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Large N & SUSY:
some new ideas and results

Gabriele Veneziano
(CERN & CdF)



Part I: Planar Equivalence
Old and new large-N QCD
Orientifold planar equivalence

Part IT: Planar Quantum Mechanics
Hamiltonian Planar QM
An intriguing SUSY matrix model



Part I based on

® A. Armoni, M. Shifman, GV, hep-th/0302163,
0307097, 0309013, 0403071, 0412203, 0701229;
® A. Armoni, G.M. Shore, GV, hep-ph/0511143

Part IT based on

® J. Wosiek & GV hep-th/0512301, 0603045,
0607198, 0609210 (cond-mat);
® E. Onofri, J.Wosiek & GV math-ph/0603082



Large-N expansions in QCD
®Planar & quenched limit ('t Hooft, 1974)

1/N, expansion @ fixed A = g°N, and N;
Leading diagrams

N

Corrections: O(N¢/N.) from g-loops,
O(1/N_?) from higher genus diagrams




Properties at leading order
1. Resonances have zero width +

2. U(1) problem not solved, WV @ NLO  -?
3. Multiparticle production not allowed -

Theoretically (if not phenomenologically)
appealing: should give the tree-level of
some Kind of string theory

Proven hard to solve, except in D=2....



®Planar unquenched limit
= Topological Expansion (GV '74--76)
1/N expansion at fixed g°N and N, /N,
Leading diagrams include "empty" q-loops
Corrections:
O(1/N?) from non-planar diagrams

EED




Properties
Widths are O(1) -

U(1) problem solved to leading order, no reason
for WV to be good +?

Multiparticle production allowed o +
=> Bare Pomeron & Gribov's RFT

Perhaps phenomenologically more appealing than
't Hooft's but even harder to solve...

But there is a third possibility...



® Generalize QCD to Nz 3 (N = N, hereafter) in
other ways by playing with matter rep. The
conventional way, QCDp, is to keep the quarks in N +
N* rep.

Another possibility, called for stringy reasons™)

QCDepg, is to assign quarks to the 2-index-antisymm.
rep. of SU(N) (+ its c.c.)*™

As in 't Hooft's exp. (and unlike in TE), N¢ is kept
fixed (N; < 6, or else AF lost at large N)

NB: For N = 3 this is still good old QCD!

*) see e.g. P.Di Vecchia et al. hep-th/0407038

**)Pioneered by Corrigan and Ramond (1979) for
very different reasons



Leading diagrams are planar, include “filled” g-
loops since there are O(N?) quarks

Widths are zero, U(1) problem solved, no p.pr.
Phenomenologically interesting?

Don't know.
Better manageable?

\ Yes, I claim.




Numerology of QCDg vs. QCDp

Th Large-N,
oot | N QD RCDor N,=1
Bo |UN/3 | (11N-2N;)/3 (1IN-2(N-2)N,)/3 3N
17N2- 3N; x I7N? - N (N-2) x
3P4 L7N¢ (13N/6 -f/zN) (BN + 3(N-2)(N+1)/N) IN?
" x| 3(N2-1)/2N | 3(N-2)(N+1)/N 3N

QCDeyR as an interpolating theory:
Coincides with pure YM (AS fermions decouple) @ N=2
Coincides with QCD @ N=3

.. and at large N?



ASV claim of Planar Equivalence

At large-N a bosonic sector of QCDy is equivalent to

a corresponding sector of QCD,g; i.e. of QCD with
N: Majorana fermions in the adjoint representation

If true, important corollary:

For N: =1 and m = 0, Q€D is planar-equivalent to
supersymmetric Yang-Mills (SYM) theory

Some properties of the latter should show up in one-
flavour QCD ... if N=3 is large enough

NB: Expected accuracy 1/N
ASV gave both perturbative and NP arguments



Sketch of non-perturbative argument
(ASV '04, A. Patella, '05)

> Integrate out fermions (after having included
masses, bilinear sources)

> Express Trlog(B+m+J) in terms of Wilson-loops
using world-line formulation

> Use large-N to write adjoint and AS Wilson loop as

products of fundamental and/or antifundamental
Wilson loops (e.g. W,q; = W X Wes +O(1/N?))

> Use symmetry relations between F and F* Wilson
loops and their connected correlators

An example: <WWD W@ __



SYM




Key ingredient is Cl
> Clear from our NP proof that C-invariance is necessary.
Kovtun, Unsal and Yaffe have arqgued that it is also sufficient

> UA&Y (see also Barbon & Hoyos) have also shown that C is
spontaneously broken if the theory is put on R3xS! w/ small
enough S!. PE doesn't (was never claimed to) hold in that case

> Numerical calculations (De Grand and Hoffmann) have
confirmed this, but also shown that, as expected on some
general grounds (see e.g. ASV), C is restored for large radii
and in particular on R*

> Lucini, Patella & Pica have shown (analyt.lly & numer.lly)
that SB of C is also related to a non-vanishing Lorentz-
breaking F#-current generated at small R but disappearing
as well as R is increased

= Overwhelming evidence for PE on R*?




An interesting proposal

Kovtun, Unsal and Yaffe ('07) have also made the claim
that QCD,q; , unlike QCDr and QCDoy , suffers no phase
fransition as a volume-reducing process a la Equchi-Kawai is
performed at large-N

If this is indeed the case, we could get properties of
QCD,q; at small volume by numerical methods and use them at
large volume where the connection to QCD,, can be
established (C being OK there)

Finally, one would make semi-quantitative predictions for
QCD itself (at different values of N;) by extrapolating down
to N=3

For the moment, we shall try to use instead the connection
with a SUSY theory



SUSY relics in one-flavour QCD

® Approximate bosonic parity doublets:
Ms= Mp = Mg in SYM => mg~ mpin QCD™)
Looks ~ OK if can we make use of:
i) WV for mp (mp ~ v2(180)2/95 MeV ~ 480 MeV),

ii) Experiments for mg (o0 @ 600MeV including quark
masses)

Recent lattice work by Keith-Hynes & Thacker also
support this approximate degeneracy

") Composite-fermions NOT related.

Interesting aspects of baryons in QCD oy have been
discussed by S. Bolognesi (hep-th/0605065) and by
A. Cherman and T. D. Cohen (hep-th/0607028)



@ Approximate absence of “activity” in certain
chiral correlators

In SYM, a well-known WT gives

(AMM(x)AA(y)) = const. , (AM(x)AA(y)) # const.
PE then implies that, in the large-N limit:

(WrRYL(Xx)WrYL(Y)) = const. , (WrYL(Xx)YLWYr(Y)) # const.

Of course the constancy of the former is due to
an exact cancellation between intermediate
scalar and pseudoscalar states.



The quark condensate in N¢=1 QCD

and vanishing of quark cond. at N=2, we get

N 1578/961 27

which can be rewritten as 1+0.3?

<(g )"/“ww >=—L1k(1/3)A;

N h 2 N Bl/ l)’
ANy = uexp
t A / i BO)\;{_ (BO}\-;1>




N¢=1 condensate "measured"?

DeGrand, Hoffmann , Schaefer & Liu,
hep-th/0605147
(using dynamical overlap fermions and distribution of
low-lying eigenmodes)

((PW)26ev)'

J -~ Exact meaning of

.. 305(2GeV) /2n

agreement still to be
fully understood



Extension to N >1
(Armoni, 6. Shore and GV, '05)

> Take OR theory and add to it n; flavours in N+N* .

> AT N=2 it's n.-QCD, @ N=3 it's N¢(=n+1)-QCD.

> At large N cannot be distinguished from OR (fits
SYM B-functions even better at n.=2: e.g. same f3,)

> Vacuum manifold, NG bosons etc. are different!

> Some correlators should still coincide in large-N

limit. In above paper it was argued how to do it for
the quark condensate



Quark condensate (ren. @ 2 GeV)
vs 0,(26eV) for N¢=3

Very encouraging

((W)acev)
~allin W3
... 30,5(2GeV ) /2n
(YY), = 2:;2]"3)\” ijexp <_7\%l>




Conclusions part I

> The orientifold large-N expansion is arguably the
first example of large-N considerations leading to
quantitative analytic predictions in D=4, strongly
coupled, non-supersymmetric gauge theories

> Since its proposal, progress has been made on

¢ Tightening the NP proof of PE
¢ Providing numerical checks (more is coming!)

but more work is still needed for:

¢ Estimating the size of 1/N corrections
¢ Extending the equivalence in other directions



IT. Planar quantum mechanics:
an intriguing SUSY matrix model

>  Original motivation: check planar equivalence and compute
its accuracy at finite N in a simple QM case: not done yet!

> On the way, J. Wosiek and I stumbled on an amusing model
with unexpected properties and possible implications for
HE and CM physics as well as for Maths.

> New motivation: following KUY's suggestion, such QM
excercises, once suitably extended, may become relevant
for QCD itself!



> Consider the large-N limit of a U(N) matrix theory

> With some qualifications relevant singlet states are
given by single-trace operators

> In SUSY-QM with a single bosonic matrix aand a
single fermionic matrix f planar Hilbert space
spanned by

{mm}) o< Tria" fm..a ]

0)

where |0 > is the usual empty Fock vacuum



Hamiltonians are taken to be single-trace normal-ord.
operators, a trace with n factors being multiplied by
g"-¢. With some qualifications, the Hamiltonian acting
on a single-trace state gives, to leading order, a
combination of single-trace states w/coefficients

that depend only on 't Hooft's A = g2N

|{n,,m,}> —(Sni+Sm; /?TI [ nlfm, an,\.fmk]'%‘o>

e.g. H=gTr(a'a?)

/
DFe

b

0(7\1/2)

)
(



Take the SUSY charges to be simply:
Q=Tr(f(a"+ga")) , 0" =0

H={0".0},C=[0".0],C*=H" F=Tr(f'f)

H = Hu+Hjy Hp=Trla'a+ga'(a+a")a) + g*a*'a’]

Hy =Trlf'f +8(f fla+d) + f'(a+a)f) +8'(f'afa’+ f'aa'f + f'fa'a+ f'a'fa)

e Trivial E=0 vacuum: |0> => SUSY is unbroken
oE > O states must be organized in SUSY doublets w/
same CF :('I)FC

eDependence on A highly non-trivial



H=Hz+Hy Hp=Trla'a+ga (a+a")a)+g’a*"a’]

Hp=Trf'f+8(f fla+a )+ f(a+a’)f)+ & (fafa + flad f+ f fa'a+ f'a fa)
Two extreme limits
©® )\ -> 0: the theory becomes free

Q:Tr(f(a%+ga*2)) —>Tr(fa+) H—>Tr(a%a+f+f)
@\ -> oo H (better: H/\) simplifies again
Q:_)g Tr (fa‘i'Z) HB _)gZTr[a‘i‘zaZ]

Hy — g'Tr((f'afa’ + f'a’ fa) + Nf'f]
H conserves B & F separately => block-diagonal

Qs: How does SUSY act in the two limits? How is it
implemented? And what happens at generic A?



The only E
bachelor

F

9

Supermultiplets for A --> 0
81 SUSY acts “vertically"
.

Numbers show degeneracy
(A dot means a single state)

Yet matching is non-trivial

2

1

104 states

=0
\EGJ ‘ .



F
Supermultiplets for A -> o

SUSY acts "diagonally”

means: block
|:| contains one E=0
state at A = o

The null states appear to form an infinite staircase!



o At A<« 1itis trivial to solve for the spectrum:
yet, this has non-trivial implications on the

combinatorics of binary neck

o As A => o mathematical resu
combinatorics of binary neck

aces

ts on the
aces have

implications on the spectrum of the model and on

how SUSY is realized



Emerging picture

At A <« 1 there is perfect matching of bosonic and
fermionic states with the single exception of the bosonic
Fock vacuum: W(h<«1)=1

As A => © many other bosonic states can't find a fermionic
partner => they must all have E=0!

Necessarily, W must jump between A = 0 and A = | Since
unpaired states occur at any even F, we can look for this
jump numerically in low-F sectors (this is actually how we
found the phenomenon in the first placel)

Cutoff (in n), needed for numerical studies, breaks SUSY,
but SUSY is recovered fast (at generic A) as cutoff is
increased



O

O

ResultsinF=0,1, 2, 3 sectors

There is a phase transition at A =1: the weak-
coupling energy gap disappears at A=1 for all F
The spectrum becomes discrete again for A > 1; In
the F=0,1 sectors the eigenvalues at A are related
to those at 1/h by a strong-weak duality formula:

E(1/M+1=N*(EN)+1)

For F=0,1 the spectrum can be computed
analytically in terms of the zeroes of an ;F,
function. Duality and phase transition can be
studied analytically



AT A >1 a second F=0, E=0 bosonic state pops up
making Witten's index jump by one unit (within the
F=0, 1 sectors).

First found numerically. The analytic form of the
2nd ground state can be formally given at all A but
is only normalizable for A > 1

In the F=2 sector two more E=0 states pop up at
A > 1: Witten index jumps by two more units

For finite cutoff (=> SUSY expl.ly broken)
supermultiplets rearrange around A = 1 by a sort of
“ﬂartner swapping” mechanism. At infinite cutoff,
these new "couples” emerge already "remarried”
from an infinitely degenerate state
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Connection with

Binary Necklaces (BNL)
(E.Onofri, J.Wosiek & GV,math-ph/0603082)



> Having constructed, counted, and paired the states
in SUSY doublets, we searched for something
similar known in maths.

> Naturally, we looked for a possible connection with
binary necklaces, necklaces with two kinds of
beads, zeros and ones (or bosons and fermions)

> Their number (see the on-line encyclopedia of
infeger sequences):

» A000031(n) = Number of n-bead necklaces with 2
colours when turning over is not allowed (cyclic and
anticyclic are distinct) is given by Mac Mahon's
formula (see below).



But there was a problem:

> The number of binary necklaces w/ even and odd #
of fermions is, in general, different! Example (n=2)

(aa), (ff), (af) = (fa) => 2 bosons, 1 fermion, ..
and indeed the numbers did not match..
> Q: How can supersymmetry work if ng # ng?

> A: Pauli's exclusion principle kills some BNL giving
back the balance between bosons and fermions
N(n) = Npsn(n) (PAN = Pauli-allowed necklaces)



Binary Necklaces, Pauli Necklaces n= B+F

B Fl even odd |
NBNL(n) - ;2 CP(CZ’) 211/(1
PFN T
1 |
even Npan(n) = — Z p(d) 2"
PAN # BNL| PAN =BNL n am

dodd
% 1
Nppn(n) = - @(d) 2"

d\n

Odd PAN = BNL PAN = BNL deven

¢(d) is Euler's "totient” function counting the number of prime
numbers (< d) relative to d



If B and F are not both even we have a more detailed counting:

R Nep ¥ 0@ ((BF)/d
NBAL(B,I*) NPA:\'(BaP) d;b! (B_*_]:) ( B/d )

giving back the previous formula for B+F odd if one sums over
B at fixed n=B+F.

When B & F are even we have proven a simple formula for PFN

k k k k
Npen(B,F) = Npni(B/2*, F /2%) = Npay (B /2%, F /24
(see table) where k is the unique +ve integer (if it exists) for
which F/2k is odd and B/2%is integer (otherwise npry is zero).

Npan(B,F) = Npnp(B,F) — NBNL(B/zkaF/Zk)
Ngni(B,F) = Npan(B, F) + Npan(B /25, F /25)



Npey fluctuates a lot!

F—
5] 024 6 8 10 | 12 14 116 18 20 22 |24 26 28 30 32 34 36 38 | 40
0 Gj1(1| 1|1 1| 1 1| 1 1 1 1( 1 1 1 1] 1 1 1 1| 1
2 010 10 1| 0 1| 0 1 0 1| 0 1 0 1 0 1 0 1| 0
4 011 20 301 41 0 5 1 6| 0 7 1 8 0 9 1 10 0
6 G 1|0f 40 70 12| 0 19 0 26| 0 35 0 46 0 0 a7 0 7000
8 /11| 5|1 14| 2 300 0 a5 3 91| 1 140 R 204 0 285 9 385 1
10 010 70 26 0 66| 0 143 0 27931 0 476 0 77600 1197 0 1771 0O
12 10(1|1|10/0 42| 4 132 0 335 7 728 | 0O 1428 12 2586 0 43849 19 7084 | O
14 " 0/1](0(120 66| 0 246 0 0 715 0 1768 | 0 3876 0 775200 14421 0 25300 0 O
16 (0]1]1]15]1 991 5 429 1 1 1430 14 3978 | 2 G690 30 21318 | 0 43263 95 82225 | 3
18 0 1019 0 143] 0O 715 | 0O 2704 0 8398 | 0O 22610 0 54484 0 120075 0 246675 0 0
20 011 (22]/0 201| 7| 1144 | O 4862 26 16796 | O 49742 66 130752 0 312455 | 143 690690 | 0O
22  01(0(26 0 273] 0 1768 | 0 8398 0 266 | O 104006 0 207160 0 TOH935 0 1820010 O
24 0 1 |1(31 1 364 |10 2652 0 14000 42 O8786 | 4 208012 | 132 643856 O 1789515 | 335 4552275 1 T
26 0 10|35 0 476| 0 3876 0 22610 0] 104006 | O 400024 0] 1337220 0 3991995 0 10855425 | 0
28 0 1 |1[40 0 61212 5538 | 0 35530 66| 178296 | 0 T42000 0 246 | 2674440 0 0O 8554275 | 715 24812400 | 0O
30 0 1046 0 776 | 0 7752 | O 54484 0| 297160 | O 1337220 0 5170604 0O 17678835 0 54587280 | O
32 0 11|51 1 96915 10659 1 SI719 99| 482885 | 5 2340135 429 | 9694845 1| 35357670 | 1430 | 115997970 | 14
34 010570 1197 0 14421 | O 1200175 0 766935 | 0 3991995 (017678835 0| 68635478 (] 238819350 | O
36 0 1|1 (64 0 1463 |19 19228 | O 173593 143 | 1193010 | O 6633325 0 715 | 31429068 O | 129644790 | 2704 | 477638700 1 0O
33 0 10700 1771 0 25300 | O 246675 0| 1820910 | 0 10855425 () | 54587280 0 | 238819350 0] 930138522 | 0O
400 0 1|1 [TV 102126 |22 32800 | 0 345345 201 | 2731365 | T 1V368680 1144 | 92798380 0 | 429874830 | 4862 | 1767263190 | 26

. Nppa. the number of Pauli forbidden nedclaces{entries with odd F and/or odd B vanish identi-




A formula for the PAN generating function
(OVW(DZ) see also Bianchi, Morales & Samtleben)

DPpan(x,y;n) EZNPAN(H—F F)x" 'y = Zq) —y) )”/d
F d/n

leads immediately to formulae for Witten-like indices

W(n;m) = 2 (—1)" " Npay(B,F) >0, W(n;n) =0

B+F =n
F<m

n n p— E NPA_N n 2F F) 611:](/-)1()(1'6)+61'I:—1(I‘7'10([6)
F



Conjecture: as A -> o0 there is one and only one E=0 bosonic

eig‘ensm’re In

and only in each (B,F) block with |B-F| =1

I | 21 s 4 5 5 7 ' | 10 11 12 | 13 11 | 15 | 16 7] s 19| 20
a 1 ( 1 0 1 ( 1 ( 1 0 1 a 1 0 1 0 1 a
F:O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 | 2 i i 1 5 5 b 7 v N 9 9 10 11
7 (Y | 0y 10 12 15 1 22 ;i 51 ] 10 " 51 tid 70 7
/L/ 1 1 2 14 20) 30 13 i 0 H 115 140 168 204 245 130 185 5
F: 2 5 (B 3 26 u Gt 4 14 1) 73 64 176 612 6 R 1197 1463 71 | 2128
6 11 3 12 132 217 N 7 ) 1062 1428 193 ] (N L3RG | S601 w1 | sson
1 1 ' 6 m 2406 I £29 I 71 1144 1 265 1876 553 10659 14421 | 19228 300
1 | { ] a9 "."I"."' 29 L 1430 212 Gl HH0 14521 21318 ea7 15263 | oo
1 1| 5 id 143 530 710 271 X 14000 22610 (EART S4d84 | SITI9 120070
10 1 | 2 T 201 v 1144 2438 i862 ﬁ 16796 ﬁ 19742 Rl6st | 130752 | 204347
11 1 1 6 91 273 T2R 1768 TR 19 In.'."v.l J a0t SSTR 104006 178298 | 297160
12 11 11 | 115 wid 1028 | 2652 3310 14000 | 29372 H8TS6 208012 p— .
- 13 1 15 [ 140 476 1428 | as7E 90D 2610 | 40742 1006 fasoiz | aosges | — /4470
14 11 101172 612 1932 | 5% 14550 5530 | S1686  1TR296 | 37184
15 11 16 " 76 Hat 21318 SE484 | 130702 297160 ‘ T \
16 1 | 51 244 Mg dast 10659 30666 S1T1S | 204248
18 E G4 | 336 1463 G601 | 19228 60115 | | \
19 11|10 o385 1771 Tos4 | 25300 N
o ol |1y 1,245, 14, 42, 132} 429, 1430, 4862, 16796, 58786,
21 1 11| 85|06 2530
1 1|1 @ . f
N N ne (block sizes = Catialan's numbers)
24 11 ]12
25 1 1
M |

TABLE 1. Npax(B. F)

a generated with the sieve method.,



Connections with statistical mechanics
(T.Wosiek & GV hep-th/0609210)



1. XXZ spin chain

n
A) 1 X =X Y <Y =l
Hyy, = _52 (Gi6i+l 1+ G; 0 +A6i6i+l)

=1

With a cyclic symmetry: n+l coincides with 1

We have proven the following equivalence between the XXZ
chain at asymmetry parameter A and our (rescaled) SUSY

QM at A = oo (Hge)
IfFisodd:  Hye —H{y +on  n=B+F
If F is even and B is odd (iWes magic stairway):

(-1/2) , 3 NB: SC SUSY connects
Hee & Hy — «—
3¢ XX2 +4n these two cases for odd B



Non-trivial consequences of SUSY for XXZ

> We reinterpret the ground state of XXZ model at
A = - 1/2 as the E=0 state of a SUSY theory: will
this help proving (some of) the RS conjectures?

A. V. Razumov & Y. 6. Stroganov, cond-mat/0012141
One conjecture: ratio of largest to smallest
component of ground-state eigenvector = number of
alternating sign matrices. If n=2m+1: __ . (3j+1)
For m=8 this number is 10,850,216.  A«=[1
Math. gave this to 0.1 acc.(1430% mx) -

» SUSY relates in a hon-trivial way XXZ spectra at
different asymmetry parameter and number of sites:
spectrum for A = +1/2 contained in that of A = -1/2
and vice versa (probably unnoticed so far)




Conjecture: as A -> o0 there is one and only one E=0 bosonic

7

eig?.el

[ 2]

5

nstate in and only in each (B,F) block with |B-F| =1

" o]

[ .
) 1 0 1 0 1 0 | o 1 o 1 0 1 o 1 o
1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1
1 i i 1 5 b 7 v 7 N 9 a a 10 11
11 T 10 12 1 19 22 26 51 H 1) Wi 51 " 4 70 ol
1 1 2 3 05 0 " 115 140 168 204 245 2805 110 185 5
| | b 143 Al 73 ind 176 6l TG “n 1197 1463 1771 2126
1 1 NN Sy p 104 1428 1932 2088 (N2 LSRG ol TOR] | sshb
1 1 715 1144 1768 2652 1876 2538 702 1659 14421 19228 253500
1 1 g 1430 242 TR LRI GHa0 14520 21318 one7 15263 | 60060
9 1 1 » S "y 2TIM NN 14100 22610 455350 Shasd 81719 12017
10 1 1 5 22 73 A T —— | 16796 ﬂ 19742 Rl6sE | 13075 4347
11 | | [ 6 91 273 T2R | 7GR FTUTR NS08 1679 fann I '.\T»I 104006 | TR 290 2497160
12 1 1 G 11 110 wid s 2652 Gl \\4 272 DuTshL W 28012 #
13 1 T@;O 40 I:'x:u Rl:\ i oo | 2260\ 49742 aoos fzasorz faooezs | —
14 L 1| 77 w01 ez usz | 553k 14550 | 35590 | \sl6s6 178296 | 37180
15 1 1 s 6 | 204 T 2h8G TI52 21318 Shasd x.’ 2971610 ' T
1€ 1 | 8 51 | 244 RUTIUNEN K 52 S (SR [ SITLS | 204248
17 | . | 9 7| 285 » 1197 IR 1421 126 - 120175 208012
18 1 1 9 4 250 146 hnol 19228 60116 \
19 1 1 10 TO | 385 1771 Tos4e | 25300 \
o ||| o |l 15245, 14, 42, 132) 429, 1430, 4862, 16796, 58786,
21 1 1 11 85 | 506 253D
1 | 11 92 578
25 1|12 10
24 1 1 12
1 1
20 1

TABLE 1

Npan(B. F) & generated with the sieve method,



Conclusions, Part IT

> SUSY has implications about non-trivial
combinatorial problems

» Combinatorial methods have non-trivial implications
on the dynamics of SUSY models

> Extending the approach to (semi) realistic QFTs w/
or w/out SUSY remains the main physics goal of
this (otherwise just amusing mathematical) game.
Work in progress in D=2. However:

> Interesting connections to stat. mech. models have
already emerged at infinite A (Cf. AdS/CFT!)



