the CKM unitarity from
   low-energy processes.
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additional transparencies
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* evaluation of   < π | Vµ | K >   on the lattice: standard procedure

- three-point correlation function:

  

� 

CKπ
µ

tx , ty( ) = d x d y 0 T Pπ x( )V µ y( )P
K
† 0( )[ ] 0 e−i p ⋅  y +i ′  p ⋅(  y − x )∫

interpolating (local) PS fields

- two-point correlation functions:

  

� 

GK π( ) tx( ) = d x 0 T PK π( ) x( )P
K π( )
† 0( )[ ] 0 e

−i p K π( )⋅
 x ∫

- plateaux in the ratio:
CKπ

µ tx , ty( )
GK ty( ) ⋅Gπ tx − ty( ) ty→∞,

tx − ty→∞

⎯ →⎯⎯⎯ ∝ π V µ K

- local Vµ renormalizes on the lattice:

� 

ˆ V µ → ZV 1+ bV a ⋅mq( ) V µ

need to compute < π | Vµ | K >, ZV and bV with huge statistics to reach 1% level of accuracy
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R0 ≡
CΣn
0 tx , ty( ) ⋅CnΣ

0 tx , ty( )
CΣΣ
0 tx , ty( ) ⋅Cnn

0 tx , ty( ) ty→∞
tx − ty→∞

⎯ →⎯⎯⎯
n V 0 Σ ⋅ Σ V 0 n
Σ V 0 Σ ⋅ n V 0 n

Step 1: consider the double ratio

� 

f0 q
2( ) ≡ f1 q

2( ) + q2

M Σ
2 −Mn

2 f3 q
2( ) at qmax

2 = MΣ −Mn( )2scalar form factor:

1.5 < MB(GeV) < 1.8

very high-precision !!!

  

� 

MΣ ≈ A+B ms +2m( )
MΣ

2 −Mn
2 ∝ ms −m( )
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Rj ,0 ≡
CΣn

j tx , ty( ) ⋅CΣΣ
0 tx , ty( )

CΣn
0 tx , ty( ) ⋅CΣΣ

j tx , ty( ) ty→∞
tx −ty→∞

⎯ →⎯⎯⎯
n V j Σ ⋅ n V 0 n
n V 0 Σ ⋅ n V j n

⇒
f0 q

2( )
f1 q

2( )

Step 2: study the momentum dependence of the f.f.’s

- - - - monopole fits

         f0(1)(q2) = f(0) / (1 - λ0(1) q2)

______ dipole fits

         f0(1)(q2) = f(0) / (1 - λ0(1) q2)2

..….  dipole with MK*


