Isospin chemical potential in holographic “QCD”

Marija Zamaklar

University of Durham

based on work with Ofer Aharony (Weizmann)
Cobi Sonnenschein (Tel Aviv)
Kasper Peeters (Utrecht)

0709.3948 and in progress

Galileo Galilei Institute, May 6th 2008
AdS/CFT integrability “high precision tests”

non-AdS/non-CFT (direct) applications to realistic gauge theories

zero temperature and chemical potentials ($T = 0, \mu = 0$)
- glueball spectra
- masses of hadrons (mesons)
- hadron form factors

finite-temperature and $\mu = 0$ theories
(viscosity of quark-gluon plasma)

Finite chemical potential THIS TALK!
pure QCD — i.e. no matter do not know geometry

instead, consider 4+1 dim max. susy YM compactify on circle impose anti-periodic bdy. cond. for fermions

in IR, reduces to pure QCD, scalars and fermions decouple

dual to near-horizon geometry of non-extremal D4-brane, doubly Wick rotated
The geometry

\[ds^2 = \left(\frac{u}{R} \right)^{3/2} \left[\eta_{\mu\nu} dX^\mu dX^\nu + f(u) d\theta^2 \right] + \left(\frac{R}{u} \right)^{3/2} \left[\frac{d\theta^2}{f(u)} + u^2 d\Omega_4 \right] \]

- **World-volume**
 - Our 3+1 world

- **Function**
 - \(f(u) = 1 - \left(\frac{u_\Lambda}{u} \right)^3 \)

- **\(\theta \)**
 - A compact Kaluza-Klein circle

- **\(u \)**
 - Radial direction bounded from below, \(u \geq u_\Lambda \)

\[u: \text{radial direction} \]

\[S^4 \]

\[U \ (\text{energy scale}) \]
Several remarks

Solution characterised by two parameters:

\[\begin{align*}
R_{D4} & : \\
R & : \\
\end{align*} \]

\[R_{D4}^3 = \pi g_s l_s^3 N_c \]

\[R = \frac{2\pi}{3} \left(\frac{R_{D4}^3}{u_\Lambda} \right)^{1/2} \rightarrow M_\Lambda = \frac{2\pi}{R} \]

Relation to gauge-theory parameters:

- size of \(S^1 \) on D4 (i.e. \(M_{KK} \)) set by \(R \)
- \(\lambda \equiv g_{YM}^2 N_c = \frac{R_{D4}^3}{\alpha' R} \)

Regime of validity:

- sugra OK if \(R^2 \equiv \frac{R_{D4}^3}{R} \gg \alpha' \rightarrow \lambda \gg 1 \)
 (max curvature at the wall)

- valid as long as \(e^\phi = g_s (u/R_{D4})^{3/4} < 1 \)
 (min coupling at the wall)

Problem: \(M_{KK} \sim M_{\text{glueball}} \sim M_{\text{meson}} \sim M_\Lambda \sim 1/R \)

non-extremality of D-brane: angle \(\theta \) identified with period \(R \) to avoid conical singularity

cannot decouple KK modes!
$u = \text{energy scale}$

\[
\left(\frac{R_{D4}}{u_\Lambda} \right)^{3/2} u_\Lambda^2 = R_{D4}^{3/2} u^{1/2}_\Lambda
\]
Add D8 flavour (probe) branes to D4 stack

strings between flavour & colour branes in fund. rep. of flavour & colour group

Solve for the shape of the D8

\[D4 : \quad 0 \quad 1 \quad 2 \quad 3 \quad \theta \quad - \quad - \quad - \quad - \quad - \]

\[D8 : \quad 0 \quad 1 \quad 2 \quad 3 \quad - \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \]

curve \(u(\theta) \)

coord. sys. adapted to D8 \(\theta, \Omega^4 \)

Solution to the 1st order equation gives embedding \(u(\theta) \)
Symmetry encoded in geometry

- Asymptotically exhibits full chiral symmetry $\text{SU}(N_f)_L \times \text{SU}(N_f)_R$
- Bending of the brane encodes spontaneous symmetry breaking in gauge theory in a geometrical way

\[\text{SU}(N_f)_L \rightarrow \text{SU}(N_f)_{\text{isospin}} \rightarrow \text{SU}(N_f)_R \]

spectrum of fluctuations contains (π^\pm, π^0) Goldstone bosons

- Brane geometry also reproduces chiral symmetry restoration above $T > T_c$
Low spin mesons

Spectrum is known only in the limits:

Low-spin mesons:
fluctuations on and of the flavour brane

Fluctuations governed by Dirac-Born-Infeld action of the flavour brane

\[
S = V_{S^4} \int d^5x \, e^{-\phi} \sqrt{- \det (g_{\mu\nu} + 2\pi \alpha' F_{\mu\nu})} + S_{\text{Wess-Zumino}}
\]

\[
= V_{S^4} \int d^4x \, dz \sqrt{-g} \, F_{\mu\nu} F_{\rho\lambda} g^{\mu\rho} g^{\nu\lambda} + \ldots
\]

Expand world-volume fields in modes \rightarrow \text{meson spectrum & action}
Effective action for light mesons

- Decompose the gauge fields

\[F_{\mu\nu} = \sum_n G_{\mu\nu}^{(n)}(x) \psi(n)(u), \]
\[F_{u\mu} = \sum_n B_{\mu}^{(n)}(x) \partial_u \psi(n)(u), \]

- Fourier transform & factor out polarisation vectors,

\[
\int d^4k \tilde{B}_{\mu}^{(m)} \tilde{B}_{\mu}^{(n)} \left[u^{-1/2} \gamma^{1/2} (\omega^2 - \vec{k}^2) \psi(n) - \partial_u \left(u^{5/2} \gamma^{-1/2} \partial_u \psi(n) \right) \right] = 0.
\]

a Sturm-Liouville problem
mass spectrum of mesons
High spin mesons

- Spectrum is known only in the limit:
- Sigma model \((\text{semiclass})\) → high-spin glueballs \((\text{closed})\) & mesons \((\text{open})\)

\[q\bar{q} \text{ meson:} \]

\[u_{f_1} \]

\[u_{f_2} \]

\[u_\Lambda \]

\(\text{region I} \)

\(\text{region II} \)

\[m_q \sim u_{f_1} - u_\Lambda \]

\[m_q \sim \sqrt{\lambda} M_\Lambda \]

\(\text{vs. low spin mass} \quad M_{\text{low}} \sim M_\Lambda \sim M_{KK} \)

\[N.B. \quad \text{High spin mass} \quad M_{\text{high}} \sim \sqrt{\lambda} M_\Lambda \]
Part II:

Turning on an *isospin* chemical potential

Chiral Lagrangian
Why isospin chemical potential is easier in holographic models than baryon chemical potential:

- large N_c → baryons much heavier than at finite N_c
 mesons closer to the real-world

- baryons complicated solitons, mesons elementary fields

- so far only singular solitons known

- potentially comparable with the lattice (no sign problem)

Bad feature: Artificial, no pure isospin systems exist in nature (weak decays)
neutron stars
At small μI chiral Lagrangian (with $m_q = 0$) to get a feeling what happens

$$\mathcal{L}_{\text{chiral}} = \frac{f^2}{4} \text{Tr}(D_\nu UD_\nu U^\dagger), \quad U \in U(N_f).$$

$$U \equiv e^{i \frac{\pi}{f} \pi_a(x) T^a} \quad T_a = - U(N_f) \quad \text{generators}$$

Invariant under separate

$$U \to g_L^{-1}U, \quad U \to Ug_R$$

The vacuum $U = I$ preserves the vector-like $U(N_f)$ symmetry,

$$U \to g_L Ug_R^{-1} \quad \Rightarrow \quad g_L = g_R.$$

In $U = I$ want to turn on a vector chemical potential $\mu_L = \mu_R$.

Other global transformations move us around on the moduli space of vacua,

$$\mathcal{M} = \frac{U(N_f) \times U(N_f)}{U(N_f)}$$
Chiral Lagrangian and $\mu \neq 0$

As usual, chemical potentials via

$D_\nu U = \partial_\nu U - \frac{1}{2}\delta_{\nu,0}(\mu_L U - U \mu_R) = \partial_\nu U - \frac{1}{2}\delta_{\nu,0}([\mu_V, U] - \{\mu_A, U\})$

$(\mu_L = \mu_V - \mu_A, \mu_R = \mu_V + \mu_A)$.

$V_\chi = \frac{f_\pi^2}{4} \text{Tr} \left(([\mu_V, U] - \{\mu_A, U\})([\mu_V, U^\dagger] + \{\mu_A, U^\dagger\}) \right)$

From V_χ minima:

1. $\mu_V = 0$, μ_A-any \rightarrow V_χ-const. $\rho_A \sim f_\pi^2 \mu_A$
2. $\mu_A = 0$, $\mu_V = \mu_I \sigma_3/2$ \rightarrow

 $U_{\text{max}} = e^{i\alpha}(\cos(\beta)I + i\sin(\beta)\sigma_3)$ and $U_{\text{min}} = e^{i\alpha}(\cos(\beta)\sigma_1 + \sin(\beta)\sigma_2)$

 in the U_{min}: $\rho_V \sim f_\pi^2 \mu_I$ $\rho_{A,I} = 0$.

3. $\mu_V = \mu_I \sigma_3/2$, $\mu_A = \mu_{A,I} \sigma_3/2$:
 \[
 \begin{cases}
 \mu_{A,I}^2 < \mu_V^2 \rightarrow U_{\text{min}} \\
 \mu_{A,I}^2 > \mu_V^2 \rightarrow U_{\text{min}} \text{ opposite}
 \end{cases}
 \]
Vectorial isospin potential

$U = I, \langle \pi \rangle = 0$

$\mu_R = \mu_L \propto \sigma_3$ (vector)

$U = I, \langle \pi \rangle = 0$

$\mu_R = -\mu_L \propto \sigma_3$ (axial)

Effects of μ_V in $U = U_{\text{min}} \Leftrightarrow$ effects of μ_A in $U = I$ vacuum
Aside: non-zero pion mass

The chiral Lagrangian gives us the behaviour of the pions for small μ_I.

However, Sakai-Sugimoto has $m_\pi = 0$, so we will at small μ_I see
Chiral Langrangian, valid up to the first massive vector meson,
\[\mu_I \ll m_\rho \]

Other operators are relevant, e.g. Skyrme term
\[L_{\text{Skyrme}} = \frac{1}{32e^2} \text{Tr} \left([U^{-1} \partial_\mu U, U^{-1} \partial_\nu U]^2 \right) . \]

This leads to a dispersion relation for pions
\[-\omega^2 + k^2 + \mu_I^2 - \frac{k^2 \mu_I^2}{e^2 f_\pi^2} = 0 . \]

This suggests massive pions eventually become unstable.
But, does not explain what the ρ does.

Sakai-Sugimoto has pions and fixed couplings to other mesons.
Study π's and ρ in this model as function of μ_I.
Part III:

Holographic isospin chemical potential
Cigar-shaped subspace with D8’s embedded,

\[u = (1 + z^2)^{1/3} \]

No chemical potential \(\rightarrow \) no background field, trivial \(A_\mu = 0 \) vacuum.

Meson masses from linearised DBI action around trivial vacuum.

\[
A_\mu(x^\mu, z) = U^{-1}(x) \partial_\mu U(x) \psi_+(z) + \sum_{n \geq 1} B^{(n)}_\mu(x) \psi_n(z),
\]

\(A_z = 0 \)

Can go beyond \(\chi \)-perturbation theory: have \(\chi \)-Langrangian interacting with infinite tower of massive modes.
Beyond Chiral Langrangian $\mu_I = 0$

Effective action we use come from the truncated string effective action

$$S = \tilde{T} \int d^4x \, du \left[u^{-1/2} \gamma^{1/2} \text{Tr}(F_{\mu\nu} F^{\mu\nu}) + u^{5/2} \gamma^{-1/2} \text{Tr}(F_{\mu\nu} F^{\mu\nu}_u) \right] + \ldots$$

where ignored DBI corrections to the YM, $((l_s F)^n)$ and beyond $O(l_s^3 \partial F)$

For eg., just for pion this gives

$$F_{z\mu} = U^{-1} \partial_\mu U \phi_0(z) + \text{B-stuff}$$

$$F_{\mu\nu} = [U^{-1} \partial_\mu U, U^{-1} \partial_\nu U] \psi_+(z) (\psi_+(z) - 1) + \text{B-stuff}.$$

which gives chiral Lagrangian plus Skyrme term,

$$S = \int d^4x \, \text{Tr} \left(\frac{f_\pi^2}{4} (U^{-1} \partial_\mu U)^2 + \frac{1}{32e^2} [U^{-1} \partial_\mu U, U^{-1} \partial_\nu U]^2 \right) + \text{"}\pi \leftrightarrow B\text{"}$$

$$f_\pi^2 \sim \lambda N_c M_{KK}^2, \quad e^2 \sim \frac{1}{\lambda N_c}, \ldots$$
Sakai-Sugimoto and chiral symmetry

In Sakai-Sugimoto, global symmetry is realised as large gauge transformation of bulk field,

\[A_\mu \rightarrow gA_\mu g^{-1} + ig\partial_\mu g^{-1} \]

\[\lim_{z \to -\infty} g(z, x^\mu) = g_L \in SU(N_f)_L, \]

\[\lim_{z \to +\infty} g(z, x^\mu) = g_R \in SU(N_f)_R. \]
Sakai-Sugimoto and chiral symmetry

- And changes holonomy

\[U = P \exp (i \int_{-\infty}^{\infty} dz A_z) \rightarrow g_L g_R^{-1}. \]

changes the pion expectation value, since

\[U = \exp (i \pi_a(x) \sigma^a / f_\pi). \]

- So if start with trivial vacuum \(A_\mu = A_z = 0 \), the vectorial transformation \(g_L = g_R \) preserves vacuum, does not change \(U \)

- If \(g_L \neq g_R \), does not preserve vacuum

 i.e. changes holonomy \(\chi \)-symmetry breaking
Turning on $\mu_I \neq 0$

For SS model, bulk field $A_\mu(x, u)$

$$A_\nu(x, u) \to B_\nu(x) \left(1 + O\left(\frac{1}{u}\right)\right) + \rho_\nu(x) u^{-3/2} \left(1 + O\left(\frac{1}{u}\right)\right).$$

Here

- $B_\mu(x) \leftrightarrow$ source term for gauge theory current $J^\nu(x)$ ($\int d^4 x B_\mu J^\nu(x)$)
- $\rho_\nu(x) \leftrightarrow$ vev of J^μ

To add vectorial/axial chemical potential, solve for the even/odd bulk field with b.c.:

$$A_\mu(x, z \to -\infty) = \mu_L \delta_{\mu,0}$$
$$A_\mu(x, z \to +\infty) = \mu_R \delta_{\mu,0}$$
First ansatz, assume that condensate is \(x \)-independent \(A_0(z), A_i = 0 \)

Isospin chemical potential background satisfies 5d YM equation (in \(A_u = 0 \) gauge),

\[
\partial_z \left[(1 + z^2) \partial_z A_0^{(3)} \right] = 0
\]

\[
\begin{align*}
V: & \quad A_0^{(3)} = \mu_V, \\
A: & \quad A_0^{(3)} = \mu_A \arctan z.
\end{align*}
\]

N.B Soln to YM action, neglect DBI corrections, i.e. valid for \(\mu_I \ll \lambda/L \)

Spectrum around vectorial soln (V) tachyonic i.e. free energy is unaffected, but fluctuations are affected!

roll down to \(\langle \pi^{(1)} \rangle \neq 0 \), then rotate back to trivial vacuum

Effectively work with axial solution (A)

Properties of new vacuum:

\(f_\pi \) unmodified, two massive and one massless pion
Instability of isotropic solution

- Soln found is unique **isotropic** soln: pions condensed.

What about ρ et al?
Are there any other ground states which dominate for higher μ_I?

Analyse general stability of soln

- For μ_I ≪ λ_5/L^2 can still use just nonabelian YM
 expand YM around axial solution \(\bar{A}_0 \) in \(U = I \) vacuum

\[
A_0 = \bar{A}_0(u) + \delta A_0^{(a)}(\omega, \vec{k}, u) \sigma_a e^{i\omega t + i\vec{k} \cdot \vec{x}}, \\
A_i = \delta A_i^{(a)}(\omega, \vec{k}, u) \sigma_a e^{i\omega t + i\vec{k} \cdot \vec{x}}, \\
A_u = 0
\]
Transverse vectors and scalars

- The transverse vectors \((\delta A_0 = 0, \partial_i \delta A^i = 0) \) develop an instability: at \(\vec{k} = 0 \) the dispersion relation is

- The scalars (fluctuations transverse to the brane) are unstable too, but only for much larger \(\mu \),

- The main question: what about the pions & longitudinal vectors?
Both pions and longitudinal vectors are governed by $A_i \equiv ik_i A_T$ and A_0.

Equations diagonal for

$$\delta A_i^{(1)} = \pm i \delta A_i^{(2)} , \quad \delta A_0^{(1)} = \pm i \delta A_0^{(2)} .$$

The difference is the boundary conditions

- The pion is “pure large gauge”, so impose $F_{0i} = 0$,

 $$A_T(z \to +\infty) = \frac{\pi}{2} + \frac{c_3}{z} + \ldots$$

 $$A_0(z \to +\infty) = (\omega + \pi \mu) \frac{\pi}{2} + \left(\frac{c_3 k^2}{\omega + \pi \mu} - \pi \mu \right) \frac{1}{z} + \ldots$$

- Vectors asymptote to zero at $z \to \pm\infty$,

 $$A_T(z \to +\infty) = \frac{1}{z} + \ldots$$

 $$A_0(z \to +\infty) = \frac{k^2}{\omega + \pi \mu} \frac{1}{z} + \ldots$$

N.B $\mu_I = 0$ recover Lorentz inv. rels. ($\delta A_0 = \omega \delta A_T$ pion and $\delta A_0 = k^2/\omega A_T$, long. vec.)
Similarly, imposing appropriate b.c. at $z = -\infty$ fixes $\omega(\mu, k)$. So the spectrum is

- π's, for small μ_I mass up (as from $\chi - L$)
- modes change “nature”
- no-crossing for $k \neq 0$
- $k = 0$ special crossing of ρ and π → ρ condenses
The value of μ_{crit} the same as for transverse ρ

all components of ρ vector for $k = 0$ condense at $\mu_{\text{crit}} \approx 1.7m_\rho$
Finding a new ground state

What is the new ground state?

Ansatz (inspired by linear analysis):

\[A_3^{(1)}(z) = \pm i A_3^{(2)}(z) , \quad A_i^{(1)}(z) = A_i^{(2)}(z) = 0 \quad (i = 1, 2) , \]
\[A^{(3)}_\mu = \delta_{\mu,0} A_0^{(3)}(z) \quad A_u = 0 , \]

with b.c.

\[A_0^{(3)}(z = \pm \infty) = \pm \mu I/2 , \quad A_3^{(1)}(z = \pm \infty) = 0 \]

Solution of the nonlinear equations

\[\partial_u \left[u^{5/2} \gamma^{-1/2} \partial_u A_0^{(3)} \right] = 4(A_3^{(1)})^2 A_0^{(3)} u^{-1/2} \gamma^{1/2} , \]
\[\partial_u \left[u^{5/2} \gamma^{-1/2} \partial_u A_3^{(1)} \right] = -4(A_0^{(3)})^2 A_3^{(1)} u^{-1/2} \gamma^{1/2} . \]

Have two solutions

\[\left\{ \begin{array}{l}
\mu < \mu_{\text{crit}} : \quad A_3^{(1)} = 0 \quad A_0^{(3)} = \frac{\mu I}{\pi} \arctan \left(\frac{z}{u}\Lambda \right) \\
\mu > \mu_{\text{crit}} : \quad A_3^{(1)} \neq 0 \quad A_0^{(3)} \neq 0 .
\end{array} \right. \]
The new ground state

A numerical solution yields:

\[\mu_{\text{crit}} \approx 1.7 m_\rho, \quad \langle \rho \rangle \propto \sqrt{\mu - \mu_{\text{crit}}}. \]

\(\rho \)-meson condensate forms:
- breaking rotational \(\text{SO}(3) \rightarrow \text{SO}(2) \)
- breaking the residual flavour \(\text{U}(1) \)

(in addition, the pion condensate remains present)
Summary and todo

- Can we include the pion mass (using tachyon)?
- How does this depend on L (constituent quark masses)?
- Are there further instabilities at even higher μ?
- Corrections due to DBI and Chern-Simons?
- Behaviour in deconfined phase, as function of temperature?