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• In zero temperature asymptotically free  or  super-
renormalizable  (non-)abelian gauge theories, is 
there a symmetry associated with confinement/ 
deconfinement? 

• IR gapped, IR gapless, IR CFT ? Is there a 
distinguishing (continuum) notion beyond 
perturbation theory? 

• Obvious answer: No. There is no symmetry in 
microscopic theory related to confinement.  
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The theories and the goal 

QCD(R)∗ on R3 × S1

P(R) on R3

Frustrated spin systems in d=2 space dimensions

Lattice or continuum compact QED   d=2+1dimensions

AMBIGUOUS! (will be discussed, can be resolved.)

Polyakov
Representation : nothing, fundamental or adjoint

Small non-thermal circle with  stabilized 
center (if center is not already stable 

quantum mechanically)  
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The goal

All these theories have  long distance regimes where they 
are  described  in terms of a compact  abelian gauge theory.   

All has monopole-instantons.  What is their IR physics?

Gapped, ungapped, interacting CFT 

Surprisingly, all of these are possible!   A sharp and useful 
notion of emergent (IR) topological symmetry is at work.  
It is the goal of this talk to make it  precise.  

‘t Hooft, Mandelstam, Nambu, Polyakov 70’s
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Reminder:  Abelian duality and Polyakov model

Free Maxwell theory is dual to the free scalar theory.

F = ∗dσ

U(1)flux : σ → σ − β

The masslessness of the dual scalar  is protected  by  a continuous shift symmetry

 Noether current of dual theory:   

Jµ = ∂µσ = 1
2εµνρFνρ = Fµ

∂µJµ = ∂µFµ = 0

 Its conservation implies the absence of magnetic monopoles in original theory

Topological current vanishes by Bianchi 
identity. 
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∂µJµ = ∂µFµ = ρm(x)

The presence of the monopoles in the original theory implies reduction of the   
continuous shift symmetry into a discrete one.  

L = 1
2 (∂σ)2 − e−S0(eiσ + e−iσ)

The dual theory 

Discrete shift symmetry: σ → σ + 2π

U(1)flux if present, forbids (magnetic) flux carrying operators.  
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Reminder: Add a massless adjoint Dirac fermion P(adj) 

Iαi = (dim ker /Dαi
− dim ker /Dαi

)

Affleck, Harvey, Witten 82

e−S0eiσψψ

Jackiw-Rebbi  76,  Callias 78

Microscopic theory has U(1) fermion number symmetry.
ψ → eiβψ, ψ̄ → e−iβψ̄

Monopole operator:

ψ → eiβψ, σ −→ σ −NfIα1β = σ − 2β

The invariance under  U(1) fermion number symmetry demands
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U(1)∗ : U(1)−NfIαiU(1)flux

Symmetry of the long distance theory

 Forbids any pure flux  operators 
such as eiqσ

 Current: 

Kµ = ψ̄σµψ − nfIα1∂µσ = ψ̄σµψ − nfIα1Jµ

AHW concludes: Fermion number breaks spontaneously and photon is NG boson.

 Current conservation = Local version of Callias index theorem
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Massless Fundamental  fermions and IR CFT  

Ψa =

(
ψa

1

ψ̄a
2

)
, Ψa =

(
ψa

2

ψ̄a
1

)
,

Nf 4-component  Dirac spinors or   

GM,P(F) = SO(3)L × C × P × T × Z2 × U(1)V × U(1)A × SU(nf )1 × SU(nf )2

Microscopic symmetries: 

non-anomalous on R3

This theory and certain  frustrated spin systems in two spatial  (and one time) 
dimensions share universal long distance physics.  (to be discussed). 

Microscopic symmetries identical with QCD and QCD* except the underlined symmetry.  

HOW DOES THIS THEORY FLOWS INTO A CFT? 

2nf 2-component  Dirac spinors:  
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SP(F)
pert. =

∫

R3

[ 1
4g2

3

F 2
µν + iΨ̄aγµ(∂µ + iAµ)Ψa

]
Perturbation theory: 3d QED with massless fermions 

Is the masslessness destabilized non-perturbatively? 

Monopole operators:

e−S0eiσ det
a,b

ψa
1ψb

2 + e−S0e−iσ det
a,b

ψ̄a
1 ψ̄b

2

U(1)∗ : ψ1 → eiβψ1, ψ2 → eiβψ2, σ −→ σ − 2nfβ .

U(1)∗ : U(1)A −NfIαiU(1)fluxTopological symmetry:
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No relevant flux (monopole) operators  in the original electric theory!!Nf ≥ 2

IR theory quantum critical due to the absence of relevant or marginal destabilizers.

Integrate out a thin momentum slice of massless fermions: Applequist et.al 88 

1
g2
3

F 2
µν →

1
g2
3

(
F 2

µν +
g2
3nf

8
Fµν

1√
!

Fµν

)

L ∼ Fµν!−1/2Fµν + iΨ̄aγµ(∂µ + i
1
√

nf
Aµ)Ψa

Move into deep IR: 

Dimensionless coupling 
of CFT
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GIR,P(F) ∼ (conformal symmetry)×
C × P × T × U(1)V × U(1)flux × SU(2nf )

Big  enhancement of spacetime and global symmetries

Theories  interpolate between weakly and strongly coupled 
interacting CFTs as the number of flavors is reduced.  

Nf = 1 Perhaps one relevant flux operator,  photon remains massless due to U(1)*.    

Anticipating ourselves a bit: The same dynamics as the IR of the 
                 frustrated spin systems with no broken symmetries.SU(nf )
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The infrared of Polyakov models with complex  fermions

Vnon−pert.(|x− y|) ∼






|x− y| pure Polyakov or with heavy fermions

|x− y|−1 with massless fundamental fermions,

log |x− y| with massless adjoint fermions,

Respectively, 

P:   Gapped, linear confinement
P(F):   Interacting CFT,  massless photon  
P(adj):   massless photon, NG boson  

Sub-conclusions

Recall:  All of these theories have monopole-instantons!

Take  two electric   charges at (x,y) ∈ R2

U(1)∗
U(1)∗

Z1
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YM* and QCD*
Yaffe, M.U. 08 Shifman, M.U. 08

Z)a a a a
R

! ! !

1 2 3 4

1 2 3

a a a a a a

! ! ! ! !1 2 3 4  1

1 2 3 4 1 2

R/ (2 "

1)   Alter the topology of adjoint Higgs scalar into a compact one.  An extra 
topological excitation moves in from infinity. (associated with affine root)

P(R) QCD(R)∗

2)   Take YM  or QCD(R) on   small                   and add center stabilizing 
double trace deformations.  (Different theory from QCD? See below.) 

S1 × R3

1 and 2 are the same.
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      YM

0

β=1/Τ

deconfined 

confined 
 

 

Deformation, A  

*

1/Λ

R4

Sdual =
∫

R3

[ 1
2L

( g

2π

)2
(∂σ)2 − ζ

N∑

i=1

cos(αi · σ)
]
.

SYM∗
= SYM +

∫

R3×S1
P [U(x)]

P [U ] = A
2

π2β4

!N/2"∑

n=1

1
n4

|tr (Un)|2

YM* theory at finite N

IDEA: Connect large and small circle physics in a smooth way! 
Then solve in regime where we have theoretical control. 
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deformation equivalence

ordinary Yang−Mills deformed Yang−Mills

orbifold
equivalence

combined
deformation−orbifold

∞

c

∞

0

L

0

L

equivalence

At large N, the difference of YM and YM*  is sub-leading in N.    Volume 
independence (valid EK reduction)  via center stabilizing deformations. 

Large N dynamics on =Large N quantum mechanicsR4
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SU(N)︸ ︷︷ ︸
with noncompact scalar

−→︸︷︷︸
Higgsing

[U(1)]N−1

︸ ︷︷ ︸
compact QED3

−→︸︷︷︸
nonperturbative

U(1)︸︷︷︸
CFT or free photon

SU(N)︸ ︷︷ ︸
with compact scalar

−→︸︷︷︸
Higgsing

[U(1)]N−1

︸ ︷︷ ︸
compact QED3

−→︸︷︷︸
nonperturbative

nothing︸ ︷︷ ︸
gapped gauge bosons

The notion of continuum compact  3d QED is ambiguous. 

Option 1:  YM noncompact adjoint Higgs field, Polyakov model 

Option 2:  YM compact adjoint Higgs field, 

In the presence of certain number of  massless complex  fermions, the first class always 
remains ungapped  and the latter develops a gap for gauge fluctuations.  Why? 

QCD*

 AHW and  the first part of the talk:

Shifman, MU and the second part of the talk
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QCD(R)* 

On locally three manifolds,  there is no chiral anomaly.  
On locally four manifolds, due to chiral anomaly, the axial 
U(1) symmetry reduce to a discrete one.  

U(1)∗︸ ︷︷ ︸
non−compact Higgs or P(R)

−→ (Zh)∗︸ ︷︷ ︸
compact Higgs or QCD(R)∗

U(1)A → Z2h

ψ → ei 2π
2h ψ, σ → σ − 2π

h

Quantum theory:

Discrete topological shift 
symmetry:
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M1(x) = e−S0eiσψ1ψ2,

M1(x) = e−S0e−iσψ̄1ψ̄2,

QCD(F)* with one flavor

M2(x) = e−S0e−iσ

M2(x) = e−S0e+iσ

Structure of the zero modes dictated by Callias index theorem, observed beautifully on 
lattice by Bruckmann, Nogradi,  Pierre van Baal 03.  BNvB also introduced the notion of 

zero mode hopping as the boundary conditions are changed for fermions. 

(Z1)∗

Shifman, M.U. 08
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IR of QCD(F)* with one flavor

S =
∫

R3

[ 1
4g2

3

F 2
µν + iΨ̄γµ(∂µ + iAµ)Ψ

]

+c1e
−S0eiσψ1ψ2 + c1e

−S0e−iσ ψ̄1ψ̄2

+c2e
−S0(e−iσ + eiσ) + . . .

Mass gap for gauge fluctuations and  fermions.  Chiral 
condensate (which does not break any symmetry).
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BPS KK

BPS KK
(2,0) (!2, 0)

(1, 1/2) (!1, 1/2)

(!1, !1/2) (1, !1/2)

Magnetic 
Bions

Magnetic 
Monopoles 

e−S0eiσ detI,J ψIψJ ,

e−S0eiσ detI,J ψ̄I ψ̄J

e−2S0(e2iσ + e−2iσ)

(∫
S2 F,

∫
R3×S1 FF̃

)

Discrete shift symmetry : σ → σ + π

Rebbi-Jackiw fermionic zero modes 

ψI → ei 2π
8 ψI

(Z2)∗

QCD(adj)*
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• Discrete topological symmetry          forbids all 
pure flux operators with magnetic charges not 
multiple of h.  

• Does this mean that any theory with a discrete 
topological symmetry will have a mass gap  in its 
gauge sector and confine?  

• Take a QCD(F)* theory with large number of 
fundamental  flavors, but still asymptotically free 
(such as Banks-Zaks window, so that weak gauge 
coupling at small circle makes sense.) What 
happens? 

(Zh)∗
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With fundamentals, topological symmetry in QCD(F)* is  always (Z1)∗

(Z1)∗ allows eiqσ
for all q.

Can a monopole operator (whose classical dimension is +3) be irrelevant in the 
renormalization group sense in the presence of many massless fermions? If so, 

(Z1)∗ → U(1)flux︸ ︷︷ ︸
accidental

This would be a non-perturbative confirmation of Banks-Zaks type window beyond 
the usual perturbation theory.  (Since the non-perturbative excitations are also 

taken into considerations.)
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The quantum scaling dimension of monopole operator 
receives corrections proportional to the number of flavors 
leading monopoles  towards irrelevance in the RG sense. 

Many peoples beautiful work:   Hermele, Senthil,....04 
using results by   Kapustin, Borokhov, Wu 02 on 3d CFTs..
See the applications to quantum criticality in 
Senthil, Balents, Sachdev, Vishwanath, Fisher 04..
Please see the paper for an incomplete set of references...

Why are these most interesting questions of P(F) and 
QCD(F)* are of relevance in condensed matter physics? 

The  frustrated spin systems maps into identical 
gauge theories in some circumstances.
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From SU(nf ) quantum spin systems to lattice QED3

S(r)→ US(r)U†, U ∈ SU(nf )D

H = J
∑

〈r,r′〉

tr [S(r).S(r′)] + . . . = J

dim(adj)∑

a=1

∑

〈r,r′〉

Sa
rSa

r′ + . . .

J > 0Mostly antiferromagnetic exchange

Global spin rotation  symmetry

A magnetic ground state if the effect of ellipsis negligible: (Neel order)  mean field theory OK.  

If ellipsis causes frustration  (for example, by some double-trace deformation)  of spin 
such that  spin refuses to order,  can the mean field theory be applied usefully?

Nontrivial. But possible.  Initiated by Baskaran, Anderson 88, Affleck, Marston 88

“Slave-fermion mean field theory”
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Sa
r (r) = f†

r,αT a
αβfr,β , or Sαβ = (Sa

rT a)αβ = f†
r,αfr,β −

1
2nf

δαβ

Apparent local gauge redundancy: fr,α −→ eiθ(r)fr,α

With a constraint on the occupancy of each lattice site, the 
fermionic Hamiltonian describes the original spin system. 

Affleck, Marston 88 introduced a mean field state which satisfies:

χrr′ = 〈f†
α(r)fα(r′)〉

∏

∂p

χ[∂p] = eiπ = −1

Fluctuations around this mean-field is the usual Kogut-Susskind 
Hamiltonian for compact U(1)  lattice QED_3 with massless fermions. 

H ∼ J
∑

〈r,r′〉

χ̄r′rf
†
r,αeiar,r′ fr′,α + h.c. + (Maxwell term)

Gdiscrete ⊂ SO(2)D = Diag(SO(2)Lorentz × SU(2)flavor) Staggering or twisting
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GQED3
∼ Gdiscrete × C × P × T × U(1)V × SU(nf )D

GIR,QED3 ∼ (conformal symmetry)×
C × P × T × U(1)V × U(1)flux × SU(2nf )

If magnetic flux operators are irrelevant,  the theory deconfines and infrared 
symmetry enhances drastically flowing into a scaleless theory (i.e, forgetting about J, 
which sets the scale  in the spin Hamiltonian). 

ZuCu3(OH)6Cl2

In the Kagome lattice, the geometric frustration of spin is large even for S=1/2. 

Position of Cu ions form a Kagome lattice. 

J ∼ 200K 30mKNo ordering observed upto Helton, J. 07 

Guess: likely a CFT of the above type. 
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The necessary and sufficient conditions for 
(de)confinement:  A topological symmetry

characterization. 

1) The existence of continuous  U(1)*  topological symmetry is the necessary and sufficient 
condition to establish deconfinement and to  show the absence of mass gap in gauge sector.

1.a) If  U(1)*  is spontaneously broken, photon is a massless NG boson.        

1.b) If the U(1)* is unbroken, the unbroken U(1)* protects the masslessness of the photon. 
In some cases,  infrared theory flows into an interacting  CFT. 
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2) The existence of a discrete topological symmetry is necessary  but not sufficient condition 
to exhibit confinement. 

2.a) If the monopole (and other flux) operators are irrelevant at large distances, then there is 
an extra accidental continuous topological symmetry.  This class of theories will deconfine and 
some will flow into interacting CFTs.  (emergent topological symmetry)

2.b) If the monopole (and other flux) operators are relevant  at large distances, then the mass 
gap and confinement will occur.  Showing the relevance of flux operators is the 
sufficient condition to exhibit confinement. 
 
1.a)  P(adj) AHW 82,  
1.b)  P(F), 
2.a) Spin liquids, quantum criticality,  (critical points, critical phases) 
       Banks-Zaks type QCD* theories. 
2.b) QCD(F/adj)*,  P,  YM*,  (t Hooft, Mandelstam, Polyakov intuition.)

29



• Valid when  long distance dynamics is 
abelian and three dimensional. Correctly 
characterize abelian confinement and 
abelian interacting CFTs.  Can we use this 
to say something useful on non-abelian 
confinement and non-abelian CFTs?
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• Observation:  Take any non-abelian gauge 
theory, and push it into a regime where 
long distance theory abelianizes.  The 
confined versus deconfined CFT behavior 
seems to be invariant under such 
deformations.  (in a large class of theories I 
looked at)*. This suggests  the topological 
symmetry may also be useful for theories 
which do not possess an abelian regime.
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Herbertsmithite
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