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Outline

✔ On-shell gluon scattering amplitudes

✔ Iterative structure at weak/strong coupling in N = 4 SYM

✔ Dual conformal invariance – hidden symmetry of planar amplitudes

✔ Scattering amplitude/Wilson loop duality in N = 4 SYM
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✔ Scattering amplitude/Wilson loop duality in QCD
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On-shell gluon scattering amplitudes in N = 4 SYM

✔ N = 4 SYM – (super)conformal gauge theory with the SU(Nc) gauge group

Inherits all symmetries of the classical Lagrangian ... but are there some ‘hidden’ symmetries?

✔ Gluon scattering amplitudes in N = 4 SYM

. . .

An = S

1

2

n

✗ Quantum numbers of on-shell gluons |i〉 = |pi, hi, ai〉:
momentum ((pµ

i )2 = 0), helicity (h = ±1), color (a)

✗ On-shell matrix elements of S−matrix

✗ Suffer from IR divergences 7→ require IR regularization

✗ Close cousin to QCD gluon amplitudes

✔ Color-ordered planar partial amplitudes

An = tr
ˆ

Ta1Ta2 . . . Tan
˜

Ah1,h2,...,hn
n (p1, p2, . . . , pn) + [Bose symmetry]

✔ Recent activity is inspired by two findings

✗ The amplitude A4 reveals interesting iterative structure at weak coupling [Bern,Dixon,Kosower,Smirnov]

✗ The same structure emerges at strong coupling via AdS/CFT [Alday,Maldacena]

Where does this structure come from? Dual conformal symmetry! [Drummond,Henn,GK,Smirnov,Sokatchev]
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Four-gluon amplitude in N = 4 SYM at weak coupling

A4/A(tree)
4 = 1+a

1

2 3

4

+O(a2) , a =
g2
YMNc

8π2
[Green,Schwarz,Brink’82]

All-loop planar amplitude can be split into a IR divergent and a finite part

A4(s, t) = Div(s, t, ǫIR) Fin(s/t)

✔ IR divergences appear to all loops as poles in ǫIR (in dim.reg. with D = 4 − 2ǫIR )

✔ IR divergences exponentiate (in any gauge theory!) [Mueller],[Sen],[Collins],[Sterman],[GK]’78-86

Div(s, t, ǫIR) = exp

(

−1

2

∞
X

l=1

al

 

Γ
(l)
cusp

(lǫIR)2
+

G(l)

lǫIR

!

h

(−s)lǫIR + (−t)lǫIR
i

)

✔ IR divergences are in the one-to-one correspondence with UV divergences of Wilson loops
[Ivanov,GK,Radyushkin’86]

Γcusp(a) =
P

l alΓ
(l)
cusp = cusp anomalous dimension of Wilson loops

G(a) =
P

l alG
(l)
cusp = collinear anomalous dimension

✔ What about finite part of the amplitude Fin(s/t)? Does it have a simple structure?

FinQCD(s/t) = [4 pages long mess] , FinN=4(s/t) = BDS conjecture
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Four-gluon amplitude in N = 4 SYM at weak coupling II

✔ Bern-Dixon-Smirnov (BDS) conjecture:

Fin(s/t) = 1 + a
ˆ

1
2

ln2 (s/t) + 4ζ2
˜

+ O(a2)
all loops
=⇒ exp

»

Γcusp(a)

4
ln2 (s/t) + const

–

✗ Compared to QCD,

(i) the complicated functions of s/t are replaced by the elementary function ln2(s/t);

(ii) no higher powers of logs appear in ln (Fin(s/t)) at higher loops;

(iii) the coefficient of ln2(s/t) is determined by the cusp anomalous dimension Γcusp(a) just
like the coefficient of the double IR pole.

✗ The conjecture has been verified up to three loops [Anastasiou,Bern,Dixon,Kosower’03],[Bern,Dixon,Smirnov’05]

✗ A similar conjecture exists for n-gluon MHV amplitudes [Bern,Dixon,Smirnov’05]

✗ It has been confirmed for n = 5 at two loops [Cachazo,Spradlin,Volovich’04], [Bern,Czakon,Kosower,Roiban,Smirnov’06]

✔ Surprising features of the finite part of the MHV amplitudes in planar N = 4 SYM:

☞ Why should finite corrections exponentiate?

☞ Why should they be related to the cusp anomaly of Wilson loop?
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Dual conformal symmetry

Examine one-loop ‘scalar box’ diagram

✔ Change variables to go to a dual ‘coordinate space’ picture (not a Fourier transform!)

p1 = x1 − x2 ≡ x12 , p2 = x23 , p3 = x34 , p4 = x41 , k = x15

p1

p2 p3

p4
x1

x2

x3

x4x5
=

Z

d4k (p1 + p2)2(p2 + p3)2

k2(k − p1)2(k − p1 − p2)2(k + p4)2
=

Z

d4x5 x2
13x2

24

x2
15x2

25x2
35x2

45

Check conformal invariance by inversion xµ
i → xµ

i /x2
i

[Broadhurst],[Drummond,Henn,Smirnov,Sokatchev]

✔ The integral is invariant under conformal SO(2, 4) transformations in the dual space!

✔ The symmetry is not related to conformal SO(2, 4) symmetry of N = 4 SYM

✔ All scalar integrals contributing to A4 up to four loops possess the dual conformal invariance!

✔ If the dual conformal symmetry survives to all loops, it allows us to determine four- and
five-gluon planar scattering amplitudes to all loops! [Drummond,Henn,GK,Sokatchev],[Alday,Maldacena]

✔ Dual conformality is slightly broken by the infrared regulator

✔ For planar integrals only!



Strong Coupling: from Lattice to AdS/CFT - p. 7/21

Four-gluon amplitude from AdS/CFT

Alday-Maldacena proposal:
✔ On-shell scattering amplitude is described by a classical string world-sheet in AdS5

x1

x2

x3
p1

p2

xn

✗ On-shell gluon momenta pµ
1 , . . . , pµ

n define sequence of
light-like segments on the boundary

✗ The closed contour has n cusps with the dual coordinates xµ
i

(the same as at weak coupling!)

xµ
i,i+1 ≡ xµ

i − xµ
i+1 := pµ

i

The dual conformal symmetry also exists at strong coupling!

✔ Is in agreement with the Bern-Dixon-Smirnov (BDS) ansatz for n = 4 amplitudes

✔ Admits generalization to arbitrary n−gluon amplitudes but it is difficult to construct explicit
solutions for ‘minimal surface’ in AdS

✔ Agreement with the BDS ansatz is also observed for n = 5 gluon amplitudes [Komargodski] but
disagreement is found for n → ∞ 7→ the BDS ansatz needs to be modified [Alday,Maldacena]

The same questions to answer as at weak coupling:

☞ Why should finite corrections exponentiate?

☞ Why should they be related to the cusp anomaly of Wilson loop?
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From gluon amplitudes to Wilson loops

Common properties of gluon scattering amplitudes at both weak and strong coupling:

(1) IR divergences of A4 are in one-to-one correspondence with UV div. of cusped Wilson loops

(2) The gluons scattering amplitudes possess a hidden dual conformal symmetry

☞ Is it possible to identify the object in N = 4 SYM for which both properties are manifest ?

Yes! The expectation value of light-like Wilson loop in N = 4 SYM [Drummond-Henn-GK-Sokatchev]

W (C4) =
1

Nc

〈0|TrP exp

„

ig

I

C4

dxµAµ(x)

«

|0〉 , C4 =

x1

x2 x3

x4

✔ Gauge invariant functional of the integration contour C4 in Minkowski space-time

✔ The contour is made out of 4 light-like segments C4 = ℓ1 ∪ ℓ2 ∪ ℓ3 ∪ ℓ4 joining the cusp points xµ
i

xµ
i − xµ

i+1 = pµ
i = on-shell gluon momenta

✔ The contour C4 has four light-like cusps 7→ W (C4) has UV divergencies

✔ Conformal symmetry of N = 4 SYM 7→ conformal invariance of W (C4) in dual coordinates xµ
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Gluon scattering amplitudes/Wilson loop duality I

The one-loop expression for the light-like Wilson loop (with x2
jk

= (xj − xk)2) [Drummond,GK,Sokatchev]

ln W (C4) =

x1 x1x1
x2 x2x2

x3 x3x3 x4 x4x4

=
g2

4π2
CF



− 1

ǫUV
2

ˆ`

−x2
13µ2

´ǫUV +
`

−x2
24µ2

´ǫUV
˜

+
1

2
ln2

„

x2
13

x2
24

«

+ const
ff

+ O(g4)

The one-loop expression for the gluon scattering amplitude

lnA4(s, t) =
g2

4π2
CF



− 1

ǫIR2

h

`

−s/µ2
IR

´ǫIR +
`

−t/µ2
IR

´ǫIR
i

+
1

2
ln2
“ s

t

”

+ const
ff

+ O(g4)

✔ Identity the light-like segments with the on-shell gluon momenta xµ
i,i+1 ≡ xµ

i − xµ
i+1 := pµ

i :

x2
13 µ2 := s/µ2

IR , x2
24 µ2 := t/µ2

IR , x2
13/x2

24 := s/t

☞ UV divergencies of the light-like Wilson loop match IR divergences of the gluon amplitude

☞ the finite ∼ ln2(s/t) corrections coincide to one loop!
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Gluon scattering amplitudes/Wilson loop duality II

Drummond-(Henn)-GK-Sokatchev proposal: gluon amplitudes are dual to light-like Wilson loops

lnA4 = ln W (C4) + O(1/N2
c , ǫIR) .

✔ At strong coupling, the relation holds to leading order in 1/
√

λ [Alday,Maldacena]

✔ At weak coupling, the relation was verified to two loops [Drummond,Henn,GK,Sokatchev]

lnA4 = ln W (C4) =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

x3x2

x1
x4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

=
1

4
Γcusp(g) ln2(s/t) + Div

✔ Generalization to n ≥ 5 gluon MHV amplitudes

lnA(MHV)
n = ln W (Cn) + O(1/N2

c ) , Cn = light-like n−(poly)gon

✗ At weak coupling, matches the BDS ansatz to one loop [Brandhuber,Heslop,Travaglini]

✗ The duality relation for n = 5 (pentagon) was verified to two loops [Drummond,Henn,GK,Sokatchev]
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Conformal Ward identities for light-like Wilson loop

Main idea: make use of conformal invariance of light-like Wilson loops in N = 4 SYM +
duality relation to fix the finite part of n−gluon amplitudes

✔ Conformal SO(2, 4) transformations map light-like polygon Cn into another light-like polygon C′
n

✔ If the Wilson loop W (Cn) were well-defined (=finite) in D = 4 dimensions then

W (Cn)=W (C′
n)

✔ ... but W (Cn) has cusp UV singularities 7→ dim.reg. breaks conformal invariance

W (Cn) = W (C′
n) × [cusp anomaly]

✔ All-loop anomalous conformal Ward identities for the finite part of the Wilson loop

W (Cn) = exp(Fn) × [UV divergencies]

under dilatations, D, and special conformal transformations, K
µ, [Drummond,Henn,GK,Sokatchev]

D Fn ≡
n
X

i=1

(xi · ∂xi )Fn = 0

K
µ Fn ≡

n
X

i=1

ˆ

2xµ
i (xi · ∂xi) − x2

i ∂µ
xi

˜

Fn =
1

2
Γcusp(a)

n
X

i=1

xµ
i,i+1 ln

“ x2
i,i+2

x2
i−1,i+1

”

The same relations also hold at strong coupling [Alday,Maldacena],[Komargodski]
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Finite part of light-like Wilson loops

The consequences of the conformal Ward identity for the finite part of the Wilson loop Wn

✔ n = 4, 5 are special: there are no conformal invariants (too few distances due to x2
i,i+1 = 0 )

=⇒ the Ward identity has a unique all-loop solution (up to an additive constant)

F4 =
1

4
Γcusp(a) ln2

“x2
13

x2
24

”

+ const ,

F5 = −1

8
Γcusp(a)

5
X

i=1

ln
“x2

i,i+2

x2
i,i+3

”

ln
“x2

i+1,i+3

x2
i+2,i+4

”

+ const

Exactly the functional forms of the BDS ansatz for the 4- and 5-point MHV amplitudes!

✔ Starting from n = 6 there are conformal invariants in the form of cross-ratios

u1 =
x2
13x2

46

x2
14x2

36

, u2 =
x2
24x2

15

x2
25x2

14

, u3 =
x2
35x2

26

x2
36x2

25

Hence the general solution of the Ward identity for W (Cn) with n ≥ 6 contains an arbitrary
function of the conformal cross-ratios.

✔ The BDS ansatz is a solution of the conformal Ward identity for arbitrary n but the ansatz should
be modified for n ≥ 6 starting from two loops... what is a missing function of u1, u2 and u3?
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Discrepancy function

✔ We computed the two-loop hexagon Wilson loop W (C6) ... [Drummond, Henn, GK, Sokatchev’07]

ln W (C6) =

2

6

6

6

6

6

6

6

6

6

4

x6

x5

x4x3

x2

x1

1 2 3 4 5 6 7

8

15 16 2119

18 13 14

1217 20

9 10 11

3

7

7

7

7

7

7

7

7

7

5

... and found a discrepancy ln W (C6) 6= lnM(BDS)
6

✔ Bern-Dixon-Kosower-Roiban-Spradlin-Vergu-Volovich computed 6-gluon amplitude to 2 loops

M(MHV)
6 = + . . .

... and found a discrepancy lnM(MHV)
6 6= lnM(BDS)

6

☞ The BDS ansatz fails for n = 6 starting from two loops.

☞ What about Wilson loop duality? lnM(MHV)
6

?
= ln W (C6)
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6-gluon amplitude/hexagon Wilson loop duality

✔ Comparison between the DHKS discrepancy function ∆WL and the BDKRSVV results for the
six-gluon amplitude ∆MHV:

Kinematical point (u1, u2, u3) ∆WL − ∆
(0)
WL ∆MHV − ∆

(0)
MHV

K(1) (1/4, 1/4, 1/4) < 10−5 −0.018 ± 0.023

K(2) (0.547253, 0.203822, 0.88127) −2.75533 −2.753 ± 0.015

K(3) (28/17, 16/5, 112/85) −4.74460 −4.7445 ± 0.0075

K(4) (1/9, 1/9, 1/9) 4.09138 4.12 ± 0.10

K(5) (4/81, 4/81, 4/81) 9.72553 10.00 ± 0.50

evaluated for different kinematical configurations, e.g.

K(1): x2
13=−0.7236200 , x2

24=−0.9213500 , x2
35=−0.2723200 , x2

46=−0.3582300 , x2
36=−0.4825841 ,

x2
15=−0.4235500 , x2

26=−0.3218573 , x2
14=−2.1486192 , x2

25=−0.7264904 .

✔ Two nontrivial functions coincide with an accuracy < 10−4!

✌ The Wilson loop/gluon scattering amplitude duality holds at n = 6 to two loops!!

✌ There are now little doubts that the duality relation also holds for arbitrary n to all loops!!!
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Four-gluon amplitude/Wilson loop duality in QCD

Finite part of four-gluon amplitude in QCD at two loops

FinQCD
(2)(s, t, u) = A(x, y, z)+O(1/N2

c , nf /Nc) [Glover,Oleari,Tejeda-Yeomans’01]

with notations x = − t
s

, y = −u
s

, z = −u
t

, X = log x, Y = log y, S = log z

A =
˘`

48 Li4(x)−48 Li4(y)−128 Li4(z)+40 Li3(x) X−64 Li3(x) Y −

98
3

Li3(x)+64 Li3(y) X−40 Li3(y) Y +18 Li3(y)

+ 98
3

Li2(x) X−

16
3

Li2(x) π2
−18 Li2(y) Y −

37
6

X4+28 X3 Y −

23
3

X3
−16 X2 Y 2+ 49

3
X2 Y −

35
3

X2 π2
−

38
3

X2

−

22
3

S X2
−

20
3

X Y 3
−9 X Y 2+8 X Y π2+10 X Y −

31
12

X π2
−22 ζ3 X+ 22

3
S X+37

27
X+ 11

6
Y 4

−

41
9

Y 3
−

11
3

Y 2 π2

−

22
3

S Y 2+ 266
9

Y 2
−

35
12

Y π2+ 418
9

S Y + 257
9

Y +18 ζ3 Y −

31
30

π4
−

11
9

S π2+ 31
9

π2+ 242
9

S2+ 418
9

ζ3+ 2156
27

S

−

11093
81

−8 S ζ3

´

t2

s2 +

`

−256 Li4(x)−96 Li4(y)+96 Li4(z)+80 Li3(x) X+48 Li3(x) Y −

64
3

Li3(x)−48 Li3(y) X

+96 Li3(y) Y −

304
3

Li3(y)+ 64
3

Li2(x) X−

32
3

Li2(x) π2+ 304
3

Li2(y) Y + 26
3

X4
−

64
3

X3 Y −

64
3

X3+20 X2 Y 2

+ 136
3

X2 Y +24 X2 π2+76 X2
−

88
3

S X2+ 8
3

X Y 3+ 104
3

X Y 2
−

16
3

X Y π2+ 176
3

S X Y −

136
3

X Y −

50
3

X π2

−48 ζ3 X+ 2350
27

X+440
3

S X+4 Y 4
−

176
9

Y 3+ 4
3

Y 2 π2
−

176
3

S Y 2
−

494
9

Y π2+ 5392
27

Y −64 ζ3 Y + 496
45

π4

−

308
9

S π2+ 200
9

π2+ 968
9

S2+ 8624
27

S−

44372
81

+ 1864
9

ζ3−32 S ζ3

´

t
u

+

`

88
3

Li3(x)− 88
3

Li2(x) X+2 X4
−8 X3 Y

−

220
9

X3+12 X2 Y 2+ 88
3

X2 Y + 8
3

X2 π2
−

88
3

S X2+ 304
9

X2
−8 X Y 3

−

16
3

X Y π2+ 176
3

S X Y −

77
3

X π2

+ 1616
27

X+ 968
9

S X−8 ζ3 X+4 Y 4
−

176
9

Y 3
−

20
3

Y 2 π2
−

176
3

S Y 2
−

638
9

Y π2
−16 ζ3 Y + 5392

27
Y −

4
15

π4
−

308
9

S π2

−20 π2
−32 S ζ3+ 1408

9
ζ3+ 968

9
S2

−

44372
81

+ 8624
27

S

´

t2

u2 +

`

44
3

Li3(x)− 44
3

Li2(x) X−X4+ 110
9

X3
−

22
3

X2 Y

+ 14
3

X2 π2+ 44
3

S X2
−

152
9

X2
−10 X Y + 11

2
X π2+4 ζ3 X−

484
9

S X−

808
27

X+ 7
30

π4
−

31
9

π2

+ 11
9

S π2
−

418
9

ζ3−

242
9

S2
−

2156
27

S+8 S ζ3+ 11093
81

´

ut

s2 +

`

−176 Li4(x)+88 Li3(x) X−168 Li3(x) Y −...
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Four-gluon amplitude/Wilson loop duality in QCD II

✔ Planar four-gluon QCD scattering amplitude in the Regge limit s ≫ −t [Schnitzer’76],[Fadin,Kuraev,Lipatov’76]

M(QCD)
4 (s, t) ∼ (s/(−t))ωR(−t) + . . .

The Regge trajectory ωR(−t) is known to two loops [Fadin,Fiore,Kotsky’96]

✔ The all-loop gluon Regge trajectory in QCD [GK’96]

ω
(QCD)
R

(−t) =
1

2

Z µ2
IR

(−t)

dk2
⊥

k2
⊥

Γcusp(a(k2
⊥)) + ΓR(a(−t)) + [poles in 1/ǫIR] ,

✔ Rectangular Wilson loop in QCD in the Regge limit |x2
13| ≫ |x2

24|

W (QCD)(C4) ∼
`

x2
13/(−x2

24)
´ωW(−x2

24)
+ . . .

✔ The all-loop Wilson loop ‘trajectory’ in QCD

ω
(QCD)
W (−t) =

1

2

Z µ2
UV

(−t)

dk2
⊥

k2
⊥

Γcusp(a(k2
⊥)) + ΓW(a(−t)) + [poles in 1/ǫUV ] ,

✔ The duality relation holds in QCD in the Regge limit only! [GK’96]

lnM(QCD)
4 (s, t) = ln W (QCD)(C4) + O(t/s)

while in N = 4 SYM it is exact for arbitrary t/s
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Conclusions and open questions

✔ Planar gluon scattering amplitudes possess the dual conformal symmetry at both weak and
strong coupling (is not a symmetry of the full N = 4 SYM!)

✔ This symmetry becomes manifest within the gauge scattering amplitude/Wilson loop duality

✔ We do not understand the origin of this symmetry but we do know how to make use of it:

✗ The anomalous conformal Ward identities uniquely fix the form of the finite part of n = 4 and
n = 5 gluon amplitudes, in complete agreement with the BDS conjecture

✗ Starting from n = 6, the conformal symmetry is not sufficient to fix the finite part of the
Wilson loop (=discrepancy function)

✗ Remarkably enough, the DHKS discrepancy function for the n = 6 Wilson loop coincides
with the BDKRSVV discrepancy function for the six-gluon amplitude

✔ We have now good reasons to believe that the Wilson loop/gluon amplitude duality holds for any
n to all loops... but

✗ What is the origin of the dual conformal symmetry?

✗ Who controls a nontrivial discrepancy function of conformal ratios?

Should be related to integrability of planar N = 4 SYM. More work is needed!
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Back-up slides
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What is the cusp anomalous dimension

✔ Cusp anomaly is a very ‘unfortunate’ feature of Wilson loops evaluated over an Euclidean closed
contour with a cusp – generates the anomalous dimension [Polyakov’80]

〈tr P exp

„

i

I

C

dx · A(x)

«

〉 ∼ (ΛUV)Γcusp(g,ϑ) , C =

ϑ

✔ A very ‘fortunate’ property of Wilson loop – the cusp anomaly controls the infrared asymptotics
of scattering amplitudes in gauge theories [GK, Radyushkin’86]

✗ The integration contour C is defined by the particle momenta

✗ The cusp angle ϑ is related to the scattering angles in Minkowski space-time, |ϑ| ≫ 1

Γcusp(g, ϑ) = ϑ Γcusp(g) + O(ϑ0) ,

✔ The cusp anomalous dimension Γcusp(g) is an ubiquitous observable in gauge theories: [GK’89]

✗ Logarithmic scaling of anomalous dimensions of high-spin Wilson operators;
✗ IR singularities of on-shell gluon scattering amplitudes;
✗ Gluon Regge trajectory;
✗ Sudakov asymptotics of elastic form factors;
✗ ...
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Four-gluon planar amplitude at weak coupling

Weak coupling corrections to A4/A
(0)
4 can be expressed in terms of scalar integrals:

✔ One loop: [Green,Schwarz,Brink’82]

1

2 3

4

✔ Two loops: [Bern,Rozowsky,Yan’97]

1

2 3

4

all-loop iteration structure conjectured [Anastasiou,Bern,Dixon,Kosower’03]

✔ Three loops: [Bern,Dixon,Smirnov’05]

1

2 3

4

iteration structure confirmed!

✔ Four loops: scalar integrals of 8 different topologies are identified [Bern,Czakov,Dixon,Kosower,Smirnov’06]
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Light-like Wilson loops

To lowest order in the coupling constant,

W (C4) = 1 +
1

2
(ig)2CF

X

1≤j, k≤4

Z

ℓj

dxµ

Z

ℓk

dyν Gµν(x − y) + O(g4) , (1)

✔ The gluon propagator in the coordinate representation (the Feynman gauge + dimensional
regularization, D = 4 − 2ǫ)

Gµν(x) = −gµν
Γ(1 − ǫ)

4π2
(−x2 + i0)−1+ǫ

`

µ2π
´ǫ

.

✔ Feynman diagram representation

ln W (C4) =

x1 x1x1 x2 x2x2

x3 x3x3 x4 x4x4

✔ The light-like Wilson loop is IR finite but has UV divergences due to cusps on the integration
contour C4

ln W (C4) =
g2

4π2
CF

(

− 1

2ǫ2

4
X

i=1

`

−x2
i−1,i+1 µ2

´ǫ
+ O(ǫ0)

)

+ O(g4) .
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