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Introduction

AdS/CFT integrability “high precision tests”

“purest”
N = 4 a perfect
generator of a
huge # of integrable struct.

non-AdS/non-CFT (direct) applications to realistic gauge theories

zero temperature and chemical potentials (T = 0, µ = 0)

glueball spectra Csaki et al.

masses of hadrons (mesons) Karch & Katz...

hadron form factors Polchinski & Strassler

finite-temperature and µ = 0 theories Son, Starinets, . . .

(viscosity of quark-gluon plasma)

Finite chemical potential THIS TALK !



Setup: (I) Pure Glue

pure QCD — i.e. no matter do not know geometry

instead, consider 4+1 dim max. susy YM

compactify on circle

impose anti-periodic bdy. cond. for fermions













in IR, reduces to

pure QCD, scalars

and fermions decouple

dual to near-horizon geometry

of non-extremal D4-brane, doubly Wick rotated



The geometry

[Witten, Sakai & Sugimoto, . . . ]

ds2 =
( u

R

)3/2 [
ηµνdXµdXν + f(u)dθ2

]
+

(
R

u

)3/2 [
du2

f(u)
+ u2dΩ4

]

world-volume

our 3+1 world

f(u) = 1 −

“uΛ

u

”3

θ is a compact

Kaluza-Klein circle

u: radial direction

bounded from

below u ≥ uΛ



Several remarks

Solution characterised

by two parameters:







RD4 : R3
D4 = πgsl

3
s Nc

R : R=
2π

3

(
R3

D4

uΛ

)1/2

→MΛ =
2π

R

non-extremality of D-brane:

angle θ identified with
period R to

avoid conical singularity

Relation to gauge-theory parameters:

size of S1 on D4 (i.e. MKK) set by R

λ ≡ g2
YM Nc =

R3
D4

α′R

Regime of validity:

sugra OK if R2 ≡ R3
D4/R≫ α′ λ≫ 1

(max curvature at the wall)

valid as long as eφ = gs(u/RD4)
3/4 < 1

(min coupling at the wall)

Problem : MKK ∼Mglueball ∼Mmeson ∼MΛ ∼ 1/R cannot decouple

KK modes !



Overview

θ

u

IR “wall”

u = uΛ

(
RD4

uΛ

)3/2
u2

Λ = R
3/2
D4 u

1/2
Λ

focus here

u = energy scale



Setup : (II) Introducing matter–Sakai-Sugimoto model

Add D8 flavour (probe) branes to D4 stack

strings between flavour & colour branes in fund. rep. of flavour & colour group

Solve for the shape of the D8

D4 : 0 1 2 3 θ − − − − −

D8 : 0 1 2 3
︸ ︷︷ ︸

flat

− 5 6 7 8 9
︸ ︷︷ ︸

curve u(θ) coord. sys.

adapted to D8
θ,Ω4

Solution to the 1st order equation

gives embedding u(θ)

D8D8

θ

wall direction



Symmetry encoded in geometry

Asymptotically exhibits full chiral symmetry SU(Nf )L × SU(Nf )R

Bending of the brane encodes spontaneous symmetry breaking in gauge

theory in a geometrical way

SU(Nf )L

SU(Nf )R

SU(Nf )isospin

spectrum of fluctuations contains

(π±, π0) Goldstone bosons

Brane geometry also reproduces chiral symmetry restoration above T > Tc

SU(Nf )L

SU(Nf )R



Low spin mesons

Spectrum is known only in the limits:

Low-spin mesons:

fluctuations on and of

the flavour brane

Fluctuations governed by Dirac-Born-Infeld action of the flavour brane

S = VS4

∫

d5x e−φ
√

− det (gµν + 2πα′Fµν) + SWess-Zumino

= VS4

∫

d4xdz
√−g FµνFρλ g

µρgνλ + . . .

Expand world-volume fields in modes meson spectrum & action



Effective action for light mesons

Decompose the gauge fields

Fµν =
∑

n

G(n)
µν (x)ψ(n)(u) ,

Fuµ =
∑

n

B(n)
µ (x) ∂uψ(n)(u) ,

Fourier transform & factor out polarisation vectors,

∫

d4k B̃(m)
µ B̃(n)

µ

[

u−1/2γ1/2(ω2 − ~k 2)ψ(n) − ∂u

(

u5/2γ−1/2∂uψ(n)

)]

︸ ︷︷ ︸

= 0 .

a Sturm-Liouville problem

mass spectrum of mesons



High spin mesons

Spectrum is known only in the limit:

Sigma model (semiclass) high-spin glueballs (closed) & mesons (open)

qq̄ meson:

uf1

uf2

uΛ

mq ∼ uf1
− uΛregion I

region II

“projected”

N.B. High spin mass Mhigh ∼
√
λMΛ vs. low spin mass Mlow ∼MΛ ∼MKK



Part II:Part II:

Turning on an isospin chemical potentialTurning on an isospin chemical potential

Chiral LangrangianChiral Langrangian



Isospin vs Baryon chemical potential

Why isospin chemical potential is easier in holographic models

than baryon chemical potential:

large Nc baryons much heavier than at finite Nc

mesons closer to the real-world

baryons complicated solitons, mesons elementary fields

so far only singular solitons known

potentially comparable with the lattice (no sign problem)

Bad feature: Artificial, no pure isospin systems exist in nature (weak decays)

neutron stars



Chiral Lagrangian

At small µI chiral Lagrangian (with mq = 0) to get a feeling what

happens

Lchiral =
f2

π

4
Tr(DνUD

νU †) , U ∈ U(Nf ) .

U ≡ e
i

fπ
πa(x)T a

Ta −−U(Nf ) generators

Invariant under separate

U → g−1
L U , U → UgR

The vacuum U = I preserves the vector-like U(Nf ) symmetry,

U → gLUg
−1
R gL = gR .

In U = I want to turn on a vector chemical potential µL = µR.

Other global transformations move us around on the moduli space of vacua,

M =
U(Nf ) × U(Nf )

U(Nf )



Chiral Lagrangian and µ 6= 0

As usual, chemical potentials via

DνU = ∂νU − 1

2
δν,0(µLU − UµR) = ∂νU − 1

2
δν,0([µV , U ] − {µA, U})

(µL = µV − µA, µR = µV + µA).

Vχ =
f2

π

4
Tr

(

([µV , U ] − {µA, U})([µV , U
†] + {µA, U

†})
)

From Vχ minima:
(1) µV = 0, µA-any Vχ-const. ρA ∼ f2

πµA

(2) µA = 0, µV = µIσ3/2

Umax = eiα(cos(β)I + i sin(β)σ3) and Umin = eiα(cos(β)σ1 + sin(β)σ2)

in the Umin : ρV ∼ f2
πµI ρA,I = 0 .

(3) µV = µIσ3/2, µA = µA,Iσ3/2:

{

µ2
A,I < µ2

V Umin as in (2)

µ2
A,I > µ2

V Umin opposite



Vectorial isospin potential

Effects of µV in U = Umin ⇔ effects of µA in U = I vacuum



Aside: non-zero pion mass

The chiral Lagrangian gives us the behaviour of Son, Splittorf, Stephanov

the pions for small µI ,

However, Sakai-Sugimoto has mπ = 0, so we will at small µI see



Beyond Chiral Langrangian

Chiral Langrangian, valid up to the first massive vector meson,

µI ≪ mρ

Other operators are relevant, e.g. Skyrme term

LSkyrme =
1

32e2
Tr

([
U−1∂µU,U

−1∂νU
]2

)

.

This leads to a dispersion relation for pions

−ω2 + k2 + µ2
I −

k2µ2
I

e2f2
π

= 0 .

This suggests massive pions eventually become unstable.

But, does not explain what the ρ does.

Sakai-Sugimoto has pions and fixed couplings to other mesons.

Study π’s and ρ in this model as function of µI .



Part III:Part III:

Holographic isospin chemical potentialHolographic isospin chemical potential



Beyond Chiral Langrangian µI = 0

Cigar-shaped subspace with D8’s embedded,

u = (1 + z2)1/3

No chemical potential no background field, trivial Aµ = 0 vacuum.

Meson massess from linearised DBI action around trivial vacuum.

Aµ(xµ, z) = U−1(x)∂µU(x)ψ+(z) +
∑

n≥1

B(n)
µ (x)ψn(z) ,

Az = 0

Can go beyond χ-perturbation theory: have χ-Langrangian interacting with

infinite tower of massive modes.



Beyond Chiral Langrangian µI = 0

Effective action we use come from the truncated string effective action

S = T̃

∫

d4xdu
[

u−1/2γ1/2 Tr(FµνF
µν) + u5/2γ−1/2 Tr(FµuF

µ
u)

]

+ ...

where ignored DBI corrections to the YM, ((l2sF )n) and beyond O(l3s∂F )

For eg., just for pion this gives

Fzµ = U−1∂µU φ(0)(z) + B-stuff

Fµν = [U−1∂µU,U
−1∂νU ]ψ+(z)

(
ψ+(z) − 1

)
+ B-stuff .

which gives chiral Lagrangian plus Skyrme term,

S =

∫

d4x Tr

(
f2

π

4
(U−1∂µU)2 +

1

32e2
[
U−1∂µU,U

−1∂νU
]2

)

+ “π ↔ B′′

f2
π ∼ λNcM

2
KK , e2 ∼ 1

λNc
, .



Sakai-Sugimoto and chiral symmetry

In Sakai-Sugimoto, global symmetry is realised as large gauge

transformation of bulk field,

Aµ → gAµg
−1 + ig∂µg

−1

lim
z→−∞

g(z, xµ) = gL ∈ SU(Nf )L ,

lim
z→+∞

g(z, xµ) = gR ∈ SU(Nf )R .



Sakai-Sugimoto and chiral symmetry

And changes holonomy

U = P exp (i

∫ ∞

−∞

dz Az) → gLg
−1
R .

changes the pion expectation value, since

U = exp (iπa(x)σ
a/fπ) .

So if start with trivial vacuum Aµ = Az = 0, the vectorial transformation

gL = gR preserves vaccum, does not change U

If gL 6= gR, does not preseve vacuum

i.e. changes holonomy χ-symmetry breaking



Turning on µI 6= 0

For SS model, bulk field Aµ(x, u)

Aν(x, u) → Bν(x)

(

1 + O(
1

u
)

)

+ ρν(x)u
−3/2

(

1 + O(
1

u
)

)

.

here

Bµ(x) ↔ source term for gauge theory current Jν(x) (
R

d4xBµJν(x))

ρν(x) ↔ vev of Jµ

To add vectorial/axial chemical potential, solve for the even/odd

bulk field with b.c. :

Aµ(x, z → −∞) = µLδµ,0

Aµ(x, z → +∞) = µRδµ,0



Isotropic & homogenious solution

First ansatz, assume that condensate is x-independent A0(z), Ai = 0

Isospin chemical potential background satisfies 5d YM equation (in Au = 0
gauge),

∂z

[

(1 + z2)∂zA
(3)
0

]

= 0







V: A
(3)
0 = µV ,

A: A
(3)
0 = µA arctan z .

N.B Soln to YM action, neglect DBI corrections, i.e. valid for

µI ≪ λ/L

Spectrum around vectorial soln (V) tachyonic

i.e. free energy is unaffected, but fluctuations are affected!

roll down to 〈π(1)〉 6= 0, then rotate back to trivial vacuum

Effectively work with

axial solution (A)

Properties of new vacuum:

fπ unmodified, two massive and one massless pion



Instability of isotropic solution

Soln found is unique isotropic soln: pions condensed.

What about ρ et al?

Are there any other ground states which dominate for higher µI?

Analyse general stability of soln

For µI ≪ λ5/L
2 can still use just nonabelian YM

expand YM around axial solution Ā0 in U = I vacuum

A0 = Ā0(u) + δA
(a)
0 (ω,~k, u)σa e

iωt+i~k·~x ,

Ai = δA
(a)
i (ω,~k, u)σa e

iωt+i~k·~x ,

Au = 0



Transverse vectors and scalars

The transverse vectors (δA0 = 0, ∂iδA
i = 0) develop an instability: at ~k = 0

the dispersion relation is

0.1 0.2 0.3 0.4 0.5 0.6
ÈΜÈ

0.25

0.5

0.75

1

1.25

1.5

1.75

2

ω

The scalars (fluations transverse to the brane) are unstable too, but only for

much larger µ,

-1 -0.75 -0.5 -0.25 0.25 0.5 0.75 1
Μ

0.5

1

1.5

2

2.5

ω

The main question: what about the pions & longitudinal vectors ?



Pions and longitudinal vectors

Both pions and longitudinal vectors are governed by Ai ≡ ikiAT and A0.

Equations diagonal for

δA
(1)
i = ±iδA(2)

i , δA
(1)
0 = ±iδA(2)

0 .

The difference is the boundary conditions
The pion is “pure large gauge”, so impose F0i = 0,

AT (z → +∞) =
π

2
+
c3
z

+ . . .

A0(z → +∞) = (ω + πµ)
π

2
+

(
c3 k

2

ω + πµ
− πµ

)
1

z
+ . . .

Vectors asymptote to zero at z → ±∞,

AT (z → +∞) =
1

z
+ . . .

A0(z → +∞) =
k2

ω + πµ

1

z
+ . . .

N.B µI = 0 recover Lorentz inv. rels. (δA0 = ωδAT pion and δA0 = k2/ωAT , long. vec.)



Pions and longitudinal vectors cont.

Similarly, imposing appropriate b.c. at z = −∞ fixes ω(µ, k). So the spectrum

is

π’s, for small µI mass up (as from χ− L)

modes change “nature”

no-crossing for k 6= 0

k = 0 special crossing of ρ and π ρ condenses



Vector instability

The value of µcrit the same as for transverse ρ

all components of ρ vector for k = 0 condense at µcrit ≈ 1.7mρ

transverse:

0.1 0.2 0.3 0.4 0.5 0.6
ÈΜÈ

0.25

0.5

0.75

1

1.25

1.5

1.75

2

Ω

ρ meson instability.



Finding a new ground state

What is the new ground state?

Ansatz (inspired by linear analysis):

A
(1)
3 (z) = ±iA(2)

3 (z) , A
(1)
i (z) = A

(2)
i (z) = 0 (i = 1, 2) ,

A(3)
µ = δµ,0A

(3)
0 (z) Au = 0 ,

with b.c.

A
(3)
0 (z = ±∞) = ±µI/2 , A

(1)
3 (z = ±∞) = 0

Solution of the nonlinear equations

∂u

[

u5/2γ−1/2∂uA
(3)
0

]

= 4(A
(1)
3 )2A

(3)
0 u−1/2γ1/2 ,

∂u

[

u5/2γ−1/2∂uA
(1)
3

]

= −4(A
(3)
0 )2A

(1)
3 u−1/2γ1/2 .

Have two solutions
{

µ < µcrit : A
(1)
3 = 0 A

(3)
0 = µI

π arctan
(

z
uΛ

)

µ > µcrit : A
(1)
3 6= 0 A

(3)
0 6= 0 .



The new ground state

A numerical solution yields:

µcrit ≈ 1.7mρ , 〈ρ〉 ∝
√
µ− µcrit .

ρ-meson condensate forms:
breaking rotational SO(3) → SO(2)

breaking the residual flavour U(1)

(in addition, the pion condensate remains present)



Summary and todo

Can we include the pion mass

(using tachyon) ?

How does this depend on L
(constituent quark masses) ?

Are there further instabilities at

even higher µ ?

Corrections due to DBI and

Chern-Simons ?

Behaviour in deconfined phase,

as function of temperature ?


