

Non-Perturbative Methods in Strongly Coupled Gauge Theories @ The Galileo Galilei Institute for Theoretical Physics, Florence

Introduction

1

## Meson effective theory (traditional approach)

effective action consistent with chiral sym, hidden local sym.

## "Top down approach" of holographic QCD

- 1. Find a D-brane configuration that realizes QCD
- 2. Use the Gauge/String duality
- 3. Some approximation

[Sakai-S.S. 2004]

Wait for the explanation



Meson effective theory

### 5 dim U(N<sub>f</sub>) YM-CS theory in a curved space-time

$$S_{5\text{dim}} \simeq S_{YM} + S_{CS} \qquad k(z) = 1 + z^{2} \qquad \text{CS5-form}$$

$$S_{YM} = \kappa \int d^{4}x dz \operatorname{Tr} \left( \frac{1}{2} h(z) F_{\mu\nu}^{2} + k(z) F_{\mu z}^{2} \right) \qquad S_{CS} = \frac{N_{c}}{24\pi^{2}} \int_{5} \omega_{5}(A)$$

$$\kappa = \frac{\lambda N_{c}}{216\pi^{3}} \equiv a \lambda N_{c} \qquad h(z) = (1 + z^{2})^{-1/3} \qquad (M_{KK} = 1 \text{ unit})$$

• Just one line  $= \begin{cases} M_{KK} \sim \text{cut off scale} \\ \lambda & \sim \text{bare coupling} \end{cases}$ 

### 5 dim YM-CS theory = 4 dim meson theory

$$A_{\mu}(x^{\mu}, z) = \sum_{n \ge 1} B_{\mu}^{(n)}(x^{\mu})\psi_{n}(z)$$
$$A_{z}(x^{\mu}, z) = \sum_{n \ge 0} \varphi^{(n)}(x^{\mu})\phi_{n}(z)$$

complete sets Chosen to diagonalize kinetic & mass terms of  $B^{(n)}_{\mu}, \varphi^{(n)}$ 

 $\varphi^{(0)} \sim \text{pion} \quad B^{(1)}_{\mu} \sim \rho \text{ meson} \quad B^{(2)}_{\mu} \sim a_1 \text{ meson} \quad \cdots$ 

$$S_{5\dim}(A) = S_{4\dim}(\pi, \rho, a_1, \rho', a_1', \cdots)$$

#### Reproduces old phenomenological models

- Vector meson dominance[Gell-Mann-Zachariasen 1961, Sakurai 1969]Gell-Mann Sharp Wagner model[Gell-Mann -Sharp-Wagner 1962]Hidden local symmetry[Bando-Kugo-Uehara-Yamawaki-Yanagida 1985]
- Masses and couplings roughly agree with experiments.

## Quantitative tests

#### [Sakai-S.S. 2004, 2005]

### (Our model vs Experiment)

#### Meson mass

| mass      | $\rho$ | $a_1$ | ho'   | $(a'_{1})$ | ho''  |
|-----------|--------|-------|-------|------------|-------|
| exp.(MeV) | 776    | 1230  | 1465  | (1640)     | 1720  |
| our model | [776]  | 1189  | 1607  | 2023       | 2435  |
| ratio     | [1]    | 1.03  | 0.911 | (0.811)    | 0.706 |
|           |        |       |       |            |       |

input  $(M_{KK} \simeq 949 \text{ MeV})$ 

### coupling

| coupling        |                                        | fitting $m_ ho$ and $f_\pi$ | experiment                       |
|-----------------|----------------------------------------|-----------------------------|----------------------------------|
| $f_{\pi}$       | $1.13 \cdot \kappa^{1/2} M_{KK}$       | [92.4 MeV]                  | 92.4 MeV                         |
| $L_1$           | $0.0785 \cdot \kappa$                  | $0.584 	imes 10^{-3}$       | $(0.1 \sim 0.7) 	imes 10^{-3}$   |
| $L_2$           | $0.157\cdot\kappa$                     | $1.17	imes10^{-3}$          | $(1.1\sim1.7)	imes10^{-3}$       |
| $L_{3}$         | $-0.471\cdot\kappa$                    | $-3.51	imes10^{-3}$         | $-(2.4 \sim 4.6) 	imes 10^{-3}$  |
| $L_9$           | $1.17\cdot\kappa$                      | $8.74 	imes 10^{-3}$        | $(6.2 \sim 7.6) 	imes 10^{-3}$   |
| $L_{10}$        | $-1.17\cdot\kappa$                     | $-8.74 	imes 10^{-3}$       | $-(4.8 \sim 6.3) \times 10^{-3}$ |
| $g_{ ho\pi\pi}$ | $0.415\cdot\kappa^{-1/2}$              | 4.81                        | 5.99                             |
| $g_ ho$         | 2.11 $\cdot \kappa^{1/2} M_{KK}^2$     | 0.164 GeV <sup>2</sup>      | 0.121 GeV <sup>2</sup>           |
| $g_{a_1 ho\pi}$ | $0.421 \cdot \kappa^{-1/2} M_{\rm KK}$ | 4.63 GeV                    | $2.8 \sim 4.2  { m GeV}$         |

### What about baryons?

- In 1961, Skyrme proposed
   Baryons are solitons (Skyrmion) in a pion effective theory.
- In 1983, Adkins-Nappi-Witten (ANW)

succeeded to calculate the static properties (mean square radii, magnetic moment, axial coupling, etc.) by quantizing the collective modes of the Skyrmion.



### <u>Q</u>. Can we apply the idea of ANW to our system?



## ✓ 1 Introduction

- **2** Brief summary of the model
- 3 Baryons as instantons
- Quantization
- 5 Currents
- 6 Exploration
- 7 Conclusion

## **2** Brief summary of the model [Sakai-S.S. 2004]

Type IIA string theory in Witten's D4 background

+  $N_f$  Probe D8-branes (assuming  $N_c \gg N_f$ ) dual 4 dim QCD with N<sub>f</sub> massless quarks at low energy



### The effective theory on the D8-branes

*N*<sub>f</sub> D8-branes extended along  $(x^{\mu}, z) \times S^4 \subset \mathbb{R}^{1,3} \times \mathbb{R}^2 \times S^4$ ← Low energy  $z \to +\infty$ 

9 dim *U*(*N*<sub>*f*</sub>) gauge theory

- Reducing  $S^4$  (Here we only consider *SO(5)* invariant states)

5 dim *U(N<sub>f</sub>)* YM-CS theory

$$A_\mu(x^
u,z), A_z(x^
u,z)$$
  $\mu,
u = 0 \sim 3$   
5 dim gauge field

$$S_{5\text{dim}} \simeq S_{YM} + S_{CS} \qquad k(z) = 1 + z^{2} \qquad \text{CS5-form}$$

$$S_{YM} = \kappa \int d^{4}x dz \operatorname{Tr} \left( \frac{1}{2} h(z) F_{\mu\nu}^{2} + k(z) F_{\mu z}^{2} \right) \qquad S_{CS} = \frac{N_{c}}{24\pi^{2}} \int_{5} \omega_{5}(A)$$

$$\kappa = \frac{\lambda N_{c}}{216\pi^{3}} \equiv a \lambda N_{c} \qquad h(z) = (1 + z^{2})^{-1/3} \qquad (M_{KK} = 1 \text{ unit})$$

#### [See also, Son-Stephanov 2003]



Skyrmion

Instanton

## • **Classical solution** (We consentrate on the $N_f = 2$ case.)

The instanton solution for the Yang-Mills action

$$S_{\rm YM} = \kappa \int d^4 x dz \, {\rm Tr} \left( \frac{1}{2} h(z) F_{\mu\nu}^2 + k(z) F_{\mu z}^2 \right)$$

shrinks to zero size !

The Chern-Simons term makes it larger U(1) part  $S_{\rm CS} = \frac{N_c}{24\pi^2} \int_{5} \omega_5(A) = \frac{N_c}{16\pi^2} \int d^4x dz \, A_0^{U(1)} \, \epsilon^{ijk} {\rm Tr} F_{ij} F_{kz} + \cdots$ source of the U(1) charge Non-zero for instanton total SU(2) part  $(N_f = 2)$ Stabilized at  $\rho_{cl}^2 = \frac{N_c}{8\pi^2\kappa} \sqrt{\frac{6}{5}}$ U(1) part [Hong-Rho-Yee-Yi 2007]  $\rho$  (size) [Hata-Sakai-S.S.-Yamato 2007] • Note that  $\rho_{cl} \sim \mathcal{O}(\lambda^{-1/2})$ 

If  $\lambda$  is large enough, the 5 dim space-time can be approximated by the flat space-time. (The effect of the non-trivial z-dependence is taken into account perturbatively.)

Z = 0  $Z_{cl} = 0$   $k(z) \simeq h(z) \simeq 1 \quad (\text{for } |z| \ll 1)$   $x^{1 \sim 3}$ 

→ The leading order classical solution is the BPST instanton with  $\rho = \rho_{\rm Cl}$  and  $Z = Z_{\rm Cl} = 0$ 

$$A_M^{\text{Cl}} = -i \frac{\xi^2}{\xi^2 + \rho^2} g \partial_M g^{-1} \qquad g = \frac{(z - Z) - i(\vec{x} - \vec{X}) \cdot \vec{\tau}}{\xi} \\ \xi = \sqrt{(\vec{x} - \vec{X})^2 + (z - Z)^2}$$

 $\rho$  : size  $(\vec{X}, Z)$  : position of the instanton

## 4 Quantization

time

Consider a slowly moving (rotating) baryon configuration. Use the moduli space approximation method :

Instanton moduli  $\mathcal{M} \ni (X^{\alpha}) \longrightarrow (X^{\alpha}(t))$  $\uparrow (\alpha = 1, 2, \cdots, \dim \mathcal{M})$ 

Quantum Mechanics for  $X^{lpha}(t)$ 

For SU(2) one instanton,

 $A_M(t,x) \sim A_M^{\mathsf{Cl}}(x; X^{\alpha}(t))$ 

$$\mathcal{M} \simeq \{ (\vec{X}, Z, \rho) \} \times SU(2) / \mathbb{Z}_2 \quad \mathbb{Z}_2 : \mathbf{a} \to -\mathbf{a}$$
**position** size  $\overset{\mathsf{U}}{\mathbf{a}} \leftarrow SU(2)$  orientation  

$$L_{\mathsf{QM}} = \frac{G_{\alpha\beta}}{2} \dot{X}^{\alpha} \dot{X}^{\beta} - U(X^{\alpha}) \qquad U(X^{\alpha}) = 8\pi^2 \kappa \left( 1 + \left( \frac{\rho^2}{6} + \frac{3^6 \pi^2}{5 \lambda^2 \rho^2} + \frac{Z^2}{3} \right) + \cdots \right)$$
**Note**  $(\vec{X}, \mathbf{a})$  : genuine moduli (the same as in the Skyrme model)  
 $(\rho, Z)$  : new degrees of freedom, added since they are light compared with the other massive modes.

- Solving the Schrodinger equation for this Quantum mechanics, we obtain the baryon states
  - Generalization of Adkins-Nappi-Witten including vector mesons and p, Z modes

# We can construct baryon states for $n, p, \Delta(1232), N(1440), N(1530), \cdots$

**Example** Nucleon wave function:

$$\psi(\vec{X}, \mathbf{a}, \rho, Z) \propto e^{i\vec{p}\cdot\vec{X}} R(\rho)\psi_Z(Z)T(\mathbf{a})$$

$$\begin{pmatrix} R(\rho) = \rho^{\tilde{l}}e^{-A\rho^2} & \tilde{l} = -1 + 2\sqrt{1 + N_c^2/5} \\ \psi_Z(\rho) = e^{-AZ^2} & A = \frac{8\pi^2\kappa}{\sqrt{6}} \\ T(\mathbf{a}) = a_1 + ia_2 \text{ for } |p\uparrow\rangle \text{ etc.} \end{pmatrix}$$

## Baryon spectrum



- <u>Note:</u> We only consider the mass difference, since  $O(N_c^0)$  term in  $M_0$  is not known.
  - $M_{KK} \simeq 949 \text{ MeV}$  (fixed by  $\rho$  -meson mass) is a bit too large. It looks better if  $M_{KK}$  were around 500 MeV.



[Hashimoto-Sakai-S.S.2008]

[See also, Hata-Murata-Yamato 2008]

- Chiral symmetry  $U(N_f)_L \times U(N_f)_R \longrightarrow (A_{L\mu}(x), A_{R\mu}(x))$
- Interpreted as

with

$$A_{L\mu}(x) = \lim_{z \to +\infty} A_{\mu}(x, z) \qquad A_{R\mu}(x) = \lim_{z \to -\infty} A_{\mu}(x, z)$$
$$\Rightarrow S_{5 \dim} \Big|_{\mathcal{O}(A_L, A_R)} = -\int d^4x \left( A^a_{L\mu} J^{a\mu}_L + A^a_{R\mu} J^{a\mu}_R \right)$$

$$J_{L\mu} = -\kappa \left( k(z) F_{\mu z} \right) \Big|_{z=+\infty} \quad J_{R\mu} = +\kappa \left( k(z) F_{\mu z} \right) \Big|_{z=-\infty}$$

vector and axial vector currents

$$J_{V}^{\mu} \equiv J_{L}^{\mu} + J_{R}^{\mu} = -\kappa \left[ k(z) F^{\mu z} \right]_{z=-\infty}^{z=+\infty}$$
  
$$J_{A}^{\mu} \equiv J_{L}^{\mu} - J_{R}^{\mu} = -\kappa \left[ \psi_{0}(z) k(z) F^{\mu z} \right]_{z=-\infty}^{z=+\infty} (\psi_{0}(\pm\infty) = \pm 1)$$

## How to calculate

- We need to know how  $F_{\mu z}(x,z)$  behaves at  $z \to \pm \infty$ 
  - → We cannot use the solution in the flat space.
- The EOM are complicated non-linear equations.

→ difficult to solve exactly.

We use the following trick to calculate the currents.





[Hashimoto-Sakai-S.S.2008]

[See also, Hong-Rho-Yee-Yi 2007, Hata-Murata-Yamato 2008]

Now we are ready to calculate various physical quantities

### But, don't trust too much !

- $\lambda$  may not be large enough.
- Higher derivative terms may contribute.
- $N_c = 3$  is not large enough.
- The model deviates from real QCD at high energy  $\sim M_{\rm KK}$
- We use  $M_{KK} \simeq 949$  MeV (value consistent with  $\rho$  meson mass) But we know this is too large to fit the baryon mass differences.

## Baryon number current

$$J_B^{\mu} = -\frac{2}{N_c} \kappa \left[ k(z) F_{U(1)}^{\mu z} \right]_{z=-\infty}^{z=+\infty} \quad \text{U(1) part of the U(2) gauge field}$$

$$J_B^{\mathbf{0}} \simeq \left[k(z)\partial_z G\right]_{z=-\infty}^{z=+\infty} \qquad J_B^i \simeq -\frac{J^j}{16\pi^2\kappa}\epsilon^{ijk}\partial_k J_B^{\mathbf{0}} + \cdots$$

 $\begin{pmatrix} G: \text{ Green's function } (h(z)\partial_i^2 + \partial_z k(z)\partial)G = \delta^3(\vec{x} - \vec{X})\delta(z - Z) \\ J^j: \text{Spin operator } J^j = -i4\pi^2\kappa\rho^2\operatorname{tr}(\tau^j \mathrm{a}^{-1}\dot{\mathrm{a}}) \end{pmatrix}$ 

Note:  $k(z) \sim z^2$ ,  $\partial_z G \sim 1/z^2$  at  $z \to \pm \infty$ 

 $\longrightarrow$   $J_B^{\mu}$  is non-zero, finite.

## Isoscalar mean square radius

$$\langle r^2 \rangle_{I=0} = \int d^3x \, r^2 \, J_B^0 \simeq (0.742 \text{ fm})^2$$

$$\uparrow$$
Numerical estimate using  $M_{\text{KK}} \simeq 949 \text{ MeV}$ 
(fixed by  $\rho$ -meson mass)

$$\left(\text{cf. } \langle r^2 \rangle_{I=0}^{1/2} \Big|_{\text{exp}} = \frac{0.806}{0.806} \text{ fm}, \ \langle r^2 \rangle_{I=0}^{1/2} \Big|_{\text{ANW}} = 0.59 \text{ fm} \right)$$

## Isoscalar magnetic moment

$$\mu_{I=0}^{i} = \frac{1}{2} \epsilon^{ijk} \int d^{3}x \, x^{j} J_{B}^{k} \simeq \frac{J^{i}}{16\pi^{2}\kappa} \, J_{B}^{i} \simeq -\frac{J^{j}}{16\pi^{2}\kappa} \epsilon^{ijk} \partial_{k} J_{B}^{0} + \cdots$$

τi

For a spin up proton state  $|p\uparrow\rangle$ Isoscalar g-factor  $\langle p \uparrow | \mu_{I=0}^{i} | p \uparrow \rangle = \frac{\delta^{i3}}{32\pi^{2}\kappa} \equiv \frac{g_{I=0}}{4M_{N}} \delta^{i3}$  Nucleon mass  $(M_N \simeq 940 \text{ MeV})$  $g_{I=0} = \frac{M_N}{8\pi^2 \kappa M_{\rm KK}} \simeq 1.68$  $M_{\rm KK} \simeq 949$  MeV,  $\kappa \simeq 0.00745$ (fixed by  $m_{\rho}$ ) (fixed by  $f_{\pi}$ )  $\left( \text{cf. } g_{I=0} \Big|_{\text{exp}} \simeq 1.76, g_{I=0} \Big|_{\text{ANW}} = 1.11 \right)$ 

## Summary of the results

|                                   | our result | exp.    | ANW        |
|-----------------------------------|------------|---------|------------|
| $\langle r^2 \rangle_{I=0}^{1/2}$ | 0.74 fm    | 0.81 fm | 0.59 fm    |
| $\langle r^2 \rangle_{I=1}^{1/2}$ | 0.74 fm    | 0.94 fm | $\infty$ × |
| $\langle r^2 \rangle_A^{1/2}$     | 0.54 fm    | 0.67 fm | _          |
| $g_{I=0}$                         | 1.7        | 1.8     | 1.1        |
| $g_{I=1}$                         | 7.0        | 9.4     | 6.4        |
| $g_A$                             | 0.73       | 1.3     | 0.61       |

- X pion loop contribution is log divergent in the chiral limit. Our calculation corresponds to the tree level in ChPT.
- Solution We can also evaluate these for excited baryons such as  $\Delta(1232), N(1440), N(1535), \cdots$

## Form factors

$$\langle N, \vec{p}' | J_{\text{em}}^{\mu}(0) | N, \vec{p} \rangle = \overline{u}(p', s') \left[ \gamma^{\mu} F_1(q^2) + \frac{i}{2m_N} \sigma^{\mu\nu} q_{\nu} F_2(q^2) \right] u(p, s)$$
  
Breit frame:  $\vec{p}' = -\vec{p} = \vec{q}/2$   $(q = p' - p) \qquad N$ 

Dirac form factor Pauli form factor

Breit frame: 
$$\vec{p}' = -\vec{p} = \vec{q}/2$$

$$\langle N, \vec{q}/2 | J_{\text{em}}^0(0) | N, -\vec{q}/2 \rangle = G_E(\vec{q}^2) \chi_{s'}^{\dagger} \chi_s$$

$$\langle N, \vec{q}/2 | J_{\text{em}}^i(0) | N, -\vec{q}/2 \rangle = \frac{i}{2m_N} G_M(\vec{q}^2) \chi_{s'}^\dagger(\vec{q} \times \vec{\sigma}) \chi_s$$

#### Sachs form factor

$$G_E(q^2) = F_1(q^2) + \frac{q^2}{4m_N^2}F_2(q^2)$$
$$G_M(q^2) = F_1(q^2) + F_2(q^2)$$

**Electric form factor** Magnetic form factor

 $N \ \prime \ p'$ 

p

## Dipole behavior

#### dipole ( $\Lambda \simeq 0.71 \text{ GeV}^2$ ) **Experimental data suggest** $G_E^p(Q^2) \simeq \frac{1}{\mu_p} G_M^p(Q^2) \simeq \frac{1}{\mu_n} G_M^n(Q^2) \simeq \frac{1}{(1 + \frac{Q^2}{\Lambda^2})^2} \qquad G_E^n(Q^2) \simeq 0$ $G_E^p$ $G_M^n/\mu_n$ $G_M^p/\mu_p$ 10<sup>°</sup> 10 : dipole 0.923 $G_{Mn}/\mu_n$ $G_{Mp}/\mu_p$ 0.95 dots : data 5 ...... 0.900 0.875 $10^{-1}$ $10^{-1}$ $10^{-1}$ dipole dipole 10 dipole $10^{-1}$ 10<sup>0</sup> $10^{-2}$ $10^{-1}$ $10^{-2}$ $10^{-2}$ $10^{-1}$ $10^{0}$ $Q^2$ (GeV<sup>2</sup>) $Q^2$ (GeV<sup>2</sup>) $Q^2$ (GeV<sup>2</sup>) $G_E^n$ $1 \, \text{GeV}^2$ ---- natio 0.05 Lassia -

O<sup>2</sup> [(GeV/c)<sup>2</sup>]



$$G_E^p(Q^2) = \frac{1}{\mu_p} G_M^p(Q^2) = \frac{1}{\mu_n} G_M^n(Q^2) = \sum_{n \ge 1} \frac{g_{v^n} g_{v^n NN}}{Q^2 + m_n^2} \qquad G_E^n(Q^2) = 0$$

with 
$$g_{v^n} = -2\kappa(k(z)\partial_z\psi_{2n-1})\Big|_{z=+\infty}$$
  
 $g_{v^nNN} = \langle \psi_{2n-1}(Z) \rangle$ 



Vector meson dominance

• Can this be compatible with dipole?

$$\begin{split} G^p_E(Q^2) \simeq 1 - 2.38Q^2 + 4.02(Q^2)^2 - 6.20(Q^2)^3 + 9.35(Q^2)^4 - 14.0(Q^2)^5 + \cdots \\ \frac{1}{(1+Q^2/\Lambda^2)^2} \simeq 1 - 2.38Q^2 + 4.24(Q^2)^2 - 6.71(Q^2)^3 + 9.97(Q^2)^4 - 14.2(Q^2)^5 + \cdots \\ \text{ with } \Lambda^2 = 0.758 \text{ GeV}^2 \end{split} \qquad (M_{\text{KK}} = 1 \text{ unit})$$

## **5** Conclusion

- We proposed a new method to analyze static properties of baryons.
- Our model automatically includes the contributions from various massive vector and axial-vector mesons.
- Compared with the similar analysis in the Skyrme model (ANW), the agreement with the experimental values are improved in most of the cases.
- But, we should keep in mind that our analysis is still very crude and there are a lot of ambiguities remain unsolved.

## Back up slides



$$J_V^{a\,\mu} = -\kappa \left[ k(z) F_{SU(2)}^{a\,\mu z} \right]_{z=-\infty}^{z=+\infty}$$
 SU(2) part of the U(2) gauge field

$$J_V^{a\,0} \simeq \mathbf{I}^a J_B^0 + \cdots \qquad J_V^{a\,i} \simeq 2\pi^2 \kappa \rho^2 \operatorname{tr}(\tau^a \mathbf{a} \tau^j \mathbf{a}^{-1}) \,\epsilon^{ijk} \partial_k J_B^0 + \cdots$$

$$\left( I^a : \text{Isospin operator} \quad I^a = -i4\pi^2 \kappa \rho^2 \operatorname{tr}(\tau^a a \dot{a}^{-1}) \right)$$

#### • We can easily check that

$$Q_V^a = \int d^3x \, J_V^{a0} = I^a$$
 : iso-spin operator

• The ele-mag current is given by

 $J_{\rm em}^{\mu} = J_V^{3\mu} + J_B^{\mu}/2 \quad \longleftarrow \quad Q_{\rm em} = I^3 + Q_B/2$ 

Isovector magnetic moment

$$\mu_{I=1}^{i} = \epsilon^{ijk} \int d^{3}x \, x^{j} J_{V}^{3,k} \simeq -4\pi^{2} \kappa \rho^{2} \operatorname{tr}(\mathbf{a}\tau^{i} \mathbf{a}^{-1} \tau^{3})$$

$$\bigwedge_{J_{V}^{a\,i}} \simeq 2\pi^{2} \kappa \rho^{2} \operatorname{tr}(\tau^{a} \mathbf{a}\tau^{j} \mathbf{a}^{-1}) \, \epsilon^{ijk} \partial_{k} J_{B}^{0} + \cdots$$

For a spin up proton state  $|p\uparrow\rangle$ 

$$\langle p\uparrow | \, \mu_{I=1}^{i} \, | p\uparrow \rangle = \frac{8\pi^{2}\kappa}{3} \langle \rho^{2} \rangle \delta^{i3} \equiv \frac{g_{I=1}}{4M_{N}} \, \delta^{i3}$$

• If we approximate  $\langle \rho^2 \rangle$  by its classical value  $\rho_{cl}^2 = \frac{N_c}{8\pi^2\kappa} \sqrt{\frac{6}{5}}$ 

$$g_{I=1} \simeq \frac{M_N}{M_{\text{KK}}} \cdot \frac{N_c}{3} \cdot 4\sqrt{\frac{6}{5}} \simeq 4.34 \quad \left(\text{cf. } g_{I=1}\Big|_{\text{exp}} \simeq 9.4, \ g_{I=0}\Big|_{\text{ANW}} = 6.38 \right)$$

• If we evaluate  $\langle \rho^2 \rangle$  by using the nucleon wavefunction,

$$\langle \rho^2 \rangle = \rho_{\rm Cl}^2 \left( \sqrt{1 + \frac{5}{N_c^2}} + \frac{\sqrt{5}}{2N_c} \right) \simeq 1.62 \,\rho_{\rm Cl}^2 \quad \Longrightarrow \quad g_{I=1} \simeq 7.03$$

magnetic moment

The magnetic moments for proton and neutron (in the unit of Bohr magneton  $\mu_N = \frac{1}{2M_N}$ ) are

$$\mu_{p} = \frac{1}{4} (g_{I=0} + g_{I=1}) \simeq 2.18 \qquad \mu_{n} = \frac{1}{4} (g_{I=0} - g_{I=1}) \simeq -1.34$$

$$g_{I=0} \simeq 1.68, \ g_{I=1} \simeq 7.03$$

$$\begin{pmatrix} \text{cf.} \ \mu_{p} | \exp \simeq 2.79, & \mu_{n} | \exp \simeq -1.91, \\ \mu_{p} | \text{ANW} \simeq 1.87, & \mu_{n} | \text{ANW} \simeq -1.31, \end{pmatrix}$$

Since  $g_{I=0} = O(N_c^0)$  and  $g_{I=1} = O(N_c^2)$ these values may not be meaningful.

### Axial coupling

The axial coupling  $g_A$  is defined by

$$\int d^3x \langle J_A^{a\,i} \rangle = \frac{g_A}{3} \langle \sigma^i \tau^a \rangle \qquad \langle \cdots \rangle : \text{expectation value} \\ \underset{\text{spin} \text{ isospin}}{} \qquad \qquad \forall \cdots \rangle : \text{expectation value}$$

$$J_A^{a\,i} \simeq -2\pi^2 \kappa \rho^2 \operatorname{tr}(\mathbf{a}\tau^j \mathbf{a}^{-1}\tau^a) \left[ \psi_0(z)k(z)(\partial_i \partial_j - \delta_{ij}\partial_k^2) \mathbf{H} \right]_{z=-\infty}^{z=+\infty} + \cdots$$

# $\begin{pmatrix} H: \text{ Green's function} \\ (k(z)\partial_i^2 + k(z)\partial_z h(z)^{-1}\partial k(z))H = \delta^3(\vec{x} - \vec{X})\delta(z - Z) \end{pmatrix}$

formula  

$$\int d^3x \,\partial_i^2 \left( -\frac{1}{4\pi} \frac{1}{r} \right) = 1$$

$$\langle \operatorname{tr}(\mathbf{a}\tau^j \mathbf{a}^{-1}\tau^a) \rangle = -\frac{2}{3} \langle \sigma^i \tau^a \rangle$$

$$g_A = \frac{16\pi\kappa}{3} \left\langle \frac{\rho^2}{k(Z)} \right\rangle$$

• If we approximate  $\left\langle \frac{\rho^2}{k(Z)} \right\rangle$  by its classical value  $\rho_{cl}^2 = \frac{N_c}{8\pi^2\kappa} \sqrt{\frac{6}{5}}$ 

$$g_A \simeq \frac{2N_c}{3\pi} \sqrt{\frac{6}{5}} \simeq 0.697 \qquad \left( \text{cf. } g_A \Big|_{\text{exp}} \simeq 1.27, \ g_A \Big|_{\text{ANW}} = 0.61 \right)$$

$$N_c = 3$$

• If we evaluate  $\left\langle \frac{\rho^2}{k(Z)} \right\rangle$  by using the nucleon wavefunction,  $\left\langle \rho^2 \right\rangle \simeq 1.62 \rho_{\text{Cl}}^2 \qquad \left\langle \frac{1}{k(Z)} \right\rangle \simeq 0.639 \implies g_A \simeq 0.722$ 

Note: It is possible to show that the Goldberger-Treiman relation is satisfied.

$$g_A = \frac{f_\pi g_{\pi NN}}{M_N}$$

## Summary table

|                                              | our model              | Skyrmion[14]         | experiment             |
|----------------------------------------------|------------------------|----------------------|------------------------|
| $\langle r^2 \rangle_{I=0}^{1/2}$            | $0.742~\mathrm{fm}$    | $0.59 \ \mathrm{fm}$ | $0.806~{\rm fm}$       |
| $\langle r^2 \rangle_{\mathrm{M},I=0}^{1/2}$ | $0.742~\mathrm{fm}$    | 0.92  fm             | 0.814  fm              |
| $\langle r^2 \rangle_{\mathrm{E,p}}$         | $(0.742 \text{ fm})^2$ | $\infty$             | $(0.875 \text{ fm})^2$ |
| $\langle r^2 \rangle_{\rm E,n}$              | 0                      | $-\infty$            | $-0.116 \text{ fm}^2$  |
| $\langle r^2 \rangle_{\rm M,p}$              | $(0.742 \text{ fm})^2$ | $\infty$             | $(0.855 \text{ fm})^2$ |
| $\langle r^2  angle_{ m M,n}$                | $(0.742 \text{ fm})^2$ | $\infty$             | $(0.873 \text{ fm})^2$ |
| $\langle r^2 \rangle_A^{1/2}$                | 0.537  fm              | _                    | $0.674~\mathrm{fm}$    |
| $\mu_p$                                      | 2.18                   | 1.87                 | 2.79                   |
| $\mu_n$                                      | -1.34                  | -1.31                | -1.91                  |
| $\frac{\mu_p}{\mu_n}$                        | 1.63                   | 1.43                 | 1.46                   |
| $g_A$                                        | 0.73                   | 0.61                 | 1.27                   |
| $g_{\pi NN}$                                 | 7.46                   | 8.9                  | 13.2                   |
| $g_{ ho NN}$                                 | 5.80                   | _                    | $4.2 \sim 6.5$         |