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The Take-Home Message

� For 30 years we’ve known that 4d non-Abelian gauge theories share 
certain features with 2d sigma-models

� Asymptotic freedom
� Confinement
� Dynamically generated mass gap
� Anomalies
� Instantons
� Theta Dependence
� Chiral Symmetry Breaking
� Large N limits

� In fact, there are quantitative links between the two. The relationship 
is derived through the dynamics of solitonic vortex strings.



A Cartoon of the Basic Idea

� Take a strongly coupled theory with U(N) gauge group and some 
fundamental scalar fields.
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A Cartoon of the Basic Idea

� Deform the theory by inducing an expectation value for the scalar 
fields

The Higgs phase〈q〉 �= 0



A Cartoon of the Basic Idea

� The theory now admits vortex strings, supported by the phase of the 
scalar winding at infinity

qwinding of

The Higgs phase〈q〉 �= 0



A strongly coupled phase

A Cartoon of the Basic Idea

The Higgs phase〈q〉 �= 0

� The interior of the vortex string is a strongly coupled system 
� The vortex string knows about the original 4d gauge theory.



The Basic Theory

Starting point: d=3+1 with U(N) gauge group and N  =N fundamental flavours.f

where a=1,…,N is the colour index, and i=1,…,       is the flavour index.Nf
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Classical Properties of the Theory

� Vacuum: The ground state is unique 

� Spectrum: The theory has a mass gap,with

� Symmetries: The theory lies in the “colour-flavour” locked phase

Note that overall U(1) is broken: Vortices

U (N )× SU (Nf )→ SU (N )diag

qai = v δ
a
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mγ = mq ∼ ev



The Vortex

Broken U(1) gauge symmetry Vortices

z = x1 + ix2

phase of qi
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Orientation Modes of the Vortex

Suppose we have an Abelian vortex solution ,     . We can trivially 
embed this in the non-Abelian theory.
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Different embeddings           moduli space of vortex

B⋆ q⋆

SU (N )diag/SU (N − 1)× U (1) ∼= CPN−1

Hanany and Tong, ’03
Auzzi et al. ‘03



Vortex Dynamics

The vortex may oscillate in transverse directions. But it may also vary 
its orientation. This is described by the 2d                sigma model 
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Vortex: 4d        2d

4d Gauge Theory 2d Sigma Model

U(N) Gauge Theory

Add Charged Fermions

Add Charged Bosons

Change Scalar VEVs

Add Interactions (e.g Yukawa)

CP     Sigma-Model
N-1

Fermion Zero Modes

Further Bosonic Zero Modes

Induce Potentials on Target Space

Add Interactions (e.g. 4-fermi)

Various aspects studied by several groups:
Shifman, Yung, Gorsky, 
Pisa: Konishi et al., 
Tokyo: N. Sakai et. al. 



Supersymmetric Vortices: Summary

What the String Saw:

� N=2 Supersymmetry

� Seiberg-Witten Solution
� Exact quantum masses of BPS states
� No Confinement
� Argryes-Douglas Superconformal Points

� N=1 Supersymmetry

� Quantum deformed moduli space: 
� Confinement

detM −BB̃ = Λ2N



N=2 Supersymmetry

Theories with N=2 supersymmetry require the introduction of an adjoint
scalar field, a. 

+ fermions + …

a is a complex adjoint scalar field

complex masses
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Non-Abelian Vortex          Abelian Vortices

B = B⋆
0
. . .( 0

( ((q = q⋆. . .
v

v

� Q: What effect do the masses have on the vortex string?

� A: Orientational modes are lifted, leaving behind N Abelian vortices
� Each vortex lives in a different U(1) subgroup

Tong ’03
Shifman and Yung ’04
Hanany and Tong ‘04



� The vortex dynamics has N=(2,2) supersymmetry

� 4d masses introduce a potential for the string orientation modes

� We introduce an auxiliary field      on the worldsheet

� The N ground states of this theory correspond to N vortex strings

Vortex Dynamics

+ fermions
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� Isolated string vacua kinks on the string

� The kink carries magnetic flux

� The mass of the bead on the string is

� The kink is a magnetic monopole, confined by the Meissner effect

Beads on the String
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The Quantum Theory

The first hint that the vortex string knows about the 4d quantum theory 
comes from the beta functions. The relationship

is preserved under RG flow of the 2d and 4d theories

The strong coupling scale     of the string worldsheet is the same as 
that of the unbroken 4d theory.

r(µ) = r0 −
Nc

2π
log
(
MUV

µ

)

Λ

Dorey ‘98,
Shifman and Yung ’04
Hanany and Tong ‘04

r = 4π
e2



� The result                                      also holds in the full quantum theory.

� In the regime                , both 2d worldsheet and the unbroken 4d theory 
are weakly coupled. The mass of solitons has an expansion

� You can compute these quantum corrections in 2d or in 4d, summing 
over 2d sigma-model instantons or 4d Yang-Mills instantons. They 
agree! 

The Quantum Spectrum

Mkink =Mmono

m≫ Λ

M =Mclassical +M1−loop +
∑∞
n=1Mn−instanton



Superconformal Points

� The 4d theory has special points on its moduli space where both 
magnetic and electric charges become massless.

� These are “Argyres-Douglas” conformal field theories.

� Q: What happens to the vortex string at these points? 
� A: The kink on the worldsheet becomes massless

� The worldsheet theory of the string also becomes conformal
� The CP    sigma model flows to the A    minimal model
� The dimensions of chiral primary operators in 2d and 4d agree.

V ∼ x4V ∼ (x− a)2(x + a)2

Shifman, Vainshtein, Zwicky, ‘06
Tong, ‘06

N
N



Summary of N=2 Theories

� Matching of BPS spectrum in 2d and 4d
� Monopoles, W-bosons, dyons, curves of marginal stability

� Matching of dimensions of operators at superconformal points

� The 2d superpotential gives the SW curve

� Note: the 4d N=2 theory does not confine

� The 2d sigma model with N=(2,2) supersymmetry also does not 
confine
� When m=0, kinks transform in the fundamental of SU(N)



� When the 4d theory has N=1 supersymmetry, the vortex worldsheet
preserves N=(0,2) supersymmetry.

� We have dubbed them heterotic vortex strings

N=1 SQCD and Heterotic Vortex Strings

Edalati and Tong ’07
Tong ‘07
Shifman and Yung ’08



� Two main results

� Quantum Deformed Moduli Space:
� Seen as dynamical susy breaking on the worldsheet

� Confinement of spectrum

� Caveat
� The theory does not have a mass gap, even when

� One zero mode of the vortex string is non-normalizable

N=1 SQCD and Heterotic Vortex Strings

detM −BB̃ = Λ2N

v2 �= 0



Why Would the Spectra Agree?

Start in the strongly coupled 4d theory with 
Spectrum = mesons and baryons

v2 = 0



Why Would the Spectra Agree?

Gauge            and Higgs at scale
Baryons are screened; mesons left largely unaffected.  

U(1)B v ≪ Λ



Why Would the Spectra Agree?

Introduce a vortex string. Some of the meson will form bound 
states with the string.



Why Would the Spectra Agree?

Now increase the ratio        . Those bound states which remain 
light (i.e. of order     ) must show up as internal excitations of the 
2d sigma-model.

v/Λ
Λ



Spectrum of the Sigma Model

� The N=(2,2) sigma-model does not confine. 
� Kinks transform in the N of SU(N)
� This matches the 4d story, where the N=2 theory does not confine

� The N=(0,2) sigma-model does confine
� The model has a chiral symmetry: 
� Spectrum consists of particles in singlet, adjoint and bi-fundamental 

� This qualitatively matches the spectrum of the 4d theory
� Meson Spectrum in singlet, adjoint and bi-fundamental
� Baryon Spectrum:  Slew of tensor reps under flavor symmetry…not seen 

d’Adda, di Vecchia, Lusher ‘78
Witten, ‘78

SU(N)L × SU(N)R



Classical Moduli Space of Vacua

At a smooth point, we 
have N  +1 massless
particles

2

Singular point at                          and                  , the
symmetry breaking is less than maximal          new massless gluons

B = B̃ = 0 rank(M ) < N − 2

detM −BB̃ = 0



Quantum Moduli Space

Singularity is resolved, reflecting 
confinement and the fact that gluons 
get a mass

Seiberg, ‘94

detM −BB̃ = Λ2N



� Gauge            and introduce vev (FI parameter) 

� Q: When are there BPS vortices?
� A: When 

� Classically, BPS vortices exist when
� Quantum mechanically, BPS vortices exist when 

� Can we capture this 4d quantum behaviour by looking at 2d 
worldsheet of classical string, valid when             ?
� This is N=(0,2) sigma-model

� Find dynamical susy breaking when
� Find dynamical susy restoration when  

What Does This Mean for Vortices?

U (1)B v ≪ Λ

B̃ = 0

CP
N−1

v ≫ Λ

detM = 0
detM = Λ2N

detM = 0
detM = Λ2N



� Quantitative agreement between 2d sigma models and 4d gauge 
dynamics

� N=2 Gauge Theories = N=(2,2) sigma models
� Exact agreement between BPS mass spectra
� Agreement between superconformal theories

� N=1 Gauge Theories = N=(0,2) sigma models
� Baryon vevs = worldsheet supersymmetry breaking

� qualitative agreement between spectra

Still to do…
� N=1 Gauge Theories with                     .

� Conformal Window? Seiberg Duality? 

� Lessons for confining string in non-supersymmetric theories?

Summary and Future Directions

Nf > Nc


