The Quest for Solving QCD: Light Quarks with Twisted Mass Fermions

Karl Jansen

- Introduction
- New Formulations of Lattice Fermions: Overlap contra Twisted Mass Fermions
- Dynamical Quarks
 - Understanding the Phase Structure of Lattice QCD
 - Breakthrough in Simulation Algorithm
- Precision results from $N_f = 2$ dynamical twisted mass fermions
- Summary
Quarks are the fundamental constituents of nuclear matter

\[f(x, Q^2) \Big|_{x \approx 0.25, Q^2 > 10 \text{GeV}} \quad \text{independent of } Q^2 \]

\(x \) momentum of quarks, \(Q^2 \) momentum transfer

Interpretation (Feynman): scattering on single quarks in a hadron → (Bjorken) scaling

(Friedman and Kendall, 1972)
Quantum Fluctuations and the Quark Picture

analysis in perturbation theory

\[\int_0^1 dx f(x, Q^2) = 3 \left[1 - \frac{\alpha_s(Q^2)}{\pi} - a(n_f) \left(\frac{\alpha_s(Q^2)}{\pi} \right)^2 - b(n_f) \left(\frac{\alpha_s(Q^2)}{\pi} \right)^3 \right] \]

- \(a(n_f), b(n_f) \) calculable coefficients

deviations from scaling \(\rightarrow \) determination of strong coupling
Examples of quantities computable on the lattice

- Moments of structure functions: \(\langle x^n \rangle = \int dx x^n f(x) \)

 lowest moment, \(\langle x \rangle \): corresponds to *average momentum of quark in hadron*

- Pion decay constant: \(\langle 0 | A_\mu | \pi(q) \rangle = f_\pi q_\mu \)

 \(A_\mu \) Axial current, \(q \) momentum

- Particle Masses, transition amplitudes, ...

\[
\frac{(O_{\text{Latt}} - O_{\text{Exp}})}{O_{\text{Exp}}}
\]

\(\alpha(M_Z) \), \(f_K \), \(f_\pi \), \(f_{Ds} \), \(B_{Bd}[f_{Bd}]^2 \), \(B_K \), \(m_b \), \(m_c \)
There are dangerous lattice animals

→ violation of chiral symmetry
 (exchange of massless left- and right-handed quarks)
Problem to reach physical value of pion mass
quenched example: chiral extrapolation of \(\langle x \rangle \)

Guagnelli, K.J., Palombi, Petronzio, Shindler, Wetzorke

- Schrödinger Functional
- combined Wilson and \(O(a) \)-improved Wilson
- controlled
 - non-perturbative renormalization
 - continuum limit
 - finite volume effects
 - statistical errors
- want to reach:
 \[m_{\pi}^2 = 0.02 \text{ [GeV}^2] \]
solution, give up anti-commutation condition with γ_5: **Ginsparg-Wilson relation**

\[
\gamma_5 D + D \gamma_5 = 2aD \gamma_5 D \quad \Rightarrow \quad D^{-1} \gamma_5 + \gamma_5 D^{-1} = 2a\gamma_5
\]

Ginsparg-Wilson relation implies an *exact lattice chiral symmetry* (Lüscher):

for any operator D which satisfies the Ginsparg-Wilson relation, the action

\[
S = \bar{\psi} D \psi
\]

is invariant under the transformations

\[
\delta \psi = \gamma_5 (1 - \frac{1}{2}aD) \psi, \quad \delta \bar{\psi} = \bar{\psi} (1 - \frac{1}{2}aD) \gamma_5
\]

⇒ *almost continuum like behaviour of fermions*

one **local** (Hernández, Lüscher, K.J.) solution: overlap operator D_{ov} (Neuberger)

\[
D_{ov} = [1 - A(A^\dagger A)^{-1/2}]
\]

with $A = 1 + s - D_w(m_q = 0)$; s a tunable parameter, $0 < s < 1$
Wilson (Frezzotti, Rossi) twisted mass QCD (Frezzotti, Grassi, Sint, Weisz)

\[D_{tm} = m_q + i\mu \tau_3 \gamma_5 + \frac{1}{2} \gamma_\mu \left[\nabla_\mu + \nabla^*_\mu \right] - a^2 \gamma_\mu \nabla_\mu \]

quark mass parameter \(m_q \), twisted mass parameter \(\mu \)

- \(m_q = m_{\text{crit}} \rightarrow O(a) \) improvement for
 hadron masses, matrix elements, form factors, decay constants

- \(\det[D_{tm}] = \det[D_{\text{Wilson}}^2 + \mu^2] \)
 \(\Rightarrow \) protection against small eigenvalues

- computational cost comparable to staggered

- simplifies mixing problems for renormalization

- serious competitor to Ginsparg-Wilson fermions

★ based on symmetry arguments \(\Rightarrow \) check how it works in practise

Drawback: explicit breaking of isospin symmetry for any \(a > 0 \)
A first test
twisted mass against overlap fermions: how chiral can we go?
Bietenholz, Capitani, Chiarappa, Christian, Hasenbusch, K.J., Nagai, Papinutto,
Scorzato, Shcheredin, Shindler, Urbach, Wenger, Wetzorke

fixed lattice spacing of $\alpha = 0.125\text{fm}$

\Rightarrow twisted mass simulations can reach quarks masses as small as overlap
substantially smaller than $O(\alpha)$-improved Wilson fermions
Scaling of $\langle x \rangle$ and F_{PS} with twisted mass fermions

K.J., M. Papinutto, A. Shindler, C. Urbach, I. Wetzorke

\rightarrow $O(a^2)$ scaling for two realizations of $O(a)$-improvement

\rightarrow κ_c^{PCAC} very small $O(a^2)$ effects

\rightarrow κ_c^{pion} larger $O(a^2)$ effects, late scaling $\beta \geq 6$

\rightarrow consistent with theoretical considerations

(Frezzotti, Martinelli, Papinutto, Rossi; Sharpe, Wu; Aoki, Bär)
F_{PS} and $\langle x \rangle$ with twisted mass

(S. Capitani, K.J., M. Papinutto, A. Shindler, C. Urbach, I. Wetzorke)
Cost comparison

<table>
<thead>
<tr>
<th>V, m_π</th>
<th>Overlap</th>
<th>Wilson TM</th>
<th>rel. factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>$12^4, 720\text{Mev}$</td>
<td>48.8(6)</td>
<td>2.6(1)</td>
<td>18.8</td>
</tr>
<tr>
<td>$12^4, 390\text{Mev}$</td>
<td>142(2)</td>
<td>4.0(1)</td>
<td>35.4</td>
</tr>
<tr>
<td>$16^4, 720\text{Mev}$</td>
<td>225(2)</td>
<td>9.0(2)</td>
<td>25.0</td>
</tr>
<tr>
<td>$16^4, 390\text{Mev}$</td>
<td>653(6)</td>
<td>17.5(6)</td>
<td>37.3</td>
</tr>
<tr>
<td>$16^4, 230\text{Mev}$</td>
<td>1949(22)</td>
<td>22.1(8)</td>
<td>88.6</td>
</tr>
</tbody>
</table>

timings in seconds on Jump
Let me describe a typical computer simulation: [...] the first thing to do is to look for phase transitions (G. Parisi)

lattice simulations are done under the assumption that the transition is continuum like

- first order, jump in \(< \bar{\Psi} \Psi > \) when quark mass \(m \) changes sign
- pion mass vanishes at phase transition point

\[\Rightarrow \text{single phase transition line} \]

\[\rightarrow \text{twisted mass fermions offer a tool to check this} \]
Revealing the generic phase structure of lattice QCD

Aoki phase: Ilgenfritz, Müller-Preussker, Sternbeck, Stüben

→ Knowledge of phase structure for a particular formulation of lattice QCD: pre-requisite for numerical simulation
Chiral perturbation theory for the phase transition

Sharpe, Wu; Hofmann, Münster; Scorzato; Aoki, Bär

In the regime \(m/\Lambda_{QCD} \gtrsim a\Lambda_{QCD} \)

\[
M = 2B_0/Z_P \sqrt{m_{PCAC,\chi}^2 + \mu^2} \quad \Lambda_R = 4\pi F_0 \quad \cos \omega = \frac{m_{PCAC,\chi}}{\sqrt{m_{PCAC,\chi}^2 + \mu^2}}
\]

\[
m_{\pi}^2 = M + \frac{8}{F_0^2} \left\{ M^2 (2L_{86} - L_{54}) + 4aM \cos \omega (w - \tilde{w}) \right\} + \frac{M^2}{32F_0^{2}\pi^2} \log \left(\frac{M}{\Lambda^2_R} \right)
\]

\[
f_{\pi} = F_0 + \frac{4}{F_0} \left\{ ML_{54} + 4a \cos \omega \tilde{w} \right\} - \frac{M}{16F_0\pi^2} \log \left(\frac{M}{\Lambda^2_R} \right)
\]

\[
g_{\pi} = B_0/Z_P \left[F_0 + \frac{4}{F_0} \left\{ M(4L_{86} - L_{54}) + 4a \cos \omega (2w_s - \tilde{w}) \right\} - \frac{M}{32F_0\pi^2} \log \left(\frac{M}{\Lambda^2_R} \right) \right]
\]

parameters to fit: \(B_0/Z_P, F_0, L_{86}, L_{54}, w, \tilde{w} \)
Serious Consequence: minimal pseudo scalar mass

- Continuum picture not realized
- Pion does not vanish rather reaches a minimal value
- Strength of phase transition depends on lattice spacing a
- Minimal pion mass depends on strength of phase transition m_{PS} vanishes with rate $O(a)$
Costs of dynamical fermions simulations, the “Berlin Wall”
see panel discussion in Lattice2001, Berlin, 2001

Formula

\[C \propto \left(\frac{m_\pi}{m_\rho} \right)^{-z_\pi} (L)^{z_L} (a)^{-z_a} \]

\[z_\pi = 6 \]
\[z_L = 5 \]
\[z_a = 7 \]

physical contact to \(\chiPT \) (?)
A hypothetical dynamical computation of F_π in 2000 for up and down quarks ($N_f = 2$)

quenched ($N_f = 0$) \hspace{1cm} dynamical u and d quarks ($N_f = 2$)
European Twisted Mass Collaboration

The quest for solving QCD

B. Blossier, Ph. Boucaud, P. Dimopoulos,
F. Farchioni, R. Frezzotti, V. Gimenez,
G. Herdoiza, K. Jansen, V. Lubicz,
G. Martinelli, C. McNeile, C. Michael,
I. Montvay, M. Papinutto, O. Pène,
J. Pickavance, G.C. Rossi, L. Scorzato,
A. Shindler, S. Simula,
C. Urbach, U. Wenger
Target setup for $N_f = 2$ maximally twisted Dynamical Quarks

- $\beta = 3.9$, 5000 thermalized trajectories

- simulations at a smaller and a larger lattice spacing at matched pion masses and volumes are in progress

- test scaling and perform continuum limit

<table>
<thead>
<tr>
<th>$L^3 \cdot T$</th>
<th>β</th>
<th>κ_{crit}</th>
<th>$a\mu$</th>
<th>$a[\text{fm}]$</th>
<th>$m_\pi[\text{MeV}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$24^3 \cdot 48$</td>
<td>3.90</td>
<td>0.160856</td>
<td>0.0040</td>
<td>≈ 0.095</td>
<td>280</td>
</tr>
<tr>
<td>$24^3 \cdot 48$</td>
<td>3.90</td>
<td>0.160856</td>
<td>0.0064</td>
<td>≈ 0.095</td>
<td>350</td>
</tr>
<tr>
<td>$24^3 \cdot 48$</td>
<td>3.90</td>
<td>0.160856</td>
<td>0.0100</td>
<td>≈ 0.095</td>
<td>430</td>
</tr>
<tr>
<td>$24^3 \cdot 48$</td>
<td>3.90</td>
<td>0.160856</td>
<td>0.0150</td>
<td>≈ 0.095</td>
<td>510</td>
</tr>
</tbody>
</table>
Shift the Berlin Wall and Twist

New variant of HMC algorithm (Urbach, Shindler, Wenger, K.J.)
(see also SAP (Lüscher) and RHMC (Clark and Kennedy) algorithms)

- even/odd preconditioning
- (twisted) mass-shift (Hasenbusch trick)
- multiple time steps

\[t_{\text{flops}} \cdot \text{years} \]

- twisted mass at much smaller \(m_{PS}/m_{V} \)
- compatible with (our own) Wilson
- compatible with staggered
- compatible with RHMC

\[\Rightarrow 3 \text{ algorithms to drive Wilson fermions towards the physical point} \]
A computation of F_π in 2006 for up and down quarks ($N_f = 2$)
Vector over pseudoscalar mass

\begin{center}
\begin{tikzpicture}
\begin{axis}[
width=\textwidth,
height=0.8\textwidth,
axis x line=middle,
axis y line=middle,
axis line style={-},
xtick={300,400,500,600},
xticklabels={300,400,500,600},
ytick={0.3,0.4,0.5,0.6},
yticklabels={0.3,0.4,0.5,0.6},
]
\addplot[only marks,mark size=1pt,mark options={red}] coordinates {
(350,0.30) (400,0.40) (450,0.50) (500,0.60)
};
\end{axis}
\end{tikzpicture}
\end{center}

\textit{m_{PS}/m_{V}}
Pseudo scalar decay constant

- Results at one lattice spacing $a \approx 0.095\text{fm}$
- Finite Size corrections noticeable
- Curvature clearly visible
Comparison with Chiral Perturbation Theory

Precise numerical results for m_{PS} and f_{PS} calls for a comparison to chiral perturbation theory

$$m^2_{PS} = 2B_0\mu \left[1 + \xi \log\left(2B_0\mu/\Lambda_3^2\right)\right], \quad \xi = 2B_0\mu/(4\pi F)^2$$

$$f_{PS} = F \left[1 - 2\xi \log\left(2B_0\mu/\Lambda_4^2\right)\right], \quad \xi = 2B_0\mu/(4\pi F)^2$$

⇒ four unknown parameters: $B_0, F, \Lambda_3, \Lambda_4$

⇒ allow to determine physical observables, e.g.:

- scalar condensate $\Sigma_0 = \langle \bar{\Psi}\Psi \rangle$
- Pion decay constant F_π
- scalar pion radius $\langle r^2 \rangle$
- s-wave scattering lengths a_{00}, a_{20}
Fits to chiral perturbation theory formulae

\[
\begin{align*}
(\frac{am^2_{PS}}{\mu}) & \approx 0.016, 0.012, 0.008, 0.004, 0.0016, \\
(af_{PS}) & \approx 0.09, 0.08, 0.07, 0.06, 0.05
\end{align*}
\]

⇒ excellent description by chiral perturbation theory

\[2aB_0 = 4.99(6), \quad aF = 0.0534(6)\]

\[a^2\ell_3^2 \equiv \log(a^2\Lambda_3^2) = -1.93(10), \quad a^2\ell_4^2 \equiv \log(a^2\Lambda_4^2) = -1.06(4)\]
Comparison to other determinations

● ETMC:
\[\bar{l}_3 = 3.65 \pm 0.12 \]
\[\bar{l}_4 = 4.52 \pm 0.06 \]

● Other estimates Leutwyler, hep-ph/0612112

phenomenological determinations
\[\bar{l}_3 = 2.9 \pm 2.4 \text{ from the mass spectrum of the pseudoscalar octet} \]
\[\bar{l}_4 = 4.4 \pm 0.2 \text{ from the radius of the scalar} \]

other lattice determinations
\[\bar{l}_3 = 0.8 \pm 2.3 \text{ from MILC (US-UK, staggered)} \]
\[\bar{l}_3 = 3.0 \pm 0.6 \text{ from lattice CERN group (Wilson)} \]
\[\bar{l}_4 = 4.3 \pm 0.9 \text{ from } f_K/f_{\pi} \text{ pion form factor} \]
\[\bar{l}_4 = 4.0 \pm 0.6 \text{ from MILC} \]
Narrowing scattering lengths *(Leutwyler, private communication)*

- Lattice calculations: only statistical errors → systematic effects under systematic investigation

- scalar pion radius (ETMC): \(< r^2 > = 0.637(26) \text{fm}^2 \)
 Colangelo, Gasser, Leutwyler: \(< r^2 > = 0.61(4) \text{fm}^2 \)

- s-wave scattering lengths:
 \(a_{00} = 0.220 \pm 0.002, \quad a_{20} = -0.0449 \pm 0.0003 \)
Quark Masses Preliminary!

→ prime example for lattice calculations

- up and down quarks:
 \[m_{u,d}[\text{MS}, 2 \text{ GeV}] = 3.8(3) \text{ MeV} \]

- strange quark:
 \[m_s[\text{MS}, 2 \text{ GeV}] = 115(2) \text{ MeV} \]

- charm quark:
 \[m_c[\text{MS}, 2 \text{ GeV}] = 1.1(1) \text{ GeV} \]
Example: Lowest Moment of Non-singlet, Pion Parton Distribution Function $\langle x \rangle$

$\langle x \rangle_{\text{PS}(\mu=2\text{GeV})}$

→ simulation at small pseudoscalar masses feasible

→ dynamical point consistent with quenched (?)
Pion Form Factor

$F_\pi(q^2) = a^2 q^2$ with $M_\pi \sim 300$ MeV

- head-on kin. and stochastic prop. (80 confs)
- vector-meson dominance
- "standard" kin. and point-to-all prop. (120 confs)
First Scaling result

\[
\frac{(a_{F_0})}{(a_{\mu})^2} \quad \beta = 3.9 \quad \beta = 4.05
\]

\[
\frac{(a_{F_0})}{(a_{\mu})^2}
\]

\[
\frac{(a_{F_0})}{(a_{\mu})^2}
\]
• Isospin broken at $a > 0$

• strongest for $m_{PS}^+ - m_{PS}^0$

• Effect vanishes as $m_{PS}^+ - m_{PS}^0 = c_2a^2$

• Find at $a \approx 0.095\text{fm}$
 and 250MeV pion mass

\[\Delta \equiv (m_{PS}^+ - m_{PS}^0)/m_{PS}^+ = (0.134 - 0.101)/0.134 \approx 25\% \]

• Preliminary: at $a \approx 0.075\text{fm}$, $\Delta \approx 10\%$
International Lattice Data Grid

- Configurations stored within ILDG context
- storage elements: DESY Hamburg and Zeuthen, ZiB Berlin, FZ Jülich
- semantic based access to configuration data
Summary

- Progress in solving outstanding problem in LGT
 - reaching the chiral limit
 - comparison to analytical approaches

- Overlap fermions: *exact chiral symmetry*
- Twisted mass fermions:
 - $O(10-100)$ cheaper to simulate
 - small quark masses reachable
 - only chirally improved

- Dramatic algorithm improvement

- New Computer Architectures
 - \textit{apeNEXT}
 - enter area of precise dynamical results
Physics Plans and Machines in Germany

http://www-zeuthen.desy.de/latfor
Physics Plans

SESAM GRAL TXL	Action: $N_f = 2$ Wilson, Wilson plaquette	$m_\pi = 0.4...1\text{GeV}$, $a=0.08...0.13\text{fm}$, up to $V = 24^3 40$
	Links: Germany, Italy, US	19 ensembles (60K confs.), uploaded now 15K
	Policy: open(*)	
	Parameters:	
	$m_\pi = 0.4...1\text{GeV}$, $a=0.08...0.13\text{fm}$, up to $V = 24^3 40$	
	Configurations:	
	19 ensembles (60K confs.), uploaded now 15K	

QCDSF	Action: $N_f = 2$ NP-Clover, Wilson plaquette	$m_\pi = 0.25...1\text{GeV}$, $a=0.05...0.11\text{fm}$, up to $V = 32^3 64$
	Links: Germany, UK, Japan, US	14 ensembles, O(14000) confs
	Policy: Open access to ensembles before 2006 (**)	Immediate access to new data by agreement
	Parameters:	
	$m_\pi = 0.25...1\text{GeV}$, $a=0.05...0.11\text{fm}$, up to $V = 32^3 64$	
	Configurations:	
	14 ensembles, O(14000) confs	

ETMC	Action: $N_f = 2$ maximally tmQCD, tISym gauge	$a = 0.075 - 0.12\text{fm}$, $L \approx 2.5\text{fm}$, $250 < m_\pi < 500\text{MeV}$
	Links: Germany, France, Italy, UK	3 ensembles O(3500) confs uploaded
	Policy: open (*)	
	Parameters:	
	$a = 0.075 - 0.12\text{fm}$, $L \approx 2.5\text{fm}$, $250 < m_\pi < 500\text{MeV}$	
	Configurations:	
	3 ensembles O(3500) confs uploaded	

(*) Acknowledgment in paper, draft paper in advance
(**) hep-ph/0502212 and hep-lat/0601004 should be cited
Supercomputer Infrastructure

- apeNEXT in Zeuthen 3 Teraflops
 and Bielefeld 5 Teraflops
 → dedicated to LGT

- NIC BlueGene/L System at FZ-Jülich
 45 Teraflops

- NIC IBM Regatta System at FZ-Jülich
 10 Teraflops

- Altix System at LRZ Munic
 26.2 Teraflops (since June 2006)
 upgrade to 60 Teraflops mid 2007
The Future

Gauss Centre for Supercomputing (GCS)

The Gauss Centre for Supercomputing (GCS) provides the most powerful high-performance computing infrastructure in Europe.

- John von Neumann-Institut for Computing, Jülich
- Leibniz Rechenzentrum, München
- Höchstleistungsrechenzentrum, Stuttgart

- Multi-teraflops supercomputers
- Multi-petabyte storage
- Multi-gigabit communication links

→ compete for European Supercomputer Center

⇒ Super Computers with several 100 Teraflops in near future