
THE ORDER OF THE QCD PHASE TRANSITION
WITH TWO LIGHT FLAVORS

M. D’Elia
Genoa University & INFN

“Strong Coupling: from Lattice to AdS/CFT”
GGI Florence - June 3, 2008

In collaboration with:
C. Bonati (Pisa), G. Cossu (Pisa), A. Di Giacomo (Pisa) and C. Pica (Brookhaven).



OUTLINE

• The QCD phase diagram and the chiral transition for Nf = 2

• Predictions from effective models.

• Present evidence from lattice QCD simulations.

• Some new preliminary results

• Conclusions and discussion
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The low temperature phase of QCD is characterized by non-perturbative phenomena,
such as color confinement and chiral symmetry breaking, which are expected to dis-
appear in the high temperature perturbative regime.
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Cabibbo and Parisi (1975) suggested the presence of a transition leading to quark
liberation, which has been observed in lattice QCD simulations (1980, Kuti, Polonyi,

Szlachanyi, SU(2) pure gauge theory) and is still the subject of theoretical and experimental
investigation.
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Numerical simulations show that, in QCD with fundamental fermions, deconfinement
and chiral symmetry restoration take place at very close or coincident temperatures.
The question whether there is a true phase transition or simply a rapid change (crossover)
and, in the first case, about which is a sensible order parameter, is fundamental.
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The order of the finite temperature QCD transition may have a great relevance to the
early evolution of our Universe



Tc

T

Perturbative Regime
Deconfined phase
Chiral Symmetry Restored
Axial U(1) effectively restored

Non−Perturbative Regime
Confinement
Chiral Symmetry Breaking
Axial U(1) broken

Crossover?
True phase transition? Order parameter?

vacuum state
QCD

The presence or absence of a true phase transition is essential to understand whether
it is sensible or not to try interpret confinement/deconfinement in terms of some exact
(and yet unknown) symmetry of QCD. Confinement is an absolute property of Nature
or a fine tuned suppression of color charge?
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The answer is relevant to the description of the QCD phase diagram in presence of a
finite baryon density. Models predict a density driven first order transition at T = 0

crossover at µ = 0 =⇒ critical endpoint TE with clear experimental signatures in
heavy ion collisions.
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Exact symmetries with associated order parameters are only known in the infinite or
zero quark mass limits:

• At infinite mass (quenched QCD) center symmetry Z3 (corresponding to a twist
by a center element of periodic temporal parallel trasports) is exact. The Polyakov
loop 〈L〉 is a good order parameter, associated to confinement/deconfinement.

• At zero quark mass chiral symmetry is exact, and the chiral condensate 〈ψ̄ψ〉 is a
good order parameter, associated to chiral symmetry breaking/restoration.

• At intermediate masses there is no known exact symmetry. The answer is not
obvious, may depend on dynamics, may give hints for further symmetries.



There is a general tendency to accept the crossover scenario in the real QCD case
(Nf = 2 + 1 with physical quark masses): it has been shown (Y. Aoki, Z. Fodor, S. D. Katz

and K. K. Szabo, Phys. Lett. B 643, 46 (2006); Nature 443, 675 (2006)) that the susceptibility of
a possible order parameter for the transition (the chiral condensate) does not show
any signal of growing with the spatial volume, till Ls ∼ 6 fm.

Theoretical exploration is however still open (the critical endpoint has not yet been
found by experiments) and in this contextNf = 2 with massless quarks (exact chiral
symmetry) is a fundamental testground:

• It is quite close to the physical case:
first order =⇒ likely first order for small quark masses
second order =⇒ crossover for two light flavors

• Clear theoretical predictions exist, based on universality considerations (effective
models) on the analysis of effective chiral models in 3 dimensions, which can be
confronted with numerical QCD simulations.

• Despite several efforts by different groups, it is still an open problem.



Model predictions
Predictions about the nature of the transition in the chiral limit can be obtained by a
renormalization group analysis of an effective chiral model:
R. D. Pisarski and F. Wilczek, Phys. Rev. D 29, 338 (1984)

φ̃ : φij ≡ 〈q̄i(1 + γ5)qj〉 (i, j = 1, . . . , Nf )

Under chiral and UA(1) transformations of the group UA(1)⊗SU(Nf )⊗SU(Nf ), φ̃ transforms as

φ̃→ eiαU+φ̃U−

so that by the usual symmetry arguments, and neglecting irrelevant terms

Lφ =
1

2
Tr{∂µφ†∂µφ}−

m2
φ

2
Tr{φ†φ}−π

2

3
g1

(
Tr{φ†φ}

)2−π
2

3
g2Tr{(φ†φ)2}+c

[
detφ+ detφ†

]

The last term describes the anomaly: indeed it is SU(Nf ) ⊗ SU(Nf ) invariant, but
not UA(1) invariant.



If the chiral transition is second order, its universality class is determined by the fixed
point of the corresponding chiral model, hence:

• If the chiral model does not have a fixed point, the chiral transition is not expected
to be second order, but first order instead (this is verified for Nf > 2).

• However, even if the chiral model has a fixed point, the chiral transition could
still be first order (interplay with degrees of freedom other than chiral could be
essential)

For Nf = 2

• UA(1) anomaly effective (no light η′, c 6= 0) =⇒ the model has a fixed point
=⇒ second order in the 3d - O(4) universality class or first order

• UA(1) anomaly not effective (η′ is light, c ∼ 0) =⇒ no stable fixed point
F. Basile, A. Pelissetto, E. Vicari, 2005 =⇒ U(2)L⊗U(2)R/U(2)V or first order



The problem can be settled by lattice QCD simulations and a Finite Size
Scaling (f.s.s.) analysis.

The QCD partition function is rewritten in terms of a path integral over a discretized
euclidean lattice with periodic boundary condition in the time direction (antiperiodic
for fermion fields).

Z =

∫
DUDψDψ̄e−(βSG+ψ̄M [U,mq ]ψ) =

∫
DUe−βSG detM [U,mq]

βSG the pure gauge (e.g. plaquette) action, β ≡ 2Nc/g
2 is the inverse bare gauge

coupling and M is the fermion matrix, e.g. in the staggered formulation:

Mi,j = amδi,j +
1

2

4∑

ν=1

ηi,ν

(
Ui,νδi,j−ν̂ − U†i−ν̂,νδi,j+ν̂

)

In this formulation thermal expectation values can be computed through Monte Carlo
simulations, using e−βSG detM [U,mq] as a probability distribution function for gauge
configurations.



The physical temperature is given by the inverse temporal extension

T =
1

Nta
(1)

and the approach to the continuum field theory links the lattice spacing a to the bare
parameters of the theory, a ≡ a(β,mq). Therefore at fixed Nt the temperature is a
function of β and the bare quark mass mq.

The lattice formulation of fermions in general breaks chiral symmetry explicitely,
therefore, in case of second order, one does not expect to see the expected universal
behaviour (e.g. O(4)) but in the continuum limit.

However in the staggered fermion formulation (in contrast to Wilson fermions) a
residual symmetry of the lattice action leads to a predicition for O(2) universal be-
haviour also at finite lattice spacing.



The critical behaviour of QCD at the transition can be investigated by looking at vari-
ous thermodynamical quantities:

• order parameter (〈ψ̄ψ〉), energy density, ...

• susceptibility of the order parameter χ ≡ (T/V )(∂2/(∂h)2) lnZ

• specific heat CV ≡ (T 2/V )(∂2/(∂T )2) lnZ

which can be measured directly or reconstructed in terms of other susceptibilities.

In simulations at finite quark mass and finite lattice volume, the strategy to investigate
the order of the transition can be the following:

• locate pseudocritical values Tc (βc) of the temperature (of the inverse coupling)
looking at peaks of the relevant susceptibilities.

• try the easiest (?) thing: look for metastabilities and double peak structure of the
order parameter and of the energy density around the transition, i.e. coexistence
of phases, which is a clear signature for first order.

• perform a finite size scaling analysis around the chiral critical point to extract
critical indexes



Finite Size Scaling
Approaching the transition the correlation length of the order parameter ξ goes large
compared to the lattice spacing a, so that the dependence of physical quantities on
a/ξ can be neglected. It is then possible to write the following scaling ansatz, e.g. for
the free energy density:

L
kT
' L−ds φ

(
τL1/ν

s , amqL
yh
s

)

Ls is the spatial size

τ ≡ 1− T/Tc is the reduced temperature,

ν is the critical index of the correlation length (ξ ∼ τ−ν )

yh is the magnetic critical index ( the quark mass playing the role of the external magnetic field, i.e.

the symmetry breaking parameter)

From that a f.s.s. ansätz for other quantities can be deduced, like:

specific heat =⇒ CV−C0 ' L
α/ν
s φc

(
τL

1/ν
s , amqL

yh
s

)

order parameter susceptibility =⇒ χ ' L
γ/ν
s φχ

(
τL

1/ν
s , amqL

yh
s

)



The problem is well defined but quite difficult:

• Simulations on large volumes and with light quark masses are necessary for a
reliable f.s.s. analysis =⇒ huge computational power required

• f.s.s. behavior is given in terms of two different scales (two scaling variables).

A possible approach, adopted in some studies, is to assume Ls large enough to
neglect finite size effects (this is reasonable for a continuous transition). At finite mq

the dependence on amqL
yh
s must cancel that on Ls in front of scaling functions:

CV − C0 ' (amq)
−α/(νyh)fc

(
τ(amq)

−1/(νyh)
)

χ ' (amq)
−γ/(νyh)fχ

(
τ(amq)

−1/(νyh)
)
.

one can also write a scaling ansätz for the pseudocritical temperatures
τ(amq)

−1/(νyh) = const(amq)
1/(νyh) .

or for the so-called magnetic equation of state

〈ψ̄ψ〉 ' m1/δf(τm−1/(νyh))



This is a table of the critical indexes which can be relevant to the f.s.s. analysis for
Nf = 2

yt yh ν α γ

O(4) 1.336(25) 2.487(3) 0.748(14) -0.24(6) 1.479(94)

O(2) 1.496(20) 2.485(3) 0.668(9) -0.005(7) 1.317(38)

MF 3/2 9/4 2/3 0 1

1stOrder 3 3 1/3 1 1

Last column refer to the effective critical indexes predicted for a weak first order tran-
sition in three dimensions.

The critical indexes of the U(2)L⊗U(2)R/U(2)V universality class proposed in case of
effective U(1)A restoration (F. Basile, A. Pelissetto, E. Vicari, 2005) are numerically
very close to those for O(4) and O(2).



A brief history of previous investigations
M. Fukugita, H. Mino, M. Okawa, A. Ukawa, PRL 65, 816 (1990); PRD 42, 2936 (1990)
F. R. Brown, et al, PRL 65, 2491 (1990)

• A first order transition was detected for Nf = 3, 4 staggered quarks at small mq.

• Nf = 2: no clear metastabilities or size dependence of susceptibilities was found
for masses down to amq = 0.01 and lattice sizes up to 163 × 4 (aLs = 4/T ).

That was interpreted as evidence for an analytic crossover at finite mq, hence a sec-
ond order transition at mq = 0, leading to the following standard scenario
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Future studies were mostly devoted to verify the correct universality class predicted
by chiral models (i.e. O(4) or O(2) at finite lattice spacing) in case of second order.
That effort was started in

F. Karsch, PRD 49, 3791 (1994)
F. Karsch and E. Laermann, PRD 50, 6954 (1994)

Assuming scaling laws in the Ls →∞ limit they found, for amq = 0.02→ 0.075:

• good scaling with O(2) indexes for pseudocritical couplings

• good scaling for the peak of chiral susceptibility

• no good scaling for other susceptibilities (related to specific heat)

These non-conclusive results were confirmed on larger lattices (up to 243 × 8) and
smaller quark masses (down to amq = 0.008) by

S. Aoki et al. (JLQCD collaboration), PRD 57, 3910 (1998)
C. Bernard et al, PRD 61, 054503 (2000)

In the last paper also an inconsistent scaling of the equation of state was revealed.
Since failure of the predicted universality class points back to first order, a further
search for metastabilities was done, with negative outcome.



A. A. Khan et al. (CP-PACS collaboration), PRD 63, 034502 (2001)

found, using Wilson fermions, consistency with O(4) for the pseudocritical tempera-
ture scaling and for the equation of state. No analysis of the specific heat.

S. Chandrasekharan and F.J. Jiang, PRD 68, 091501 (2003)

found good agreement with O(2) in the strong coupling limit of staggered fermions
(i.e. pure gauge contribution to the action completely neglected).

J. B. Kogut and D. K. Sinclair, PRD 73 (2006) 074512

confirmed scaling violations with respect to O(4) (O(2)) critical indexes, but compared
finite size effects in QCD and in the O(2) spin model claiming they could be similar.



Our contribution
M. D’E, A. Di Giacomo and C. Pica, PRD 72, 114510 (2005)

We have approached the problem for the case of staggered fermions, using the finite
size scaling approach common to previous studies, with a few improvements and
exploring a wide range of quark masses and lattice sizes (thanks to the APEmille
computer resources).

• In order to deal with the two scales problem, we have performed series of runs at
variable Ls and quark mass amq, keeping amqL

yh
s fixed. That reduces the prob-

lem again to one scale without any approximation.
Assume one particular behavior (fix yh) =⇒ check it carefully.
Our choice has been forO(4) (O(2)) =⇒ yh = 2.49 (also consistent with U(2)L⊗U(2)R/U(2)V )

• We have considered also the dependence of T on the quark mass, T = 1/(Nta(β,mq)),
which slightly changes the definition of the reduced temperature

τ ' β − βχ + kmamq + . . . .

We have performed two series of runs (amqL
yh
s = 74.7 and amqL

yh
s = 149.4) with

fixed Nt = 4 and varying Ls in the range 12→ 32 and amq in the range 0.01335→
0.15. aLsmπ ∼ O(10) in all of our runs.



Analysis of the psudocritical couplings

Our determinations are in perfect agreement with previous works
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τc ∝ (βχ − βc) + kmamq + km2(amq)
2 + kmβamq(βχ − βc) .

to the expected scaling with the quark mass τc = kτ (amq)
1/νyh

gives good results, in the range 0.01335 ≤ amq ≤ 0.075, withO(4) critical indexes,
but also with first order ones. A much lower mass would be needed to distinguish the
two possibilities using pseudocritical indexes alone.



F.S.S. of susceptibilities
In our framework, i.e. at fixed amqL

yh
s , the f.s.s. laws for susceptibilities become

CV (τ, Ls)− C0 = Lα/νs ΦC(τL1/ν
s )

χm(τ, Ls) = Lγ/νs Φχ(τL1/ν
s )

As in previous works, we have not measured the whole specific heat, but various
singular contributions to it, which have the same critical behaviour in the thermody-
namical limit. In particular we show results for the spatial plaquette susceptibility.

5.3 5.4 5.5 5.6
β

0

0.1

0.2

0.3

0.4

0.5

χ e,
σσ

The subtraction of a regular contribution
C0 must be performed, which we have
done by fitting data well outside (12 peak
half widths) the peak location. The sub-
traction is well described by a linear func-
tion of β for all of our data.



-1 -0.5 0 0.5 1

τLs
1/ν

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(C
V

-C
0)/L

sα/
ν

(1)  Ls=32   amq=0.01335
(2)  Ls=20   amq=0.04303
(3)  Ls=16   amq=0.075
(4)  Ls=12   amq=0.153518

(1)

(2)
(3)

(4)
-1 0 1

τLs
1/ν

0

0.2

0.4

0.6

0.8

(C
V

-C
0)/L

sα/
ν

(1)  Ls=32   amq=0.0267
(2)  Ls=20   amq=0.08606
(3)  Ls=16   amq=0.15
(4)  Ls=12   amq=0.307036

(1)

(2)
(3)

(4)

-1 -0.5 0 0.5 1

τLs
1/ν

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

χ m
/L

sγ/
ν

(1)  Ls=32   amq=0.01335
(2)  Ls=20   amq=0.04303
(3)  Ls=16   amq=0.075
(4)  Ls=12   amq=0.153518

(1)

(2)

(3)
(4)

-2 -1 0 1

τLs
1/ν

0

0.005

0.01

0.015

0.02

0.025

0.03

χ m
/L

sγ/
ν

(1)  Ls=32   amq=0.0267
(2)  Ls=20   amq=0.08606
(3)  Ls=16   amq=0.15
(4)  Ls=12   amq=0.307036

(1)

(2)(3)

(4)

O(4) or O(2) are clearly excluded by our data.
The discrepancy is particularly strong for the specific heat: a non-divergent be-
haviour is predicted by O(4) (α < 0) but a divergence with∼ L3

s is observed.



On the other hand, approximate scaling laws are marginally compatible with first or-
der critical indexes, especially for the specific heat
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Approximate scaling, assuming Ls →∞ (top) or at τL1/ν
s fixed (bottom)

Similar results are obtained for the equation of state of the order parameter



The non-exact R-algorithm may be source of systematic error: we have excluded that
comparing with an exact RHMC at our lowest mass, amq = 0.01335, and on two
different lattice sizes, Ls = 16 and Ls = 32. no significant discrepancy has been
found (G. Cossu, M. D’E, A. Di Giacomo and C. Pica, arXiv:0706.4470)
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We also made a direct test of the first order hypothesis (scaling with amqL
3
s fixed)
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• The chiral susceptibility shows deviations.

• The specific heat shows a good scaling: not only the peak heights, but also the
peak widths are well described by the first order hypothesis

The non-scaling of χm could be due to the large mass range explored (up to 0.1),
which could be well outside the region where 〈ψ̄ψ〉 is a good order parameter.
The specific heat, instead, which is a good probe of critical properties indipendently
of the order parameter choice, could have a wider scaling region.



Our partial conclusion, at the lattice cut-off a = 1/(NtTc) ∼ 0.3 fm explored:

• O(4) (O(2)) seems to be ruled out

• some evidence for weak first order

First order and scaling analysis
Consider again the scaling law CV − C0 ' Lα/νs φc

(
τL

1/ν
s , amqL

yh
s

)

• continuous transition =⇒ Ls dependence must cancel as Ls →∞ at finite mq.
The scaling function can be expanded in terms of 1/(amqL

yh
s ): the leading term

must be 1/(amqL
yh
s )α/(νyh) =⇒ no discontinuity (no latent heat) at finite mq.

• First order chiral transition =⇒ a first order singularity is expected also at some
mq 6= 0, leading to a non-zero latent heat: we can allow for a constant term in the
expansion in powers of 1/(amqL

yh
s )

CV − C0 ∼ am−1
q φc (τV ) + V φ̃c (τV )

In the second case the relative weight of the singular to the regular contribution is not
known apriori, may be very small for small volumes and weak first order transitions.



Our partial conclusion leaves many open questions:

• If first order, where are metastabilities and double peaked distribu-
tions around the transition? Never clearly observed

• where is the linear growth of susceptibilities with the volume at fixed
mq expected for first order? Never clearly observed

On the other hand, if it is not first order, why we do not observe the
predicted second order critical indexes?

Of course one could question about the finite lattice spacing effects,
but the puzzle still remains, at least for this values of Nt (of a).



There are essentially two ways out of this puzzle:

1. There is really a first order transition which however is so weak that
metastabilities will not show up but on very large, still unexplored
volumes.

2. We observe “wrong” critical indexes because the scaling region around
the chiral point is so small that the “correct” O(4) indexes will not
show up but at very small, still unexplored quark masses.

In principle both ways could be followed for a long while, with a great
numerical effort. We have decided to give a “last chance” to the first
(order) hypothesis.



In a weak first order transition, a tiny discontinuity in physical observables (e.g. latent
heat) may stay hidden in thermal fluctuations until large values of the volume. It is
easy to built simple double gaussian distributions mimicking that:
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a double gaussian distribution with fixed distance and widths scaling like 1/
√
V
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The linear behaviour of the “susceptibility” V (〈x2〉 − 〈x〉2) with the volume, will
not be visible but on large V . In the real case mixed states due to a possibly small
interface tension may worsen the situation.



Of course we cannot think that the first order will show up at scales order of magni-
tudes distant from the typical QCD scale. At some stage the “hunt” has to finish.
Our present data show that some clear signal could be within reach. Let us look again
at the spatial plaquette susceptibility, χσσ, at fixed quark mass amq = 0.01335 on
Ls = 16 and Ls = 32.
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The presence of a slight increase from Ls = 16 to

Ls = 32 could be consistent with the presence of

a term proportional to the volume:

χσσ = A+BL3
s . The decrease in the width of the

peaks is also consistent with that.

We estimate A ∼ 0.35 and B ∼ 0.163/323. The “divergent” contribution is still 30%
onLs = 32, should be dominant onLs = 80 but already 60% onLs = 48. According
to this rough estimates the discontinuity in the spatial plaquette should be∼ 0.002.

In order to clarify the issue, we have judged worth dedicating a large numerical effort
to a run at amq = 0.01335 on a 483 × 4 lattice (thanks to apeNEXT!)

That corresponds to mπ ∼ twice the physical value and to a spatial size∼ 13-14 fm.



Very preliminary results
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We are exploring 4 β values around the transition point. We have collected a total of
about 30K trajectories till now: that has required ∼ 1 teraflopyear (apeNEXT) with an
RHMC algorithm using two pseudofermion fields.
Spatial plaquette and chiral condensate histories are shown for β = 5.272. Some
signals of metastability are visible.
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Similar double peak structures are present in the chiral condensate
distribution function.
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Looking back at the same distributions on smaller lattice sizes: the plaquette distri-
bution is clearly single peaked on Ls = 16
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Looking back at the same distributions on smaller lattice sizes: the plaquette distri-
bution is clearly single peaked on Ls = 16 as well as on Ls = 32
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Spatial plaquette probability distribution function at the transition
a m = 0.01335     

Looking back at the same distributions on smaller lattice sizes: the plaquette distri-
bution is clearly single peaked on Ls = 16 as well as on Ls = 32

only in the new run at Ls = 48 a double peak structure seems to be present
the distance between the peaks is ∼ 0.0015, well compatible with our previous esti-
mate from the B coefficient (∼ 0.0020)
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Evidence from the (reweighted) susceptibility is less clear:

going from Ls = 32 to Ls = 48 the peak width shrinks but no clear peak height

growth is still visible. More statistics is probably required.

In conclusion, present evidence is surely still not conclusive but in-
dicates that our efforts are worth being continued. We hope to com-
pletely clarify this issue within a few months.



CONCLUSIONS AND DISCUSSION
Conclusion 1: With present UV cutoff effects (Nt = 4, non-improved action) and
within the present quark mass range a second order chiral transition in theO(4) (and
O(2) and U(2)L⊗U(2)R/U(2)V ) seems to be excluded

Conclusion 2: First order critical indexes seems to be preferred

Preliminary: we have some signals for a first-order bistability at amq = 0.01335,
however the bistability does not show up until Ls = 12/T ∼ 13− 14 fm

If confirmed, should we change the standard scenario for a second
order chiral transition (crossover at any finite mass) in Nf = 2 QCD?
Not yet.
Our results have been obtained with a quite large lattice spacing Nt = 4 =⇒ a ∼
0.3 fm and with a non-improved action. If our results will be confirmed on Nt = 6

and/or using an improved lattice action, then the scenario must be changed.



- Going to Nt = 6 with an improved action will be much more time
consuming. We cannot expect, with present computer resources, to
say a definite word within a short time, but we will go on.

- Another issue will be the complete reconstruction of the specific heat
or of some other quantity directly coupled to it (e.g. quartic baryon
susceptibility).

- A final consideration: Could such a weak first order be phenomeno-
logically relevant, e.g. to the early Universe evolution or to heavy ion
collisions? Probably not directly: not easily distinguishable from a
crossover. However it would have important consequences:

• Critical endpoint

• Theoretical interpretation of confinement/deconfinement


