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Entanglement

Consider a quantum system (e.g. a 1d quantum spin chain) in
a pure state |ψ〉, whose density matrix is ρ = |ψ〉〈ψ|.

Divide the whole system into two noninteracting subsystems,
A and its complement B. The Hilbert space then separates
into two non-interacting parts

H = HA ⊗HB

Suppose to do separated measures on each subsystem
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Separable vs. Entangled states

States that can be written as |ψ〉 = |ψA〉 ⊗ |ψB〉 are called
separable

Not all states are separable

Basis in HA {|iA〉}
Basis in HB {|jB〉}

}
=⇒ Basis in H {|iA〉 ⊗ |jB〉}

Generic state in H

|ψ〉 =
∑
ij

aij |iA〉 ⊗ |jB〉

Non separable states are called entangled
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Observers and measures

In subsystems A and B we have two observers

(resp. ALICE and BOB ) each capable of doing
measures on his/her subsystem only

Consider state |χ〉 = 1√
2
(| ↑↓〉 − | ↓↑〉)

If Alice
measures

then |χ〉
collapses to

and Bob measures

| ↑〉 | ↑↓〉 | ↓〉
| ↓〉 | ↓↑〉 | ↑〉

Bob measure is affected by Alice’s one
NON LOCALITY intrinsic in Quantum Mechanics?
EPR paradox (Einstein, Podolsky, Rosen 1935) (solved by
no-communication theorem)
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Ensembles: pure vs. mixed states

System with multiple subsystems (e.g. multiparticle states, or
spin chains)

H = H1 ⊗H2 ⊗ ...⊗HN

For example, in XXX, XXZ, XYZ chains each Hi = C2

State |ψ〉 = |α〉 ⊗ |α〉 ⊗ ...⊗ |α〉 with all α equal is a pure
ensemble

State with more pure “1 particle” states |α1〉, ..., |αn〉 is said a
mixed ensemble. Each |αk〉 appears with a percentage
frequence ωk in the ensemble (

∑
k ωk = 1)

States |αk〉 need not be orthogonal and may exceed dimH in
number
A state is pure iff all ωk = 0 but one, which is equal to 1
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Density matrix

An observable A has expectation value

〈A〉 =
∑

i

ωk〈αk |A|αk〉

the average is taken over both statistical and quantum
fluctuations

Define density matrix (Von Neumann 1927)

ρ =
∑
k

ωk |αk〉〈αk |

then 〈A〉 is expressed by

〈A〉 = Tr(ρA)

Von Neumann entropy

S = −Tr(ρ log ρ)
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Density matrix and entanglement

A (pure) state in a quantum system is described by a ray
(vector of norm 1) in its Hilbert space H.

However, if H = HA ⊗HB is composed of two subsystems, an
observer (e.g. Alice) that sees only one of the subsystems (A)
may have an uncomplete description of the state

Alice defines a reduced density matrix of system A by tracing
over the unobserved part B of the system: ρA = TrBρ

Pure state in H: |ψ〉 =
∑

ij aij |iA〉 ⊗ |jB〉 has density matrix

ρ = |ψ〉〈ψ| =
∑
ij

|aij |2|iA〉〈iA| ⊗ |jB〉〈jB |

Alice takes the trace over B and sees the state as mixed

ρA =
∑
k

pk |iA〉〈iA|
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Entanglement entropy

Alice sees only subsystem A, her definiton of the von Neumann
entropy tracing out part B gives the entanglement entropy
(EE)

SA = −TrAρA log ρA

If |ψ〉 is the vacuum, EE is equal in both subsystems: SA = SB

For a separable state SA = 0

SA is maximal for a maximally entangled state: it is a measure
of entanglement
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Lattice models

Consider a square lattice with IRF. To each site i assign a spin
σi and to each plaquette delimited by sites i , j , k , l Boltzmann
weights

w(σi , σj , σk , σl ) = exp{−ε(σi , σj , σk , σl )/kT}

Total energy of the system

E =
∑
�

ε(σi , σj , σk , σl )

the sum is over all plaquettes (faces) of the lattice and i , j , k , l
are the surrounding sites. The partition function is

Z =
∑
conf

∏
�

w(σi , σj , σk , σl )
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Corner transfer matrix

Consider the following quadrant of the whole lattice

σ

σ
σ1

A

Define the element of the Corner Transfer Matrix (CTM) as

Aσ̄σ̄′ =


∑
•

∏
�

w(σi , σj , σk , σl ) if σ1 = σ′1

= 0 if σ1 6= σ′1

where σ̄ = (σ1, ..., σm); σ̄′ = (σ′1, ..., σ
′
m)
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Partition function and CTM

Define Bσ̄σ̄′ in the same way as Aσ̄σ̄′ only with the last figure
rotated anticlockwise by 90°. Similarly define Cσ̄σ̄′ and Dσ̄σ̄′

by rotating by 180° and 270°.

Now we can build up the whole lattice by using the 4 CTM’s

Partition function

Z =
∑

σ̄,σ̄′,σ̄′′,σ̄′′′

Aσ̄σ̄′Bσ̄′σ̄′′Cσ̄′′σ̄′′′Dσ̄′′′σ̄ = Tr(ABCD)
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Density matrix and corner transfer matrix I

Quantum spin chain with L sites, Hamiltonian H and ground
state |0〉. Vacuum wave function 〈σ̄|0〉 = ψ0(σ̄). Density
matrix ρ = |0〉|〈0|.
Matrix element (assume ψ0 real)

ρ(σ̄, σ̄′) = 〈σ̄|0〉〈0|σ̄′〉 = ψ0(σ̄) ψ0(σ̄
′)

Suppose there is a relation between this quantum chain of
hamiltionian H and a classical spin lattice model of row to row
transfer matrix T in the sense that [H,T ] = 0

Then the ground state of H is the eignestate with highest
eigenvalue of T .
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Density matrix and CTM

Consider a vector |ψ〉 ∈ H Hilbert space of H (or of T )

|ψ〉 = |0〉+
∑
k 6=0

ck |k〉

where |k〉 are the excited states of H with T eignevalues λk .

Apply N times the operator T to such vector

TN |ψ〉 = λN
0

(
|0〉+

∑
k

(
λk

λ0

)N

ck |k〉

)

In the limit N →∞

TN |ψ〉 ∼ λN
0 |0〉 or 〈σ̄|0〉 ∼ λ〈σ̄|TN |ψ〉

i.e. ψ0(σ̄) is the partition function evolving the model from an
initial |σ̄〉 to a final |0〉and ρ(σ̄, σ̄′) is a product of two
semi-infinite partition functions evolving the system from σ̄ to
+∞ and from σ̄′ to −∞.

F. Ravanini EE in XYZ



Density matrix and CTM

Consider a vector |ψ〉 ∈ H Hilbert space of H (or of T )

|ψ〉 = |0〉+
∑
k 6=0

ck |k〉

where |k〉 are the excited states of H with T eignevalues λk .

Apply N times the operator T to such vector

TN |ψ〉 = λN
0

(
|0〉+

∑
k

(
λk

λ0

)N

ck |k〉

)

In the limit N →∞

TN |ψ〉 ∼ λN
0 |0〉 or 〈σ̄|0〉 ∼ λ〈σ̄|TN |ψ〉

i.e. ψ0(σ̄) is the partition function evolving the model from an
initial |σ̄〉 to a final |0〉and ρ(σ̄, σ̄′) is a product of two
semi-infinite partition functions evolving the system from σ̄ to
+∞ and from σ̄′ to −∞.

F. Ravanini EE in XYZ



Density matrix and CTM

Consider a vector |ψ〉 ∈ H Hilbert space of H (or of T )

|ψ〉 = |0〉+
∑
k 6=0

ck |k〉

where |k〉 are the excited states of H with T eignevalues λk .

Apply N times the operator T to such vector

TN |ψ〉 = λN
0

(
|0〉+

∑
k

(
λk

λ0

)N

ck |k〉

)

In the limit N →∞

TN |ψ〉 ∼ λN
0 |0〉 or 〈σ̄|0〉 ∼ λ〈σ̄|TN |ψ〉

i.e. ψ0(σ̄) is the partition function evolving the model from an
initial |σ̄〉 to a final |0〉and ρ(σ̄, σ̄′) is a product of two
semi-infinite partition functions evolving the system from σ̄ to
+∞ and from σ̄′ to −∞.

F. Ravanini EE in XYZ



Reduced density matrix and CTM

Now suppose to divide the spins in two subsystems A:
σ̄A = (σ1, ..., σp) and B: σ̄B = (σp+1, ..., σL), i.e.
σ̄ = (σ̄A, σ̄B)

Reduced density matrix of subsystem A (entanglement density
matrix)

ρA(σ̄A, σ̄
′
A) =

∑
σ̄B

ψ0(σ̄A, σ̄B) ψ0(σ̄
′
A, σ̄B)
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Reduced density matrix and EE

The unnormalized reduced density matrix is

ρ̂A = (ABCD)σ̄,σ̄′

Normalization by dividing by the trace

ρA =
ρ̂A

Trρ̂A

Entanglement entropy

SA = −TrρA log ρA = −Tr
ρ̂A log ρ̂A

Trρ̂A
+ Trρ̂A
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XYZ model

Hamiltonian

HXYZ = −
∑
k

(Jxσ
x
kσ

x
k+1 + Jyσ

y
kσ

y
k+1 + Jzσ

z
kσ

z
k+1)

= −J
∑
k

(σx
kσ

x
k+1 + Γσy

kσ
y
k+1 + ∆σz

kσ
z
k+1)

for Jx = Jy = Jz (or Γ = ∆ = 1) it gives XXX chain
for Jx = Jy = 0 gives Ising quantum chain
for Jx = Jy (or Γ = 1) gives XXZ chain

it can also be seen as a particulary interesting lattice
regularization of the sine-Gordon model
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8-vertex model

XYZ is the hamiltonian limit of 8-vertex model, with partition
function

Z =
∑ 8∏

i=1

wni
i

where the 8 Boltzmann weights wi = e−βεi appear ni times
each on the lattice.

w1 = w2 = a, w3 = w4 = b, w5 = w6 = c , w7 = w8 = d

F. Ravanini EE in XYZ



Transfer matrix of 8-vertex

Square lattice with M rows and N columns with periodic b.c.
The vertical 8-vertex variables ti =↑, ↓ and the horizontal ones
sj =→,← live on the links.

Denote a row of arrows φr = (t1, t2, ..., tN) (r = 1...M).
Row-to-row transfer matrix

T (φ, φ′) =
N∏

n=1

w

 t ′n
sn sn+1

tn


can be diagonalized by Bethe ansatz (Baxter)

The partition function is

Z =
M∏

r=1

T (φr , φr+1)

This can be generalized to nontrivial b.c. by the introduction
of suitable double row tranfer matrix
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CTM of 8-vertex

CTM is defined with a slight modification w.r.t. the IRF
models. There is no common spin on the two edges

As̄,s̄′ =
∑
•

∏
wi

and analogously B,C ,D with 90° rotations. One can prove
that A = C and B = D.

F. Ravanini EE in XYZ



Elliptic parametrization

A convenient parametrization of the Boltzmann weights

a = ρ snh(λ− u)

b = ρ snhu
c = ρ snhλ
d = ρ k snhλ snhu snh(λ− u)

In this parametrization (snhx = −isnix , etc...)

Γ =
1− k2snh2λ

1 + k2snh2λ
, ∆ = − cnhλ dnhλ

1 + k2snh2λ

Phases:
ferroelettric order for a > b + c + d , ∆ > 1
ferroelettric order for b > a + c + d , ∆ > 1
disorder for a, b, c , d < 1

2 (a + b + c + d), −1 < ∆ < 1
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Diagonalization of CTM

In the thermodynamic limit Baxter (1977) proved the following
formula for the diagonalized CTM

Ad (u) = Cd (u) =

(
1 0
0 s

)
⊗
(

1 0
0 s2

)
⊗
(

1 0
0 s3

)
⊗ ...

Bd (u) = Dd (u) =

(
1 0
0 t

)
⊗
(

1 0
0 t2

)
⊗
(

1 0
0 t3

)
⊗ ...

where

s = exp
(
− πu
2I (k)

)
, t = exp

(
−π(λ− u)

2I (k)

)
and I (k) is the elliptic integral of I kind of modulus k
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Reduced density matrix

Define x = (st)2 = exp
(
− πλ

I (k)

)
and use the CTM density

matrix formula

ρA = ABCD = (AB)2 =

(
1 0
0 x

)
⊗
(

1 0
0 x2

)
⊗
(

1 0
0 x3

)
⊗...

ρ = eεO where O is a operator with integer spectrum

O =

(
0 0
0 1

)
⊗
(

0 0
0 2

)
⊗
(

0 0
0 3

)
⊗ ...

ε = − πλ
I (k) depends on the XYZ parameters through elliptic

functions
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Entanglement entropy of XYZ model

The trace of the reduced density matrix

Z = TrρA =
∞∏
j=1

(1 + x j) and SA = −ε logZ
∂ε

+ logZ

leads to the final formula

SA = ε

∞∑
j=1

j
(1 + e jε)

+
∞∑
j=1

log(1 + e−jε)

Notice that for ε→ 0 this can be approximated by a
dilogarithmic integral

SA =

ˆ ∞

0
dx
(

xε
1 + exε

+ log(1 + e−xε)

)
=
π2

6
1
ε
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Approaching phase transition

In the limit Γ→ 1 and ∆→ −1− it turns out that ε→ 0 and

λ ≈ 2
√
2I (k)

π

√
−1−∆

the correlation lenght ξ →∞ approaching c = 1 CFT in the
XXZ massless regime ε ∼ log(a/ξ)

SA =
1
6
log

ξ

a

A more lengthy calculation can lead also to the Ising limit of
XYZ where

SA =
1
12

log
ξ

a

In both cases the Calabese - Cardy (2004) formula holds

SA =
c
6
log

ξ

a
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Summary

The entanglement entropy for the XYZ spin chain (and
consequently XXZ, XXX, Ising...) has been derived from the
corner transfer matrix
The result agrees with c = 1 and c = 1/2 CFT calculations of
Calabrese-Cardy where applicable

Way open to other possible integrable lattice models?
Finite size effects? Finite temperature? Tests of off-critical
corrections?

and applications...

to condensed matter
to information theory and quantum computing
to quantum field theory
and maybe to the poor Alice...
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Alice falls into the rabbit hole

... falling into a BLACK HOLE ...
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