Non-perturbative properties of high-T QCD from lattice calculations

Frithjof Karsch, Brookhaven National Laboratory & Bielefeld University

Introduction:

thermal scales in QCD: $T, gT, g^2T,...$

Heavy quark free energies

screening and running couplings

Bulk thermodynamics

the equation of state: QCD and SU(3)

Hadronic fluctuations

quark number and charge fluctuations

Conclusions

Thermal scales in QCD

Ithe hard scale: $p \sim T$

thermal modes, bulk thermodynamics, eg. pressure

$$\frac{p}{\Gamma^4} = a_{SB} f_p(g(T))$$

• the soft scale: $p \sim gT$

static color-electric modes, eg. Debye screening

$$rac{m_D(T)}{g(T)T} = \sqrt{rac{N_c}{3} + rac{n_f}{6} + rac{n_f}{2\pi^2} \left(rac{\mu_q}{T}
ight)^2} \cdot f_E(g(T))$$

the ultra-soft scale: $p \sim g^2 T$ static color-magnetic modes, eg. spatial string tension

$$\frac{\sqrt{\sigma_s}}{g^2(T)T} = c_M f_M(g(T))$$

F. Karsch, GGI, June 2008 – p. 2/34

Non-thermal scales in thermal QCD

• even harder scales:
$$p \gg T$$
, $r^{-1} \gg T$, $M \gg T$

short distance physics, eg. quarkonium

 $g^2(r,T)$

When does *T* become the dominant scale?

Hierachy of scale ?

Perturbation theory provides a hierachy of length scales

 $T \gg gT \gg g^2T$... \Rightarrow guiding principle for effective theories,

resummation, dimensional reduction...

These scales are not well separated close to $T_c \parallel$

Hierachy of scale ?

- Perturbation theory provides a hierachy of length scales
 - $T \gg gT \gg g^2T...\Rightarrow$ guiding principle for effective theories,

resummation, dimensional reduction...

These scales are not well separated close to $T_c \parallel$

Early lattice results show that $g^2(T) > 1$ even at $T \sim 5T_c$

G. Boyd et al, NP B469 (1996) 419: SU(3) thermodynamics..

...one has to conclude that the temperature dependent running coupling has to be large, $g^2(T)\simeq 2$ even at $T\simeq 5T_c$

- the Debye screening mass is large close to T_c
- the spatial string tension does not vanish above T_c

 $\sqrt{\sigma_s} \neq 0 \Rightarrow$ the QGP is "non-perturbative" up to very high T

Analyzing hot and dense matter on the lattice: $N_{\sigma}^3 \times N_{\tau}$

Quantum Chromo Dynamics partition function: $Z(V, T, \mu) = \int \mathcal{D} \mathcal{A} \mathcal{D} \psi \mathcal{D} \overline{\psi} \ \mathrm{e}^{-S_E}$

$$S_E = \int_0^{1/T} dx_0 \int_V d^3x \ \mathcal{L}_E(\mathcal{A}, \psi, \bar{\psi}, \mu)$$
temperature volume chemical potentia

Michael Creutz

Phys. Rev. D21 (1980) 2308

Analyzing hot and dense matter on the lattice: $N_{\sigma}^3 \times N_{\tau}$

Quantum Chromo Dynamics partition function: $Z(V, T, \mu) = \int \mathcal{D} \mathcal{A} \mathcal{D} \psi \mathcal{D} \overline{\psi} \ \mathrm{e}^{-S_E}$

$$S_E = \int_0^{1/T} dx_0 \int_V d^3x \ \mathcal{L}_E(\mathcal{A}, \psi, \bar{\psi}, \mu)$$

temperature volume chemical potentia

Michael Creutz

 $\mathcal{O}(10^6)$ grid points; $\mathcal{O}(10^8)$ d.o.f.; integrate eq. of motion

Phys. Rev. D21 (1980) 2308

Screening of heavy quark free energies – remnant of confinement above T_c –

pure gauge: O.Kaczmarek, FK, P. Petreczky, F. Zantow, PRD70 (2005) 074505 2-flavor QCD: O.Kaczmarek, F. Zantow, Phys. Rev. D71 (2005) 114510

- singlet free energy (in Coulomb gauge) F₁ [MeV] 1000 0.76T $T \simeq T_c :$ screening for 0.81T $r \gtrsim 0.5$ fm 0.90T 500 1.00T $F_1(r,T) \sim rac{lpha(T)}{r} e^{-\mu(T)r}$ +const.r [fm] 4.01T_c -500 1.5 3 0.5 1 2 2.50 4lpha(r,T=0 $F_1(r,T)$ follows linear rise of $V_{\bar{q}q}(r,T=0) =$

F. Karsch, GGI, June 2008 – p. 6/34

Non-perturbative Debye screening

- Ieading order perturbation theory: $m_D = g_D(T)T\sqrt{1 + \frac{n_f}{6}}$
- $T_c < T \lesssim 10T_c$: non-perturbative effects are well represented by an "A-factor": $m_D \equiv Ag_D(T)T, \ A \simeq 1.5$

F. Karsch, GGI, June 2008 – p. 7/34

Non-perturbative Debye screening

- Ieading order perturbation theory: $m_D = g_D(T)T\sqrt{1 + \frac{n_f}{6}}$
- $T_c < T \lesssim 10T_c$: non-perturbative effects are well represented by an "A-factor": $m_D \equiv Ag_D(T)T, \ A \simeq 1.5$

Non-perturbative Debye screening μ_q -dependence

leading order perturbation theory:

$$m_D = g(T)T \sqrt{1 + rac{n_f}{6} + rac{n_f}{2\pi^2} \left(rac{\mu_q}{T}
ight)^2}$$

Taylor expansion, 2-flavor QCD:

$$m_D(T) = m_0(T) + m_2(T) \left(rac{\mu_q}{T}
ight)^2 + \mathcal{O}(\mu_q^4)$$

 $m_2/m_0 = 3/8\pi^2$: agrees with perturbation theory for $T \gtrsim 1.5T_c$ 4 $m_2^1/T \rightarrow$ m_0^1/T 2 $1/2 \cdot m_2^{av}/T \vdash \Box$ 3.5 3 1.5 2.5 1 2 1.5 0.5 1 0.5 0 T/T_c T/T_c 0 2.5 1.5 3 3.5 1.5 2.5 2 2 3 3.5 4 M. Döring et al., Eur. Phys. J. C46 (2006) 179

Non-perturbative Debye screening μ_q -dependence

Static quark-quark source in a thermal heat bath

triality = 0: medium provides additional quark or 2 anti-quarks

$$Z_{QQ}(T,\mu,r) = \int dU \operatorname{Tr} L_{0} \operatorname{Tr} L_{r} \operatorname{det} D(m_{q},\mu) e^{-\beta S_{G}}$$

$$N_{QQ}(T,r) = \frac{\partial \ln Z_{qq}(T,\mu,r)}{\partial \mu/T} \Big|_{\mu=0}^{0.5} \int_{-1}^{0.5} \int_{-1}^{0.5} \int_{-1}^{1} \int_{0.5}^{0.5} \int_{-1}^{1} \int_{0.5}^{1} \int_{0.5}^{1}$$

Static quark-quark source in a thermal heat bath

triality = 0: medium provides additional quark or 2 anti-quarks

F. Karsch, GGI, June 2008 – p. 9/34

Static quark-quark source in a thermal heat bath

triality = 0: medium provides additional quark or 2 anti-quarks

F. Karsch, GGI, June 2008 – p. 9/34

Static quark-quark source in a thermal heat bath

triality = 0: medium provides additional quark or 2 anti-quarks

F. Karsch, GGI, June 2008 – p. 9/34

Static quark-quark source in a thermal heat bath

triality = 0: medium provides additional quark or 2 anti-quarks

$$Z_{QQ}(T,\mu,r) = \int dU \operatorname{Tr} L_{0} \operatorname{Tr} L_{r} \operatorname{detD}(m_{q},\mu) e^{-\beta S_{G}}$$

$$N_{QQ}(T,r) = \frac{\partial \ln Z_{qq}(T,\mu,r)}{\partial \mu/T} \Big|_{\mu=0}^{0}$$

$$\int_{-1.5}^{0.5} \int_{-1}^{0.5} \int_{-1.5}^{0.5} \int_{-1.5$$

F. Karsch, GGI, June 2008 – p. 9/34

Screening of heavy quark free energies – remnant of confinement above T_c –

pure gauge: O.Kaczmarek, FK, P. Petreczky, F. Zantow, PRD70 (2005) 074505 2-flavor QCD: O.Kaczmarek, F. Zantow, Phys. Rev. D71 (2005) 114510

- singlet free energy (in Coulomb gauge) F₁ [MeV] 1000 0.76T $T \simeq T_c :$ screening for 0.81T $r \gtrsim 0.5$ fm 0.90T 500 1.00T $F_1(r,T) \sim rac{lpha(T)}{r} e^{-\mu(T)r}$ +const.r [fm] 4.01T_c -500 1.5 3 0.5 1 2 2.50 4lpha(r,T=0) $F_1(r,T)$ follows linear rise of $V_{\bar{q}q}(r,T=0) =$

Singlet free energy and asymptotic freedom

pure gauge: O.Kaczmarek, FK, P. Petreczky, F. Zantow, PRD70 (2005) 074505 2-flavor QCD: O.Kaczmarek, F. Zantow, Phys. Rev. D71 (2005) 114510

singlet free energy defines a running coupling:

Singlet free energy and asymptotic freedom

pure gauge: O.Kaczmarek, FK, P. Petreczky, F. Zantow, PRD70 (2005) 074505 2-flavor QCD: O.Kaczmarek, F. Zantow, Phys. Rev. D71 (2005) 114510

singlet free energy defines a running coupling:

Singlet free energy and asymptotic freedom

pure gauge: O.Kaczmarek, FK, P. Petreczky, F. Zantow, PRD70 (2005) 074505 2-flavor QCD: O.Kaczmarek, F. Zantow, Phys. Rev. D71 (2005) 114510

singlet free energy defines a running coupling:

F. Karsch, GGI, June 2008 – p. 11/34

The spatial string tension

Does dimensional reduction work with light quarks?

Non-perturbative, vanishes in high-T perturbation theory:

$$\sqrt{\sigma_s} = -\lim_{R_x, R_y o \infty} \ln rac{W(R_x, R_y)}{R_x R_y}$$

The spatial string tension

Does dimensional reduction work with light quarks?

Non-perturbative, vanishes in high-T perturbation theory:

$$\sqrt{\sigma_s} = -\lim_{R_x, R_y o \infty} \ln rac{W(R_x, R_y)}{R_x R_y}$$

 c_3 : 3-d SU(3), LGT g_{σ}^2 : 2-loop dim. red. pert. th.

$$g_\sigma^2(T_c)\simeq 3.7~,~g_\sigma^2(5T_c)\simeq 2$$

dimensional reduction works for $T \gtrsim 2T_c$

- c_M (almost) flavor independent - $g^2_{\sigma}(T)$ shows 2-loop running

$$c_{\sigma} = 0.553(1) \; [{
m SU(3)}] \ c_{\sigma} = 0.54(1) \; [{
m QCD}]$$

RBC-Bielefeld, in preparation

QCD equation of state

- two prominent features of EoS that characterize the non-perturbative structure of QCD at high temperature
 - strong deviations from ideal gas behavior ($\epsilon = 3p$) for $T_c \leq T \lesssim 3T_c$
 - deviations from Stefan-Boltzmann limit persist even at high T

QCD equation of state

- two prominent features of EoS that characterize the non-perturbative structure of QCD at high temperature
 - strong deviations from ideal gas behavior ($\epsilon = 3p$) for $T_c \leq T \lesssim 3T_c$
 - deviations from Stefan-Boltzmann limit persist even at high T

- structure of EoS is 'universal', i.e. shows little quark mass dependence in ϵ/ϵ_{SB} vs. T/T_c
- quark content changes only 'details'

The pressure revisited

- $T \gtrsim (2-3)T_c$: deviations from ideal gas understood in terms of HTL-resummed perturbation theory
- $T \leq 2T_c$: strong deviations from ideal gas
- deviations from p_{SB} almost flavor independent

FK, E. Laermann and A. Peikert, Phys. Lett. B478 (2000) 447

(2+1)-flavor QCD: ...towards the cont. limit ($N_{\tau} = 8$)

with light quarks ($m_\pi \simeq 220~{
m MeV}$)

some cut-off effects in the peak region; p4 and asqtad agree

- T > 300 MeV: good agreement between $N_{\tau} = 6$ and 8 results
- non-perturbative:
 - $(\epsilon-3p)/T^4\sim A/T^2+B/T^4$ for $1.5T_c\!\lesssim\!T\!\lesssim\!4T_c$

Pressure, Energy and Entropy

- p/T^4 from integration over $(\epsilon 3p)/T^5$; using piecewise quadratic fit with $T_0 = 100$ MeV with $p(T_0) = 0$;
- systematic error on $3p/T^4 \simeq 0.33$
- good scaling behavior; good agreement between different discretization schemes

EoS and velocity of sound

• $p/\epsilon \Rightarrow$ velocity of sound:

SU(3) Thermodynamics - revisited: $\langle G^2 \rangle_T$

- SU(3) EoS deviates from ideal gas by about 15% at $4T_c$
- slow approach to the high temperature limit
- consistent with logarithmic running of the coupling (cf. 4d vs. 3d)

(2+1)-flavor QCD: Gluon condensate: $\langle G^2 \rangle_T$

• $\Theta_F^{\mu\mu}/T^4 = \sum_f m_f \left(\langle \bar{\psi}\psi \rangle_{T=0} - \langle \bar{\psi}\psi \rangle_T \right)$

F. Karsch, GGI, June 2008 – p. 19/34

(2+1)-flavor QCD: Gluon condensate: $\langle G^2 \rangle_T$

•
$$(\epsilon-3p)/T^4=\Theta_G^{\mu\mu}/T^4+\Theta_F^{\mu\mu}/T^4$$

- $\Theta_F^{\mu\mu}/T^4 = \sum_f m_f \left(\langle \bar{\psi}\psi \rangle_{T=0} \langle \bar{\psi}\psi \rangle_T \right)$
- $\Theta_G^{\mu\mu} = \langle G^2 \rangle_{T=0} \langle G^2 \rangle_T$

fits:

bag model: $B \equiv$ bag const. $B = (0.001 - 0.002) \text{GeV}^4$ $\Rightarrow B^{1/4} = (180 - 300) \text{ MeV}$ $A = 0.24(2) \text{GeV}^2$ $\Rightarrow A^{1/2} \simeq 500 \text{ MeV}$ slow approach to perturbative regime

Hadronic fluctuations at $\mu = 0$ from Taylor expansion coefficients for $\mu > 0$

 $n_f=2,\ m_\pi\simeq 770$ MeV: S. Ejiri, FK, K.Redlich, PLB633 (2006) 275 $n_f=2+1,\ m_\pi\simeq 220$ MeV: RBC-Bielefeld, preliminary

Taylor expansion of bulk thermodynamics in terms of $\mu_{q,s}$

$$egin{array}{rl} rac{p}{T^4} &\equiv& rac{1}{VT^3}\ln Z(V,T,\mu_q,\mu_s) \ &=& \sum_{i,j}c_{i,j}\left(rac{\mu_q}{T}
ight)^i\left(rac{\mu_s}{T}
ight)^j \end{array}$$

expansion coefficients evaluated at $\mu_{q,s} = 0$ are related to fluctuations of B, S, Q at $\mu_{B,S,Q} = 0$:

↑ baryon number, strangeness, charge fluctuations event-by-event fluctuations at RHIC and LHC

Hadronic fluctuations at $\mu = 0$ from Taylor expansion coefficients for $\mu > 0$

 $n_f=2,\ m_\pi\simeq 770$ MeV: S. Ejiri, FK, K.Redlich, PLB633 (2006) 275 $n_f=2+1,\ m_\pi\simeq 220$ MeV: RBC-Bielefeld, preliminary

- higher derivatives \Rightarrow higher moments
- \blacksquare mixed derivatives \Rightarrow correlations

~ 0 / ___ /

$$2c_{2}^{x} = \frac{\partial^{2} p/T^{4}}{\partial(\mu_{x}/T)^{2}} = \frac{1}{VT^{3}} \langle (\delta N_{x})^{2} \rangle_{\mu=0} = \frac{1}{VT^{3}} \langle N_{x}^{2} \rangle_{\mu=0}$$

$$24c_{4}^{x} = \frac{\partial^{4} p/T^{4}}{\partial(\mu_{x}/T)^{4}} = \frac{1}{VT^{3}} \left(\langle (\delta N_{x})^{4} \rangle - 3 \langle (\delta N_{x})^{2} \rangle^{2} \right)_{\mu=0} = \frac{1}{VT^{3}} \left(\langle N_{x}^{4} \rangle - 3 \langle N_{x}^{2} \rangle^{2} \right)_{\mu=0}$$

$$4c_{22}^{xy} = \frac{\partial^{4} p/T^{4}}{\partial(\mu_{x}/T)^{2} \partial(\mu_{y}/T)^{2}} = \frac{1}{VT^{3}} \left[\langle N_{x}^{2} N_{y}^{2} \rangle - 2 \langle N_{x} N_{y} \rangle^{2} - \langle N_{x}^{2} \rangle \langle N_{y}^{2} \rangle \right]_{\mu=0}$$
with $x = q, s$

Hadronic fluctuations and chiral symmetry restoration

expect 2^{nd} order transition in 3-d, O(4) symmetry class;

scaling field:
$$t = \left| \frac{T - T_c}{T_c} \right| + A \left(\frac{\mu_q}{T_c} \right)^2$$
, $\mu_{crit} = 0$

singular part: $f_s(T,\mu_u,\mu_d) = b^{-1} f_s(t b^{1/(2-\alpha)}) \sim t^{2-\alpha}$

$$rac{\partial^2 \ln \mathcal{Z}}{\partial \mu_q^2} \sim t^{1-lpha} ~~,~~ rac{\partial^4 \ln \mathcal{Z}}{\partial \mu_q^4} \sim t^{-lpha} ~~(\mu=0)$$

 $\langle (\delta N_q)^2 \rangle$ dominated by T-dependence of regular part $\langle (\delta N_q)^4 \rangle$ develops a cusp

Quadratic fluctuations of baryon number charge & strangeness in (2+1)-flavor QCD

RBC-Bielefeld, preliminary

vanishing chemical potentials:

⇒ smooth change of quadratic fluctuations across transition region chiral limit: χ_2^B , $\chi_2^Q \sim |T - T_c|^{1-\alpha} + \text{regular}$

Quartic fluctuations of baryon number charge & strangeness in (2+1)-flavor QCD

RBC-Bielefeld, preliminary

vanishing chemical potentials:

 \Rightarrow large light quark number & charge fluctuations across transition region chiral limit: χ_4^B , $\chi_4^Q \sim |T - T_c|^{-\alpha} + \text{regular}$

Quark number in Boltzmann approximation

$$p_m/T^4 = F(T, m, V) \cosh(B\mu_q/T)$$

$$d_2^q \equiv \frac{\partial^2 p_m/T^4}{\partial (\mu_q/T)^2} = B^2 F(T, m, V) \cosh(B)$$

$$d_4^q \equiv \frac{\partial^4 p_m/T^4}{\partial (\mu_q/T)^4} = B^4 F(T, m, V) \cosh(B)$$

ratio of fourth (d_4^q) and second (d_2^q) cumulant of quark number fluctuation gives "unit of charge" carried by the particle with mass "*m*":

$$m \gg T \quad \Rightarrow \quad R^q_{4,2} \equiv \frac{d^q_4}{d^q_2} = B^2$$

Charge fluctuations in Boltzmann approximation

hadronic resonance gas: contributions from isosinglet ($G^{(1)}: \eta, ...$) and isotriplet ($G^{(3)}: \pi, ...$) mesons as well as isodoublet ($F^{(2)}: p, n, ...$) and isoquartet ($F^{(4)}: \Delta, ...$) baryons

$$\begin{array}{ll} \displaystyle \frac{p(T,\mu_q,\mu_I)}{T^4} &\simeq & G^{(1)}(T)+G^{(3)}(T)\frac{1}{3}\left(2\cosh\left(\frac{2\mu_I}{T}\right)+1\right)\\ &+F^{(2)}(T)\cosh\left(\frac{3\mu_q}{T}\right)\cosh\left(\frac{\mu_I}{T}\right)\\ &+F^{(4)}(T)\frac{1}{2}\cosh\left(\frac{3\mu_q}{T}\right)\left[\cosh\left(\frac{\mu_I}{T}\right)+\cosh\left(\frac{3\mu_I}{T}\right)\right] \end{array}$$

Charge fluctuations at $\mu_q = \mu_I = 0$;
isospin quartet $F^{(4)}$ contains baryons carrying charge 2

$$R_{4,2}^Q \equiv \frac{d_4^Q}{d_2^Q} = \frac{4G^{(3)} + 3F^{(2)} + 27F^{(4)}}{4G^{(3)} + 3F^{(2)} + 9F^{(4)}} \to 1 \text{ for } T \to 0$$

contribution of doubly charged baryons increases quartic relative to quadratic fluctuations

Ratios of quartic and quadratic fluctuations of charges in (2+1)-flavor QCD

RBC-Bielefeld, preliminary

chiral limit: ratios $\sim |T - T_c|^{-lpha} + \mathrm{regular}$

 \Rightarrow enhancement over resonance gas values

 \Rightarrow may be observable in event-by-event fluctuations

(valence) quark sector quickly ($T\gtrsim 1.5T_c$) behaves perturbative

Deconfinement and \chi-symmetry

- The chiral phase transition (i.e. at $m_q = 0$) is deconfining
 - true in QCD, i.e. SU(3) + fermions in the fundamental representation
 - SU(3) + fermions in the adjoint representation: $T_{deconf} < T_{\chi}$
- The transition in QCD with physical quark masses is a crossover

In which sense is the transition

deconfining and chiral symmetry restoring?

- deconfinement: heavy hadrons \Rightarrow light quarks and gluons; liberation of many new light degrees of freedom \Rightarrow rapid change in ϵ/T^4 , s/T^3 ,
- chiral symmetry restoration: vanishing mass splittings, no new degrees of freedom

⇒ minor effect on bulk thermodynamics, but rapid change of chiral condensate

Deconfinement and \chi-symmetry

- The chiral phase transition (i.e. at $m_q = 0$) is deconfining
 - true in QCD, i.e. SU(3) + fermions in the fundamental representation
 - SU(3) + fermions in the adjoint representation: $T_{deconf} < T_{\chi}$
- The transition in QCD with physical quark masses is a crossover

In which sense is the transition

deconfining and chiral symmetry restoring?

- deconfinement: heavy hadrons \Rightarrow light quarks and gluons; liberation of many new light degrees of freedom \Rightarrow rapid change in ϵ/T^4 , s/T^3 ,
- chiral symmetry restoration: vanishing mass splittings, no new degrees of freedom

⇒ minor effect on bulk thermodynamics, but rapid change of chiral condensate

Deconfinement

renormalized Polyakov loop and strange quark number susceptibility

F. Karsch, GGI, June 2008 – p. 29/34

CHIRAL SYMMETRY RESTORATION:

χ -condensate and susceptibility

sudden change in chiral condensate is, of course, related to peaks in the (singlet) chiral susceptibility

$$\chi_{tot}/T^2 = 2\chi_{dis}/T^2 + \chi_{con}/T^2$$
$$\Delta_{l,s}(T) = \frac{\langle \bar{\psi}\psi \rangle_{l,T} - \frac{m_l}{m_s} \langle \bar{\psi}\psi \rangle_{s,T}}{\langle \bar{\psi}\psi \rangle_{l,0} - \frac{m_l}{m_s} \langle \bar{\psi}\psi \rangle_{s,0}}$$

F. Karsch, GGI, June 2008 – p. 30/34

χ -symmetry restoration

χ-symmetry restoration: drop in condensate; peak in susceptibilities

0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75

Deconfinement and χ -symmetry and bulk thermodynamics

most prominent features of bulk thermodynamics are related to 0.5 0.6 0.4 0.8 0.9 deconfinement 0.7 1 ϵ_{SB}/T^4

16

14

 ϵ/T^4

 χ -symmetry restoration: drop in condensate; peak in susceptibilities

Tr₀

Conclusions

glue sticks

the interesting non-perturbative physics in QCD happens in the gluon sector

quarks add flavor

quarks add to the picture by 'modifying prefactors' (in accord with dimensional reduction approach)

no glue \Rightarrow no binding

'glue-free' observables show early onset of perturbative behaviour

Conclusions

non-perturbative QCD-EoS \sim pure gauge theory EoS

the interesting non-perturbative physics in QCD happens in the gluon sector

nothing qualitatively new in QCD with light quarks

quarks add to the picture by 'modifying prefactors' (in accord with dimensional reduction approach) except close to $T_c!!$

Quantum numbers are carried by "quarks" already close to T_c

'glue-free' observables show early onset of perturbative behaviour

In the regime $T_c \leq T \lesssim (1.5 - 2.0) T_c$ differs from the regime $T \gtrsim (1.5 - 2.0) T_c$

It is more difficult (impossible?) to describe it quantitatively in terms of conventional theoretical high-T concepts: perturbation theory, resummation, dimensional reduction • the regime $T_c \leq T \lesssim (1.5 - 2.0) T_c$ differs from the regime $T \gtrsim (1.5 - 2.0) T_c$

It is more difficult (impossible?) to describe it quantitatively in terms of conventional theoretical high-T concepts: perturbation theory, resummation, dimensional reduction

- Do we see new physics? \Rightarrow Quark Gluon Liquid
- or, remnants of old physics? \Rightarrow confinement