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I. Introduction

At large                        the system in the deconfined phaseT ! ΛQCD

 At small                     the system in the confined (hadronic) phaseT ! ΛQCD

 At small                     the system in the confined (hadronic) phase

At large                        the system in the deconfined phase

µ ! ΛQCD

µ ! ΛQCD

Question we want to address:  
what are the most important vacuum 

configurations which  are responsible for the 
transitions when           varies ?

It is clear: 
something drastic must be happening on the way when 

temperature (chemical potential ) varies 

µ(T )



Main object:    Large N QCD 

Main technique-1: dual representation 

Main technique-2: holographic 
description

Crucial element:

Basic trick:   light  

2- Basic technique and methods:

Θ -parameter

 
η
′ -field as a probe 

of topological charges 
of  the constituents 

(Nf ! N)



The basic Conjecture:
The        parameter suddenly changes its 

behavior precisely at the same point    
where the phase transition happens 

Tc

Θ

3

where k is an integer number and the integral is over the S1 parameterized by x4 ∈ [0, 2πR4]. In the first equality
we used the fact that the (U, x4) space has the disk topology and Stokes theorem. One can solve the equation of
motion for F2 without taking back-reaction into account (which is justified as long as Nf " N) and substitute into
the action; the result for the vacuum energy at small θ is [13]

Evac ≈ χg

2
θ2 (4)

where χg ∼ O(1) is the topological succeptibility. The addition of fundamental matter results [6] in the effective
lagrangian consistent with Veneziano-Witten formula for the η′ mass:2

Leff =
1
2
(∂µη′)2 +

N2

2
χg

(
θ

N
+

1
N

η′

fη′

)2

, (5)

where we included some numerical factors such as
√

2 and
√

Nf into the definition of fη′ to simplify notations in the
following sections. This result is not significantly changed when the finite temperature is introduced, as long as the
theory is in the confining phase and the topology of the space remains the same. Eq. (4) is consistent with the fact
that in the confining phase physics is expected to depend on θ via the combination θ/N [13],

Evac = N2 min
k

h

(
θ + 2πk

N

)
, (6)

where h(x) is some function which satisfies h(0) = h′(0) = 0. Eq.(6) can also be understood from QFT viewpoint
for finite N as a result of summation over different branches in pure SU(N) gluodynamics, see section III of ref.[16]
where connection with approach [13] is discussed.

As we will see below, instantons are not well-defined objects in this phase. Indeed, this would contradict θ/N
dependence since each instanton comes with an integer multiple of θ. In the holographic model this is resolved by
identifying instantons with euclidean D0 branes wrapping around the x4 direction which tend to shrink to zero size
and disappear [7].

At finite temperature the model exhibits confinement/deconfinement and chiral phase transitions [17, 18]. Two
possible metrics with euclidean time tE compactified on a circle with circumference β are (1) and its double analytic
continuation,

ds2 =
(

U

R

) 3
2 (

(dxµ)2 + fT (U)dt2E + (dx4)2
)

+
(

U

R

)− 3
2

(
dU2

fT (U)
+ U2dΩ2

4

)
(7)

where fT = 1 − U3
T /U3 and β = 4π

3

(
R3

UK

) 1
2
. Since the two metrics are the same, the comparison of the free

energies is simple: as soon as UT > UK the black hole metric (7) becomes preferred. This corresponds to confine-
ment/deconfinement transition at T = 1/2πR4. The Polyakov loop, which is the order parameter for confinement,
vanishes in the confining phase (1) and has a non-vanishing value in the deconfining phase (7). In the deconfining
phase the x4 circle does not shrink to zero size and Stokes theorem makes it possible to have vanishing F2, which
minimizes the energy [7]. That is, in this phase it is possible to have

C1 =
θ

2π
dx4 (8)

This leads to χg = 0 to order N0; this is also consistent with the fact that instantons are well defined objects in this
phase, and come with the factor of einθ. In the holographic model this is again a consequence of the topology in the
deconfined phase, where the D0 brane wrapping the x4 circle cannot shrink to zero size and disappear. The factor of
einθ in the D0 brane action follows from (8). Hence, we observe that the θ dependence is different in the confining
and deconfining phases. We will also see that such change in the behavior is also supported by analyzing instantons
in field theory, see next sections.

Another comment we would like to make is the existence of the phase where the glue is deconfined, but chiral
symmetry is broken. While it is not necessarily true that such a phase exists in QCD (after all, the holographic model
contains two variable parameters, as opposed to ΛQCD), we discuss a field theoretic model with this property to
illuminate the topological charges of the relevant constituents in the confining (section V) and the deconfining phases
(section IV).

2 Earlier works on the holographic derivation of η′ lagrangian include [14] and [15].

T < Tc

Evac ∼ cos θ, T > Tc



3. Support for the CONJECTURE from the holographic model of 
QCD

• The large N QCD is known to have  a holographic description;  

• Confined / deconfined phases in the holographic description can be 
studied in the standard way by analyzing the Polyakov’s loop;

• Transition from confined to deconfined phase corresponds to the 
transition from one  background metric to another  at temperature      ;

• The     behavior  has been also studied in both phases with the result:    
the confinement- deconfinement phase transition takes place precisely 
at      where     dependence drastically changes.

•
Tc

Θ

Tc

Θ

χ(T ) ∼
∂2Evac

∂θ2
∼ 1, T < Tc

χ(T ) ∼
∂2Evac

∂θ2
∼ 0, T > Tc



4. Support for  the CONJECTURE 
from the lattices: 

the ratio 

in deconfined and confined phases at
         

B. Lucini, M. Teper, U. Wenger, 2004

R ≡ χ(T = Tc + ε)/χ(T = Tc − ε)

T ! Tc
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Figure 2: The ratio of the topological susceptibility, χt, in the deconfined and confined phases
at T ! Tc.
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Support for  the CONJECTURE from the lattices: 

the ratio                              as a function of reduced 
temperature                      for N=4, 6,   L.Del Debbio, et al.2004     
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Figure 2: The ratio R as a function of the reduced temperature t.

was inferred from simulations at Tc, by monitoring the correlation of the topologi-
cal charge with the Polyakov line, whose value is used to infer the actual phase of
the configurations generated along the given Monte Carlo run. Therefore a more

quantitative comparison with our results is not straightforward. A comparison with
the results presented in Refs. [17, 18] suggests that the suppression of topological

fluctuations is faster in SU(4) than it is in SU(3).
A nonvanishing topological susceptibility χ implies a nontrivial dependence on

the θ term that appears in the euclidean Lagrangian as

Lθ =
1

4
F a

µν(x)F a
µν(x) − iθq(x) (6)

where q(x) is the topological charge density. Indeed χ is the second derivative of

the free-energy density (ground-state energy) F (θ) with respect to θ at θ = 0. More
generally, expanding the free-energy density around θ = 0, one may write

F (θ) =
1

2
χθ2

(
1 + b2θ

2 + b4θ
4 + ...

)
(7)

The parameters of the expansion of F (θ) are related to the moments of the probability
distribution P (Q) of the topological charge Q in the large-volume limit. While χ is

determined from the second moment 〈Q2〉, the coefficients b2i are related to higher
moments of P (Q), for example

b2 = − χ4

12χ
, χ4 =

1

V

[
〈Q4〉θ=0 − 3

(〈Q2〉θ=0

)2
]
. (8)

– 6 –

R(T ) ≡ χ(T )/χ(T = 0)

t = T/Tc − 1



Deconfined Phase, 

• According to the Conjecture, one can study the confinement 
-deconfinement phase transition by analyzing the     dependence 
rather than Polyakov’s loop.

• The     dependence for               is determined by instantons. 

• Instanton expansion converges at             

• Critical temperature is determined by the condition

T > Tc

θ

θ T > Tc

T > Tc

Vinst(θ) ∼ e−γN cos θ, γ =
[11

3
ln

(
πT

ΛQCD

)
− 1.86

]
,

5

frequency for ϕ field in the environment with T != 0 which ensures the validity of the static approximation for all
interactions involving ϕ. This effective lagrangian, is by definition a Wilson type lagrangian for the light η′ field which
is valid as long as η′ field is light,

mη′ ∼ √aΛQCD $ ·ΛQCD, (14)

In the large N limit parameter a ∼ e−γN is exponentially suppressed3 for temperatures above Tc, a $ 1 and the
instanton expansion converges. For T < Tc the instanton expansion makes no sense (breaks down) and the expansion
parameter becomes large a % 1. We assume that θ dependence sharply changes at T = Tc. We estimate the value
of Tc by equalizing γ = 0 according to eq. (9) see below. 4 In deriving the low energy effective lagrangian for the η′
field we should, in principle, use the exact formula for the instanton density and not (11) which is only valid in the
two-loop approximation. We assume that the perturbative corrections for T ∼ Tc, although large, do not drastically
change the physics. Then we will see that for any T > Tc the dilute instanton approximation is valid, since the
average distance between the instantons is parametrically larger then their size, see eq.(18) below. To reiterate, we do
not know how to do an honest instanton calculation in the close vicinity of Tc, but we assume that the perturbative
expansion around the instanton field configuration can still be performed and would yield a ∼ e−γ(T )N where γ(T )
is a monotonic function vanishing at T = Tc. Then, for T > Tc the dilute instanton gas approximation is good, for
T < Tc it is no longer valid, while T = Tc describes the phase transition point with drastic changes in θ behavior.

We should also note that one can estimate Tc(µ) for non zero chemical potential µ != 0 as long as the chiral
condensate does not drastically varies with µ, which we assume to be the case at least for sufficiently small µ. It
allows us to estimate not only a single point Tc on the phase diagram but entire phase transition line Tc(µ) for
sufficiently small µ$ Tc.

B. Numerical estimates

First, we estimate the critical temperature Tc by solving eq. (9) and calculating coefficient c using the expression
for the instanton density (11). As the first approximation (which greatly simplifies computations) we neglect all
log(ρΛQCD) factors in evaluating

∫
dρ integral. In this case the integral can be computed analytically and the limit

N →∞ can be easily evaluated. The result for the instanton contribution takes the following form (as expected)

Vinst(ϕ) ∼ e−γN cos(ϕ− θ), γ =
[11

3
ln

(
πT

ΛQCD

)
− 1.86

]
, (15)

where we neglected all powers Np in front of e−γN (as it does not have any impact on computation of Tc at N =∞)
and used the standard Stirling formula

Γ(N + 1) =
√

2πNNNe−N

(
1 +

1
12N

+ O(
1

N2

)
(16)

to evaluate N →∞ limit. As explained above, the critical temperature is determined by condition γ = 0. Numerically,
it happens at

γ =
[11

3
ln

(
πTc

ΛQCD

)
− 1.86

]
= 0 ⇒ Tc(N =∞) * 0.53ΛQCD, (17)

where ΛQCD is defined in the Pauli -Villars scheme.

3 See also [24] for earlier discussions on the subject.
4 It is conceivable that the phase transition and sudden change in θ behavior occur at the same point Tc for any finite N , and not only for

N =∞. This assumption allows us to make some reasonable estimate for Tc for finite N . By obvious reasons, an estimate of Tc at finite
N suffers from some inherent uncertainties. Indeed, Tc in this case is determined by an approximate condition a ∼ 1 in contrast with
precise equation (9) valid for N =∞ case. The condition a# 1 implies that the η′ field is much lighter than all other degrees of freedom
in the system in the chiral limit and condition (14) is satisfied. It is clear that this condition can be always satisfied for sufficiently large
N where parameter a is exponentially small at T > Tc. When T becomes close to Tc from above, parameter a increases and becomes
order of unity at some point. This is precisely the region where instanton approximation breaks down. Therefore, according to our logic,
the θ dependence may sharply change here. We identify this point where a ∼ 1 with the point of the phase transition Tc. Of course we
do not know the precise coefficient here (magnitude of a could be, for example 3, instead of 1), but the extracting of a large power in

such an estimate , Tc ∼ ΛQCD · a−
3

11N should not produce a large error for estimation of Tc even for physically relevant case N = 3.

5.



Deconfined phase--continue
• For any positive            the instanton density is parametrically small  

and calculations are under complete theoretical control even in close 
vicinity  of          

• Topological susceptibility                              obviously vanishes in 
agreement with results from holographic QCD

• One can compute            for small chemical potential.  

• As expected, there is no dependence on       at large N, in agreement  
with the lattice results:  Fodor, et al, 2004; Fodor, Katz, Schmidt, 2007. 

• The     dependence may only experience drastic changes in the vicinity 
where the instanton expansion breaks down, which explains our      
conjecture on connection between the  two parameters. 

γ > 0

Tc

V ∼ cos θ · e−αN(T−Tc

Tc
), 1 "

(
T − Tc

Tc

)
" 1/N.

χ(T > Tc) ∼ e−N = 0

6

A few remarks are in order.
a. Our computations are carried out in the regime where the instanton density ∼ exp(−γN) is parametrically
suppressed at N = ∞. From eq. (15) one can obtain the following expression for instanton density in vicinity of
T > Tc,

a ∼ cos(ϕ− θ) · e−αN(T−Tc
Tc

), 1$
(

T − Tc

Tc

)
$ 1/N. (18)

where α is a numerical coefficient of order one. Such a behavior does imply that the dilute gas approximation is
justified even in close vicinity of Tc as long as T−Tc

Tc
$ 1

N . In this case the diluteness parameter remains small5 even
in the close vicinity of Tc. Therefore, the θ dependence, which is sensitive to the topological fluctuations only, remains
unaffected all the way down to the temperatures very close to the phase transition point, T = Tc + O(1/N). We can
not rule out, of course, the possibility that the perturbative corrections may change our numerical estimate for Tc.
However, we expect that a qualitative picture of the phase transition advocated in this paper remains unaffected as
a result of these corrections in dilute gas regime.
b. In our estimate for Tc we neglected (log ρΛQCD)k in evaluating of the

∫
dρ integral. One can easily take into account

the corresponding contribution by notice that
∫

dρ is saturating at ρ % (πT )−1. The corresponding correction changes
our estimate (17) very slightly, and it will be ignored in what follows. Numerical smallness of correction is due to the
strong cancellation between the second loop contribution in the exponent (term proportional to b′/b) and the first
loop contribution in the pre-exponent in eq. (11).
c. The transition to a different scheme leads to very large changes in the instanton density. For example, transition
to the so-called MS -scheme is achieved by replacing e−1.679N in the expression for CN , see eq. (11), as follows
e−1.679N → e(−1.679+3.721)N with a number of other changes, see e.g.[21]. The corresponding results would be expressed
in terms of ΛMS

QCD, where MS stands for MS -scheme, to be distinguished from ΛQCD which is defined in the Pauli
-Villars scheme and will be used through this paper. We shall not elaborate on these numerical issues in the present
work.
d. Unfortunately, we can not compare our calculations with the precise lattice results [25] for the ratio Tc/

√
σ at

large N as we compute Tc in de-confined phase where the string tension σ vanishes.
e. As expected, the result (17) does not depend on a number of flavors Nf nor does it depend on the magnitude of
the chiral condensate in N =∞ limit as our treatment of the problem corresponds essentially pure YM computations.
f. For finite but large N $ Nf the corresponding numerical estimates for Tc can also be given. It can be estimated
from condition a ∼ 1. However, numerical estimates in this case would depend on the value of the UA(1) condensate
a ∼ 〈0|(ψ̄ψ)Nf |0〉 which is not well-known for T > Tc. Therefore, we shall not discuss the corresponding numerical
estimates in the present work.
g. A similar procedure for estimation of the critical chemical potential µc for confinement -de-confinement phase
transition at finite N,Nf at T ∼ 0 has been previously used in ref.[26] where the analogous arguments on drastic
changes of θ at µ = µc have been presented, see also a review paper[27].
h. Once Tc is fixed for finite N,Nf one can compute the entire line of the phase transition Tc(µ) for relatively small
µ * Tc. Indeed, in the weak coupling regime at T > Tc the µ dependence of the instanton density is determined by
a simple insertion ∼ exp[−Nfµ2ρ2] in the expression for the density (11). In the leading loop order Tc(µ) varies as
follows,

Tc(µ) = Tc(µ = 0)
[
1− 3Nfµ2

2(2N + Nf )π2T 2
c

]
, µ* Tc (19)

As expected, µ dependence goes away in large N limit. This formula is consistent with numerical simulations [28]
which show very little changes of the critical temperature Tc with µ for sufficiently small chemical potential.
i. It is naturally to expect that the phase transition line Tc(µ) at µ * Tc from (19) connects with the line µc(T )
(estimated in ref.[26] at T * µc ) as the nature for the phase transition in both cases is one and the same: it is drastic
changes of θ dependence when the phase transition line is crossed.

5 This should be contrasted with the the standard requirement for finite N when the condition a ∼ (ΛQCD/T )b " 1 can be only achieved

when the temperature is very large, T # ΛQCD. For large N the condition a " 1 is satisfied as long as T−Tc
Tc

# 1
N as can be seen

from eq.(18).

6
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Tc
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when the temperature is very large, T # ΛQCD. For large N the condition a " 1 is satisfied as long as T−Tc
Tc

# 1
N as can be seen
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6. Coulomb Gas Representation (CGR)

• We introduce      field as a probe to investigate the topological 
charges of the  constituents in both phases. It appears in unique 
combination                            in both phases.

• The partition function for light (almost massless)      field in 
deconfined phase is given by 

• Mapping between sine-Gordon theory and its CGR is well known

η
′

(ϕ − θ), η′
∼ fη′ϕ

η
′

7

i. It is naturally to expect that the phase transition line Tc(µ) at µ ! Tc from (19) connects with the line µc(T )
(estimated in ref.[26] at T ! µc ) as the nature for the phase transition in both cases is one and the same: it is drastic
changes of θ dependence when the phase transition line is crossed.

IV. DUAL REPRESENTATION

The main goal of this section is to present the low energy effective lagrangian for η′ field (13) in the dual form.
The η′ field will play a crucial role in the following two sections. As we shall see in a moment the η′-field is a perfect
probe of the glue configurations. This field will help us to investigate the topological charges of the constituents in
both phases, and therefore it will help us to interpret the nature of the phase transition whose critical temperature
Tc was computed in the previous section. In section II we discussed a holographic model with nonvanishing chiral
condensate. Here we consider a field theoretic model with this property.

A. Coulomb Gas Representation: formal derivation

The effective low energy dense-QCD Lagrangian (13) is the sine-Gordon (SG) Lagrangian. Many of the special
properties of the SG theory apply. One of these properties is the admittance of a Coulomb gas (CG) representation
for the partition function. Although this is a four-dimensional theory at nonzero temperature T (rather than two
dimensional, where all known exact results regarding SG model were discussed) and questions about renormalizability
of the theory may come to mind, there are no such issues here since the effective action is a low energy one. Following
the usual procedure for mapping a statistical CG model into the field theoretic SG model, the CG picture that arises
from the effective low energy QCD action, Eq. (13), will be derived in this section. The statistical model contains
some charges which appear due to the presence of cosine interaction in the field theory model. The physical meaning
of these charges will be illuminated in the next section by analyzing the corresponding measure of the statistical
ensemble.

The mapping between the SG theory and its CG representation is well known. All we need to do is to reverse
the derivation of SG functional representation of the CG in Ref. [1]. The partition function corresponding to the
Lagrangian (13) is given by7

Z =
∫
Dϕ e−

R
d3x

R β
0 dτ LE =

∫
Dϕ e−

1
2T f2

η′
R

d3x("∇ϕ)2 eλ
R

d3x cos(ϕ(x)−θ) , (20)

where we introduced fugacity for the CG ensemble to be defined as,

λ ≡
(

ΛQCD

T

)
aΛ3

QCD (21)

LE is the Euclidean space Lagrangian. Leaving alone the integration over ϕ(x) for a moment, we expand the last
exponent in Eq. (20), represent the cosine as a sum of two exponents and perform the binomial expansion:

eλ
R

d3x cos(ϕ(x)−θ) =
∞∑

M=0

(λ/2)M

M !

∫
d3x

∑
Q=±1

eiQ(ϕ(x)−θ)

M

=
∞∑

M±=0

(λ/2)M

M+!M−!

∫
d3x1 . . .

∫
d3xM ei

PM
a=0 Qa(ϕ(xa)−θ) . (22)

The last sum is over all possible sets of M+ positive and M− negative charges Qa = ±1. The last line in Eq. (22) is
a classical partition function of an ideal gas of M = M+ + M− identical (except for charge) particles of charges +1
or −1 placed in an external potential given by i(θ − ϕ(x)). It is easy to see that (for a constant or slowly varying
potential) the average number of these particle per unit of 3-volume 〈M〉/V3, i.e., the density, is equal to λ. Thus

7 To be precise, the path integral in Eq. (20) should be understood as an integral over low-momentum modes of ϕ only. The upper limit
of the momentum of ϕ is the ultraviolet cutoff of the effective Lagrangian (13), which should be taken as some scale smaller than T .
Only tree graphs contribute to Z so there is no dependence on the precise value of the cutoff.

λ = Λ
3

QCD · e
−γN

8

making λ small one can make the gas arbitrarily dilute, which is precisely the physical meaning of the fugacity. From
this observation, one can immediately see that the average distance between charges Qa is λ−1/3.

While θ can indeed be viewed as an external potential for the gas (22), ϕ(x) is a dynamical variable, since it
fluctuates as signified by the path integration in (20). For each term in (22) the path integral is Gaussian and can be
easily taken: ∫

Dϕ e−
1

2T f2
η′

R
d3x(!∇ϕ)2 ei

PM
a=0 Qa(ϕ(xa)−θ) = e−iθ

PM
a=0 Qa e

− T
f2

η′
PM

a>b=0 QaG(xa−xb)Qb

. (23)

We see that, for a given configuration of charges Qa, −iϕ(x) is the Coulomb potential created by such distribution.8

The function G(x) is the solution of the three-dimensional Poisson equation with a point source (the inverse of −$∇2):

G(xa − xb) =
1

4π|$xa − $xb| . (24)

Thus we obtain the dual CG representation for the partition function (20):

Z =
∞∑

M±=0

(λ/2)M

M+!M−!

∫
d3x1 . . .

∫
d3xM e−iθ

PM
a=0 Qa e

− T
f2

η′
PM

a>b=0 QaG(xa−xb)Qb

. (25)

The two representations of the partition function (20) and (25) are equivalent.
Note that the physical meaning of λ is the the fugacity of the system with charges Q and it is proportional to a which

is small in the regime under discussion. There are several important features of the action (25) which should be noted.
Firstly, the total Q charge of the configuration, QT appears together with θ which we kept as a free parameter, see (25).
Such a dependence will play an important role in the following identification of Q charges as the topological charges,
see below. The θ-dependence in CG representation (25) gives an overall phase factor for each configuration. Finally,
our dimensional parameters λ and $xM come into the expression (25) in the combination λd3x which is nothing but the
coefficient in front of the instanton contribution to the effective action Sinst =

∫ β
0 dτ

∫
d3xVinst(ϕ) = − ∫

d3xλ cos(ϕ−θ)
at nonzero temperature T , see eq. (12) and definition of λ (21).

B. Physical Interpretation

The charges Qa were originally introduced in a rather formal manner so that the QCD effective low energy La-
grangian can be written in the dual CG form (25). However, now the physical interpretation of these charges becomes
clear: since Qnet ≡

∑
a Qa is the total charge and it appears in the action multiplied by θ [see Eq. (25)], one concludes

that Qnet is the total topological charge of a given configuration. Indeed, in QCD the θ parameter appears in the
Lagrangian only in the combination with the topological charge density −iθGµνG̃µν/(32π2). It is also quite obvious
that each charge Qa in a given configuration should be identified with an integer topological charge well localized
at the point xa. This, by definition, corresponds to a small instanton positioned at xa (to be precise, “caloron” at
temperature T $= 0 which has topological charge Q = 1 and action 8π2/g2 independent of temperature, see [22, 23]
for review). To support this identification we note that every particle with charge Qa brings along a factor of fugacity
λ ∼ a (21) which contains the classical one-instanton suppression factor exp(−8π2/g2(ρ)) in the density of instantons
(12) if one restores the instanton density in terms of coupling constant exp(−8π2/g2(ρ)) rather than directly in terms
of ΛQCD which is used in eq. (11) and which is more convenient for numerical estimates.

This identification is also supported by the following observation: every extra particle with charge Qa brings an
additional weight e−iθQa to the partition function. This is certainly the most distinguishable feature of the non-zero
topological charge configuration.

The following hierarchy of scales exists in such an instanton ensemble for temperatures slightly higher than Tc. The
typical size of the instantons ρ ∼ T−1 ∼ Λ−1

QCD The average distance between the instantons r̄ = λ−1/3 = Λ−1
QCDa−1/3

8 One notices that the term a = b in the double sum (23) is dropped. This is the self-interaction of each charge. It would renormalize
the fugacity λ by a factor exp(−G(0)/(f2

η′ )). This factor should be dropped as it represents contribution of very short wavelength

fluctuations of ϕ. Such fluctuations have to be cutoff at the scale 1/T . The self-energy of the charges comes from a much smaller scales
which are already calculated and contained in a.
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7. Coulomb gas representation.
Physical interpretation.

• The charges were introduced in a formal way.   

• Physical interpretation of charges: they are topological charges as follows 
from identification 

• The following hierarchy of scales exists

e
iθ

∑
Qa

9

is much larger than both the average size of the instantons and the cutoff T−1. The largest scale is the Debye screening
length in the Coulomb gas, rD = Λ−1

QCDa−1/2. This coincides with the static correlation length of the ϕ field, which
is precisely η′ mass. It is important that the Debye screening length rD is parametrically larger than the average
distance between the instantons r̄, therefore large number of instantons can be accommodated within the volume
determined by the Debye screening length rD which justifies our Coulomb gas interpretation, at least in large N limit.
In short:

(size, ρ) ! (distance, r̄) ! (Debye, rD)
1
T ! 1

ΛQCD
3√a

! 1
ΛQCD

√
a

(26)

Due to this hierarchy, ensured by small a ! 1, we acquire analytical control. In reality, of course, a ∼
(

ΛQCD

T

)N
∼

e−N ! 1 is parametrically very small only at very large N while
(

ΛQCD

T

)
≤ 1 could be very close to 1 from below.

It implies that at N = 3 all scales could be numerically very close to each other.
It is also quite interesting that, although the starting low-energy effective Lagrangian contains only a colorless field

ϕ, we have ended up with a representation of the partition function in which objects carrying color (instantons, their
interactions and distributions) can be studied. In particular, from the discussion above, one can immediately deduce
that II and IĪ interactions are exactly the same up to a sign and are Coulomb-like at large distances.

This looks highly nontrivial since it has long been known that at the semiclassical level an instanton interacts
only with anti-instantons but not with another instanton carrying a topological charge of the same sign. As we
demonstrated above it is not true any more at the quantum level in the presense of the η′ field. Indeed, what we
have found is that the interactions between dressed (as opposed to bare) instantons and anti-instantons after one
takes into account their classical and quantum interactions, after integration over their all possible sizes and color
orientations, after accounting for the interaction with the background chiral condensate must become very simple
at large distances as explicitly described by Eq. (25). It is impressive how the problem which looks so complicated
in terms of the original bare (anti)instantons, becomes so simple in terms of the dressed (anti)instantons when all
integrations over all possible sizes, color orientations and interactions with background fields are properly accounted
for!

Such a simplification of the interactions is of course due to the presence of almost massless pseudo-Goldstone boson
η′ which couples to the topological charge. When the instanton gas becomes very dilute all semiclassical interactions
(due to zero modes) cannot contribute much, since they fall off with distance faster then the Coulomb interaction
mediated by η′. On the other hand, when the instanton density increases when T is getting smaller, the Coulomb
interaction becomes more screened and, as the Debye length becomes comparable to the inter-instanton distances, we
lose analytical control. Based on this picture one can estimate the critical temperature Tc where this transition must
happen. It corresponds to the same condition a ∼ 1 discussed previously in section III.

We collect here the most important results of the present section based on CG representation (25):
a. Since Qnet ≡

∑
a Qa is the total charge and it appears in the action multiplied be the parameter θ, one concludes

that Qnet is the total topological charge of a given configuration.
b. Each charge Qa in a given configuration should be identified with an integer topological charge Qa = ±1 well
localized at the point xa. This, by definition, corresponds to a small instanton (caloron at T %= 0) positioned at xa.
c. While the starting low-energy effective Lagrangian contains only a colorless field ϕ we have ended up with a
representation of the partition function in which objects carrying color (the instantons) can be studied.
d. In particular, II and IĪ interactions (at very large distances) are exactly the same up to a sign, order g0, and
are Coulomb-like. This is in contrast with semiclassical expressions when II interaction is zero and IĪ interaction is
order 1/g2.
e. The very complicated picture of the bare II and IĪ interactions becomes very simple for dressed instantons/anti-
instantons when all integrations over all possible sizes, color orientations and interactions with background fields are
properly accounted for.
f. As expected, the ensemble of small ρ ∼ T−1 instantons can not produce confinement because small instantons can
not produce a correlation at arbitrary large distances which is a crucial feature of the confinement. This is in accord
with the fact that there is no confinement in the high temperature phase.
g. Physical interpretation of the CG representation (25) is simple. The η′− field being a dynamical field couples to
the topological charge Q exactly as θ parameter does due to the specific combination (ϕ(x) − θ) which appears in
the low energy lagrangian. In the dual language the η′ mass emerges as a result of Debye screening in the plasma of
topologically charged instantons (interacting via η′ Coulomb exchange ) similar to the well-known effect of generating
the photon’s mass in the ionized plasma due to the Coulomb interaction of charged particles. In our case instead
of a conventional vector photon we are dealing with pseudo scalar η′ field which receives its mass through the
interaction with topological charges Q. Uncovering this picture (which allows us to measure the topological charges

a ≡ e
−γN

" 1



• Typical size of the instantons

• The average distance between the instantons 

• Charge        is identified with an integer topological charge localized at  
point      .  This by definition corresponds to a small instanton at  

•                    is the fugacity of the instanton gas in deconfined phase. 

• The instanton-anti-instanton interaction at large distances is the same as 
instanton-instanton. They  both are Coulomb-like interactions (in contrast 
with semiclassical picture).

• The        mass emerges as a result of Debye screening 

• The        was defined as the phase of the det(..) which does not vanish 
even if chiral symmetry is unbroken. In holographic model the chiral 
symmetry is broken in deconfined phase in a small window above  

ρ ∼ T−1

r̄ ∼ λ
−1/3

∼ Λ
−1

QCDa
−1/3

λ ∼ a " 1
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The basic Question:

We identified the point         with the place 
where       behavior drastically changes.  

 
It implies that some topological  

configurations (which couple to     )must be 
responsible for these drastic changes. In 

deconfined phase they are nice dilute 
instantons.  What happens to them at

                                  ?
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      8.Confined phase. Speculations.

We want to speculate here on the fate of instantons 
when we cross the phase transition line from above

The instanton expansion is not justified. We do not 
attempt to use semiclassical ideas in this region

We argue that the instantons do not disappear from 
the system, but rather dissociate into the instanton 
quarks, the quantum  objects with fractional 
topological charges 1/N. 

Instanton quarks carry the magnetic charges along 
with topological charges. 

the     field will play a crucial role in identification 
of topological charges 1/N of the constituents.

η
′



9. Instanton quarks: few historical         
remarks.  

Instanton quarks originally appeared in 2d models. 
namely, using the resummation of exact n-instanton 
solution in 2d              models, the original problem 
was mapped into 2d system of pseudo -particles with 
fractional 1/N topological charges, Fateev et al, 79; Berg, 
Luscher, 79.

The picture leads to elegant explanation of the 
confinement. 

Similar calculations in 4d is proven to difficult to 
carry out, Belavin et al, 79. 

CP
N−1



10. Confined phase.  Lagrangian for 

• We want to use the same trick (tested in weak coupling regime) 
with       as a probe of the topological charges of constituents. 

• Effective lagrangian has the form

• It follows from  the following (2k)-th correlators  (Veneziano,79)

• There are few additional arguments supporting the SG structure

• It satisfies U(1) anomalous WI and in large N limit leads to  the 
standard expression 

η
′

η
′
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of constituents) was the main motivation for introducing the chiral condensate into the theory.
h. We should also remark here that a similar picture for the instanton interactions occurs at large chemical potential
µ ! ΛQCD in deconfined, the so-called color superconducting phase [29]. In the present case T > Tc the weak
coupling regime (small instanton density ) is governed by small parameter a ∼ exp(−γN) $ 1 while at large
µ ! ΛQCD, N = 3 case the corresponding small factor is (ΛQCD/µ)b $ 1[29].

V. SMALL T < Tc: CONFINED PHASE. SPECULATIONS.

In this section we want to speculate on the fate of the instantons when we cross the phase transition line at T = Tc.
To be more precise: we want to see if any traces of well defined instantons discussed above can be recovered. The
instanton expansion is not justified in the strong coupling regime T < Tc where the expansion coefficient becomes of
order one, a ∼ 1.

Therefore, we do not even attempt to use instanton calculus or any other semiclassical computations in the present
section. Instead, we present a few indirect arguments supporting the picture that the instantons do not completely
disappear from the system when we cross the phase transition line from above, but rather dissociate into the instanton
quarks [8, 9], the self-dual objects with fractional topological charges ±1/N which become the dominant quasi-
particles. The arguments are not based on the semiclassical calculations, but rather on analysis of the low energy
lagrangian written in the dual form similar to CG representation discussed in the previous section. Our proposal
about the fate of instantons at T < Tc originally derived in ref.[30] and to be reviewed for completeness in this section
should be considered as one of the many possible outcomes. In this sense this section is very speculative in nature
in contrast with previous sections where weak coupling regime is justified at large N and precise statements can be
made.

We start from the chiral Lagrangian and keep only the singlet η′ field. We assume the following expression for the
effective Lagrangian for the ϕ field which has a specific Sine-Gordon (SG) form,

Lϕ =
1
2
f2

η′(∂µϕ)2 + Evac cos
(

ϕ− θ

N

)
, f2

η′m2
η′ =

Evac

N2
(27)

where Evac ∼ N2 is the vacuum energy of the ground state in the chiral limit, expressed in terms of the gluon
condensate,

Evac =
1
4
〈0|Θµ

µ|0〉 = 〈0|bαs/(32π)G2|0〉 ∼ N2, (28)

where we use the standard expression for the conformal anomaly of the energy -momentum tensor, Θµ
µ. The ex-

pression (27) of course satisfies the standard requirement crucial for the resolution of UA(1) problem: the vacuum
energy in gluodynamics depends on θ through the combination θ/N . It also has a very specific SG structure for the
singlet combination corresponding to the following behavior of the (2k)th derivative of the vacuum energy in pure
gluodynamics [31],

∂2kEvac(θ)
∂ θ2k

|θ=0 ∼
∫ 2k∏

i=1

dxi〈Q(x1)...Q(x2k)〉 ∼ (
i

N
)2k, where Q ≡ g2

32π2
GµνG̃µν . (29)

The same structure was also advocated in [32] from a different perspective. We shall not discuss any additional
arguments supporting such Sine-Gordon structure referring to the original papers9. This is precisely the place where
the term “ speculation” from the title of this section, enters our analysis. One should also note that the combination

χg =
Evac

N2
=

∂2Evac(θ)
∂ θ2

|θ=0

is nothing but topological susceptibility χg for gluodynamics in the large N limit.
Now we want to represent the low energy lagrangian (27) in the dual form (CG representation) to see if any traces

from the instantons discussed at T > Tc can be recognized. The effective lagrangian is obviously the color singlet

9 One more additional argument supporting SG structure ∼ cos
“

θ
N

”
in pure gluodynamics will be given later in the text.
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Evac(θ/N)2 ∼ 1



11. Coulomb Gas Representation (CGR). 
Confined Phase 

• We want to use the trick to present the effective       lagrangian in 
the dual form (CGR).  The      is a unique field which explicitly 
measures the topological charges of constituents.

• Repeating all previous steps we arrive at CGR,                                 

η
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object. Therefore, all color dynamics can not be recovered by this method. However, the topological charge is color
singlet operator which is coupled to θ. The θ parameter is not a dynamical field in QCD, however the η′ field is, and
it always enters the dynamics in combination (θ−ϕ). Let us repeat again that this was the main reason to introduce
the chiral condensate into the sysytem: it allows to study the dynamics of the topological charges. Therefore, in
principle, the analysis of the η′ field gives the information about the topological charges of the constituents. We use
the trick (SG-CG mapping) below to attempt to answer the following question: what kind of constituents can provide
the low energy behavior (27,29)?

We use the technique developed in the previous section and represent SG action in the dual form. Technically, it
goes as follows: eq. (27) replaces expression (13) discussed previously. As in (13) the Sine-Gordon effective field
theory (27) can be represented in terms of a classical statistical ensemble (CG representation) similar to (25) with the
replacements λ → Evac, d3x → d4x as we assume zero temperature T = 0 in this phase. By repeating all previous
steps we arrive at the following expression

Z =
∞∑

M=0

(Evac
2 )M

M !

∫
d4x1 . . .

∫
d4xM ·

∑
Qa=±1/N

∫
Dϕe−

1
2 f2

η′
R

d4x(∂µϕ)2 ·
(
ei

PM
a=1 Qa[ϕ(xa)−θ]

)
. (30)

The functional integral is trivial to perform and one arrives at the dual CG action,

Z =
∞∑

M±=0

(Evac
2 )M

M+!M−!

∫
d4x1 . . .

∫
d4xM · e−iθ

PM
(a=0,Qa=±1/N) Qa · e

− 1
f2

η′
P

(a>b=0,Qa=±1/N) QaG(xa−xb)Qb

, (31)

where G(xa − xb) is the 4d Green’s function,

G(xa − xb) =
1

4π2(xa − xb)2
. (32)

The fundamental difference in comparison with the previous case (25) is that while the total charge is integer, the
individual charges are fractional ±1/N . This is a direct consequence of the θ/N dependence in the underlying
effective Lagrangian (27) before integrating out ϕ fields, see eq. (30).

A few remarks on physical interpretation of the CG representation (31) of theory (27) are in order:
a. As before, one can identify Qnet ≡

∑
a Qa with the total topological charge of the given configuration.

b. Due to the 2π periodicity of the theory, only configurations which contain an integer topological number contribute
to the partition function. Therefore, the number of particles for each given configuration Qi with charges ∼ 1/N must
be proportional to N .
c. Therefore, the number of integrations over d4xi in CG representation exactly equals 4Nk, where k is integer.
This number 4Nk exactly corresponds to the number of zero modes in the k-instanton background. This is basis
for the conjecture [30] that at low energies (large distances) the fractionally charged species, Qi = ±1/N are the
instanton-quarks suspected long ago [8].
d. For the gauge group, G the number of integrations would be equal to 4kC2(G) where C2(G) is the quadratic
Casimir of the gauge group (θ dependence in physical observables comes in the combination θ

C2(G) ). This number
4kC2(G) exactly corresponds to the number of zero modes in the k-instanton background for gauge group G.
e. We do not use the weak coupling regime or instanton calculus anywhere in our arguments. Still, we recover the
moduli space which we identify with strongly interacting instantons in the confinement phase of the theory.
f. Role of the fugacity for this statistical ensemble plays Evac ∼ N2. Therefore, an average distance between
constituents is of order r̄ ∼ E−1/4

vac ∼ Λ−1
QCDN−1/2 which suggests that the system is very dense. It obviously implies

that the instanton expansion makes no sense in this regime as all terms are equally important, which is in huge
contrast with hierarchy from the previous case at T > Tc, (26).
g. The Debye screening length rD ∼ m−1

η′ ∼ Λ−1
QCD

√
N & r̄ is large. It means that the number of constituents

participating in the screening is order of (rD/r̄)4 ∼ N4.
h. According to eq. (27) the number of instanton quarks in the spacetime box of size ΛQCD should be N2 as an
average distance between constituents is r̄ ∼ N−1/2. Each instanton contains N instanton quarks, hence the density
of instantons should be of order NΛ4

QCD.10 It is consistent with observation from holography, section II that any
finite number of instantons will disappear from the system.

10 In [30] it was conjectured that these constituents (instanton quarks) are the driving force for the confinement.
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object. Therefore, all color dynamics can not be recovered by this method. However, the topological charge is color
singlet operator which is coupled to θ. The θ parameter is not a dynamical field in QCD, however the η′ field is, and
it always enters the dynamics in combination (θ−ϕ). Let us repeat again that this was the main reason to introduce
the chiral condensate into the sysytem: it allows to study the dynamics of the topological charges. Therefore, in
principle, the analysis of the η′ field gives the information about the topological charges of the constituents. We use
the trick (SG-CG mapping) below to attempt to answer the following question: what kind of constituents can provide
the low energy behavior (27,29)?

We use the technique developed in the previous section and represent SG action in the dual form. Technically, it
goes as follows: eq. (27) replaces expression (13) discussed previously. As in (13) the Sine-Gordon effective field
theory (27) can be represented in terms of a classical statistical ensemble (CG representation) similar to (25) with the
replacements λ → Evac, d3x → d4x as we assume zero temperature T = 0 in this phase. By repeating all previous
steps we arrive at the following expression

Z =
∞∑

M=0

(Evac
2 )M

M !

∫
d4x1 . . .

∫
d4xM ·

∑
Qa=±1/N

∫
Dϕe−

1
2 f2

η′
R

d4x(∂µϕ)2 ·
(
ei

PM
a=1 Qa[ϕ(xa)−θ]

)
. (30)

The functional integral is trivial to perform and one arrives at the dual CG action,

Z =
∞∑

M±=0

(Evac
2 )M

M+!M−!

∫
d4x1 . . .

∫
d4xM · e−iθ

PM
(a=0,Qa=±1/N) Qa · e

− 1
f2

η′
P

(a>b=0,Qa=±1/N) QaG(xa−xb)Qb

, (31)

where G(xa − xb) is the 4d Green’s function,

G(xa − xb) =
1

4π2(xa − xb)2
. (32)

The fundamental difference in comparison with the previous case (25) is that while the total charge is integer, the
individual charges are fractional ±1/N . This is a direct consequence of the θ/N dependence in the underlying
effective Lagrangian (27) before integrating out ϕ fields, see eq. (30).

A few remarks on physical interpretation of the CG representation (31) of theory (27) are in order:
a. As before, one can identify Qnet ≡

∑
a Qa with the total topological charge of the given configuration.

b. Due to the 2π periodicity of the theory, only configurations which contain an integer topological number contribute
to the partition function. Therefore, the number of particles for each given configuration Qi with charges ∼ 1/N must
be proportional to N .
c. Therefore, the number of integrations over d4xi in CG representation exactly equals 4Nk, where k is integer.
This number 4Nk exactly corresponds to the number of zero modes in the k-instanton background. This is basis
for the conjecture [30] that at low energies (large distances) the fractionally charged species, Qi = ±1/N are the
instanton-quarks suspected long ago [8].
d. For the gauge group, G the number of integrations would be equal to 4kC2(G) where C2(G) is the quadratic
Casimir of the gauge group (θ dependence in physical observables comes in the combination θ

C2(G) ). This number
4kC2(G) exactly corresponds to the number of zero modes in the k-instanton background for gauge group G.
e. We do not use the weak coupling regime or instanton calculus anywhere in our arguments. Still, we recover the
moduli space which we identify with strongly interacting instantons in the confinement phase of the theory.
f. Role of the fugacity for this statistical ensemble plays Evac ∼ N2. Therefore, an average distance between
constituents is of order r̄ ∼ E−1/4

vac ∼ Λ−1
QCDN−1/2 which suggests that the system is very dense. It obviously implies

that the instanton expansion makes no sense in this regime as all terms are equally important, which is in huge
contrast with hierarchy from the previous case at T > Tc, (26).
g. The Debye screening length rD ∼ m−1

η′ ∼ Λ−1
QCD

√
N & r̄ is large. It means that the number of constituents

participating in the screening is order of (rD/r̄)4 ∼ N4.
h. According to eq. (27) the number of instanton quarks in the spacetime box of size ΛQCD should be N2 as an
average distance between constituents is r̄ ∼ N−1/2. Each instanton contains N instanton quarks, hence the density
of instantons should be of order NΛ4

QCD.10 It is consistent with observation from holography, section II that any
finite number of instantons will disappear from the system.

10 In [30] it was conjectured that these constituents (instanton quarks) are the driving force for the confinement.



The fundamental difference in comparison with 
deconfined case: while the total charge is integer, the 
individual charges are fractional 1/N. 

This is a direct consequence of          dependence of  the 
underlying theory.

Due to        periodicity only the configurations with total 
integer topological charges contribute. therefore the 
number of particles with charges 1/N in each 
configuration must be proportional to N.

as a result, the moduli space  in CGR is 4Nk where k-
integer. This number is precisely the number of zero 
modes in k-instanton background. 

This is the basis for identification of  charges from CGR 
with instanton quarks suspected long ago.

θ/N

2π



For gauge group G the number of integration is  4kC_2(G) 
where C_2(G)  is the quadratic Casimir. This is precisely the 
number of zero-modes in k- instanton background for the 
gauge group G.

We recover the moduli space which we identify with 
strongly interacting instantons in confined phase of QCD

role of the fugacity for this ensemble plays              

average distance between constituents             

The Debye screening length is large 

Density of instantons is ~N (instanton quarks         ). It is 
consistent with observation from holographic QCD: finite 
number of instantons will disappear from the system.

Evac ∼ N
2

r̄ ∼ N
−1/2

rD ∼ m
−1

η′ ∼
√

N

∼ N
2



Pierre van Baal et al:  there seems to be a close relation with 
periodic instantons at nonzero temperature.

M. Unsal and L. Yaffe, hep-th/0803.0344. A specific deformation of 
gluodynamics supports a weak coupling analysis in confined 
phase. Objects which resemble the instanton quarks (with 
action and topological charge                               ) are found.              

D. Diakonov and V. Petrov, hep-th/0704.3181.    Fractionally charged 
objects 1/N appear in semiclassical analysis.

 E. Shuryak, hep-ph/061113;  M.Chernodub, V. Zakharov, hep-ph/0611228 
Instanton quarks in narrow deconfined window                         
behave like wrapped monopoles. they form well-defined 
small instanton at larger temperature                   . 

A.Gorsky, V. Zakharov, hep-th/0707.1284. magnetic strings connected 
by wrapped monopoles which are related to the instanton 
quarks, see above.

12. The relation to other studies.

S = 8π2/(g2N), Q = 1/N

0 < (T − Tc) < 1/N

(T − Tc) ≥ 1/N



     13. Propaganda 
 We presented the arguments that the sharp changes 
in       happen at the point of the phase transition      
(support from holographic QCD  and lattices)

At sufficiently large                  the instanton is 
small and well defined object. 

We speculated that in confined region the same 
instantons dissociate into N-instanton quarks.

One can test these ideas by studying a narrow 
window                      in deconfined phase where 
instanton quarks (wrapped monopoles) start to form 
the instanton with zero monopole charge.

θ Tc

(T − Tc) " 1/N

0 ≤ (T − Tc) ≤ 1/N


