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What’s going on?

Two major goals

» establishing experimentally the existence in nature of the
existence of non-abelian anyons’ in topological phases of
matter and the associated phenomenon of non-abelian
statistics’

- using the above to develop what is called a "topological
guantum computer’, where information is stored in qguantum
knots and a topological shield’ protects against decoherence

S. das Sarma, M. Freedman, C. Nayak, S.H. Simon and A.
Stern, arXiv.0707.1889, to appear in Rev.Mod.Phys.
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Computer




Quantum computation

Quantum
Computer

qubit:

quantum system
with two states
10> and |11>

Quantum logic gates OUTPUT

quantum logical gate:
operation on 1 or 2 qubits

quantum register:
collection of qubits




Quantum computation

Quantum software

For certain computations quantum algorithms can
outperform classical algorithms by a landslide

* prime example is Peter Shor’s algorithm for
factorisation into prime factors (exit RSA)

* possible major application: computations in
guantum many-body physics [quantum chemistry,
guantum engineering, materials ...]



Quantum computer hardware

Local qubits

Information stored in local quantum degree of freedom,
such as spin, (charge,) flux, etc.

Challenge to protect such qubits from decoherence due
to noise and coupling to environment.



Quantum computer hardware

Topological qubits

* Information stored non-locally
iIn many body states of a suitable
quantum matter system

* qubit states realized as a quantum knots

» topological order provides shield
that protects against decoherence

v

fault-tolerant quantum register



Quantum knots and quantum information

Quantum knots

* Idea: find suitable quantum system such that

wavefunctions form "quantum representation’ of
classical knots

- this will imply topological protection against
decoherence



Quantum knots and quantum information

quantum knots

» quantum knots and braids realized by braiding

word-lines in 2+1 dimensional space-time of particles
existing in 2 spatial dimensions
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Quantum knots and quantum information

precise statement

- time-evolution of many-particle wavefunction given

by representation of braid-group for particles in two
spatial dimensions
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Quantum braids (1)

figures
N. Bonesteel

quantum register

if the particles are such that the wave functions

;)

and ‘¢f> are multi-component, the many-body state
can be used as a quantum register



Quantum braids (2)

quantum logical gates

if |,) and |wf> are multi-component, the braiding is
represented by an M x M matrix; successive braidings do not
commute (non-abelian braiding)




Quantum braids (3)

topological stability

perturbations of the particles (other than braiding) do not
affect the final state |1/Jf>



Quantum braids (3)

topological stability

perturbations of the particles (other than braiding) do not
affect the final state |1/Jf>



Anyons for quantum computation

to obtain a non-trivial quantum
register, quasi-particles in 2D
guantum matter system should
be such that the many-particle
wave functions are multi-cpt

—P need non-abelian anyons




Anyons for quantum computation

to obtain a non-trivial quantum

register, quasi-particles in 2D U ||

quantum matter system should \ q,r_(f o J‘P
be such that the many-particle
wave functions are multi-cpt P AE I _—

—P need non-abelian anyons

compare:
* bosons, fermions: single-cpt, braiding gives +/- signs

- (abelian) anyons: single-cpt, braiding gives complex phases



Anyons for quantum computation

analogy spin qubit vs. topological qubit

for spin qubit: need particles such

that spatial rotations are represented
by matrices acting on multi-component
wavefunctions, that end up acting as
guantum register

QM allows representations of dimension

Dn = (2S5 +1)" ( n particles of spin S)



Anyons for quantum computation

analogy spin qubit vs. topological qubit

for topological qubit: need particles -
such that braids on n particles are (

represented by matrices acting on \

multi-component wavefunctions of
dimension D, , that end up acting as

quantum register P o o e

QM allows ....



Anyons for quantum computation

analogy spin qubit vs. topological qubit

for topological qubit: need particles -
such that braids on n particles are (

represented by matrices acting on \

multi-component wavefunctions of
dimension D, , that end up acting as

quantum register A

QM allows ....

D, = 2 (=22 (Ising anyons)



Anyons for quantum computation

analogy spin qubit vs. topological qubit

for topological qubit: need particles

such that braids on n particles are (

represented by matrices acting on \

multi-component wavefunctions of

dimension D, , that end up acting as ‘ ] ]
_____ ¥

quantum register P o o e

QM allows ....

D =Fibo, =1,1,2,3,5,.. (Fibonacci anyons)



Anyons for quantum computation

analogy spin qubit vs. topological qubit

for topological qubit: need particles -
such that braids on n particles are (

represented by matrices acting on \

multi-component wavefunctions of
dimension D, , that end up acting as

quantum register P o o e

QM allows ....

D =... (etc.)

n



Non-abelian anyons

iIssues

- what are consistent possibilities for non-abelian
anyons?

- what is the dimension of the n - particle quantum
register?

- what are the braid matrices? Are they suitable for
(universal) qguantum computation?

- where do we find them?



Non-abelian anyons

formalism 5N o
o—0
* non-abelian anyons characterized S .

by fusion and braiding relations

- degenerate ground states in 1-1 correspondence with fusion
channels

- algebraic framework (" topological modular functors’);
relations among fusion and braiding matrices (pentagon and
hexagon identities)



Non-abelian anyons

Fibonacci anyons

particles of type "0’ and "1’ with fusion rules

O0x0=0, Ox1=1, 1x1=0+1



Non-abelian anyons

Fibonacci anyons

particles of type "0’ and "1’ with fusion rules

O0x0=0, Ox1=1, 1x1=0+1

For collection of type "1’ particles, ground state
degeneracies follow the Fibonacci numbers




Non-abelian anyons

n = 4 Fibonacci particles of type 1’

1
1 \ 0 or 1 / ‘T,U()> or ‘?/J1>

- 2 fusion channels
- quantum register 2-dimensional (qubit!)

* braiding represented as 2 x 2 matrices



Non-abelian anyons

braiding n =4 Fibonacci particles




Non-abelian anyons

quantum gates with Fibonacci anyons

with well-chosen iterations of o, and O, logical gates can
be approximated to any desired precision!



Non-abelian anyons

quantum gates with Fibonacci anyons

with well-chosen iterations of o, and O, logical gates can
be approximated to any desired precision!
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figure: NOT gate with accuracy better than 10-3

Bonesteel et al, 2005



Non-abelian anyons

where do we find them?



Non-abelian anyons

where do we find them?

key feature of gantum matter systems supporting
(non-abelian) anyons: topological order

* gapped spectrum

- ground state degeneracy I
on torus or punctured plane .~ O\

» ground states are locally
indistinguishable

- excitations carrying fractional charges



Non-abelian anyons

topological phases



Non-abelian anyons

topological phases

- prototype: the fractional quantum Hall liquids



Non-abelian anyons

topological phases
- prototype: the fractional quantum Hall liquids

- other: specific lattice models [Kitaev]
Josephson junction networks [Doucot et al]



Quantum Hall systems

electrons in

- flatland

- strong B-field

- low temperature

\

R, (h/e?)

Magnetic field (T)

fractional quantum Hall

liquids



Quantum Hall systems

Fractional quantum Hall liquids are known to possess
topological order; can they be used for topological quantum
computation?



Quantum Hall systems

Fractional quantum Hall liquids are known to possess
topological order; can they be used for topological quantum
computation?

Issues

- do they support anyonic excitations?

» can these be non-abelian?

» can the excitations be of Fibonacci type ?

- can the necessary fusion and braid operations be
implemented?



Quantum Hall systems

do fractional gH states support anyonic excitations?



Quantum Hall systems

do fractional gH states support anyonic excitations?

- for some simple fractional gH states, fractional charge q=1/3,
g=1/5 of fundamental excitations has been demonstrated
experimentally

* indirect demonstration of fractional statistics (via hierarchy
scheme)

* recent results on interference experiments
Camino et al, 2006



Quantum Hall systems

can qH excitations exhibit non-abelian statistics?



Quantum Hall systems

can qH excitations exhibit non-abelian statistics?

- strong evidence that the 0sor " 2
2+1/2 fractional gH plateau [ n=3x10"em®
. "o 0451 p=31x10 cm'/Vs
IS due to so-called Moore-Read £ | 24113
. : [ 2425
(pfaffian) state [Moore-Read 1991] ol 241
2+2/3 -
. . | -+
* excitations over Moore-Read 0.35 S
. 3 %
state are non-abelian, but not '- T § g& | &
: : =] + = '
suitable for universal TQC =} s, |5 . 1
e | & & g
- experimental tests forthcoming ‘ 7 VIR
| 4.8 ; '5.6 oY

2
B (T) Xia et. al., 2004



Quantum Hall systems

can qH excitations be Fibonacci anyons?



Quantum Hall systems

can qH excitations be Fibonacci anyons?

- they can at the level of model

wavefunctions: the k=3 clustered T reemk )
- n=3x10"" cm”
0.45F p=31x10" em’/Vs

state [Read-Rezayi 1999] and
the k=2 non-abelian spin-singlet
(NASS) state [Ardonne-KjS 1999]

* (some) evidence that the
fractional gH plateau at 2+2/5
IS due to k=3 Read-Rezayi state

R_ (ko)

- experimental tests proposed




Quantum Hall systems

can the necessary fusion and braid operations be
implemented?



Quantum Hall systems

can the necessary fusion and braid operations be

implemented?
O OIS
o e

» proposed protocol with controled tunneling of quasi-
particles on, off and in between quantum dots in background
of suitable quantum Hall state

[das Sarma-Nayak-Freedman 2005]



Quantum Hall quantum registers

Issues and current research



Quantum Hall quantum registers

Issues and current research

- catalogue and analyze relevant qH states

[excitations, braiding, edges and interfaces, ...]
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- catalogue and analyze relevant qH states

[excitations, braiding, edges and interfaces, ...]

- investigate (and engineer) physical settings where
these qH states can be realized

[high mobility gH, multicpt. and multilayer, rotating
BEC, cold atoms in optical lattices, ...]
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- devise exp. schemes for probing nature of gH states

[tunneling characteristics, gH interferometers, ...]



Quantum Hall quantum registers

Issues and current research

- catalogue and analyze relevant qH states

[excitations, braiding, edges and interfaces, ...]

- investigate (and engineer) physical settings where
these qH states can be realized

[high mobility gH, multicpt. and multilayer, rotating
BEC, cold atoms in optical lattices, ...]

- devise exp. schemes for probing nature of gH states

[tunneling characteristics, gH interferometers, ...]

- experiments!



Quantum Hall quantum registers

For now

* brief discussion of MR and NASS states



MR state: wavefunction

W, (2).02y ) = PE( >]_[<z—z>f‘“le>qo<—ﬂ
MR \X] 995 N Z —Z 412

i<j

* quantum Hall state at filling fraction 1/(M+1)

- Pfaffian factor: p-wave pairing of composite fermions,
as in BCS superconductor

- M=1 : MR state for 5/2 gHe



MR state: pairing

1z 12
lPMR(Z1>">ZN) = lpboson(zl’“’ZN) H(Zi - Zj)M GXP(— 412 )

i<j

1
lIJboson(Zl’"’ZN)=Pf( )n(zi _Zj)
Zi B Zj i<j
Pairing property
{1 =3 IPboson = ()
{1 =43 =43 IPboson 0

M=0 MR wavefunction: maximal density E=0 eigenstate of hamiltonian

H=V E 52(21-1 —Zi2)52(zi2 _Zi3)

[ <.<j



The qH-CFT connection

Chern Simons Landau
Ginzburg theory in 2+1
dimensions:

bulk excitations,
topological order




The qH-CFT connection

Chern Simons Landau
Ginzburg theory in 2+1
dimensions:

bulk excitations,
topological order

/‘

gquantum Hall disc, CFT in D=2+0:

gH wave functions <-> CFT correlators



The qH-CFT connection

Chern Simons Landau On the cylinder:

Ginzburg theory in 2+1 quantum Hall edge
dimensions: theory, CFT in 1+1

/ dimensions:

massless edge
excitations

bulk excitations,
topological order

/‘

gquantum Hall disc, CFT in D=2+0:

gH wave functions <-> CFT correlators



gH wavefunctions from CFT

ground state wave function

lIIGS (Zl > “’ZN) = <we(zl) “'we(ZN)wbackground (Zoo)>

CFT

electron (boson) \v
condensate operator neutralizing background
charge

guasi-hole excitations : fixed by

P WY (7)) = (2 - w)i‘“egef[qbz(w) + ]
excited state wave function:

W (W,w,,.020,25,.0) = <¢qh W)@, (W5) . P (2)YP(Z5) ... >

CFT



MR state: bulk operators

P (D=1 V@) P (W) aeM (W)

TN

neutral operators from Ising (c=1/2) CFT:

vertex operators
describing charge

Y()Yy(w) =(z- w) L+ ...

Y 2ow) + ...

Y()ow) =(z-w

o()ow)=(z-w) BT+ (2= w)Pypw) + ...



MR state: 4 quasi-hole wavefunctions

O

O
fusion
channels \ fory / PO o p®
(0,1) / \

O o)

(OJ)
(W, Wy, W3, Wy325255000) =

(,1) (0,1)

({W })qjlz 34]( W )"' b ({Wi})qj[l3,24]({wi;zj})

N ]

pre-factors depending on basis for two-fold degenerate internal
fusion channel (0,7) and on register; polynomial in w;, z,
quasi-hole locations w;

Nayak and Wilczek, 1996



MR state: bulk and edge

MR state
at filling 1/2

quasi-holes
(Ising anyons)
spanning a
quantum register

“

neutral edge mode:
Majorana fermions
(c=1/2)



Non-abelian spin-singlet (NASS) states

Extend pairing analysis based on Ardonne-K|S 1999

H=YV E 52(Zi1 —Zi2)52(Zi2 _Zi3)

ll <.< l3

to spin unpolarized states for spin-1/2 particles:
NASS states at filling factor 4/3 [M=0], 4/7 [M=1], etc.

Explicit example [M=0, N=4].

Wass(@ -2 .20,23) = (2] =) - 23+ (2] - 23)(2) - 71)



NASS state: CFT and bulk operators

Underlying CFT is that of charge and spin bosons together
with SU(3), parafermions (central charge c=1+1+6/5=16/5).

Spin-up and spin-down electrons: Y1(2)> Yo (w)
Quasi-holes over the 4/7 NASS state come in 3 types
* spin O, charge 2/7: 03(2)

* spin-1/2, charge 1/7: 04(2),0(z)



NASS state: quasi-hole wavefunctions

To study braiding properties, we explicitly compute the
wavefunction for four spin-less quasiholes in the M=0 NASS
state

The gH-CFT correspondence gives

R
Wy (Wi Wy 32 520525 Zgrenn) =

(05 (W)T (W) oy (2D, (D) 4, (2, (25) oo )

CFT

ot )] TTE - ) T ) [T w,)”

L] L,J i<j



NASS state: quasi-hole wavefunctions

Going into the wavefunction for 4 spin-less quasi-holes

(03w (o) oo, (2D () -, (2, (25) )

CFT

SU(3), parafermion algebra YLD WL W) = (2= w) ' T+ ...
Yo (Y2 (W)= (2= w) [+
Vi@V (W) = (z=w) Py + e

and the spin-field OPE, with two independent fusion channels

-1/5

03(2)0s(W) = (2=w) T+ (z—=w)"” ps(w) + ...



NASS state: quasi-hole wavefunctions

Step1.

In absence of quasi-holes, we have the following expression for the
wavefunction [Cappelli et al 2001, Ardonne et al 2002]

. 221 2211

{51 52}
with particles in subsets S,, S, each forming a Halperin 221 state

T¢221 1 - !
‘P (Zl,u,ZNyzl'v"ZN'):

[T =) TI =) TTE )

i<j i<j i,J'



NASS state: quasi-hole wavefunctions

Step 2.

Basis for 4 quasi-hole state obtained by distributing the quasi-holes over
de sets S;, S, ; two independent choices for this are W, 54, and W5,

Wty 3 TIE =)t =) ()

{Sl 7S2} iaj'esl

| T el = e ) (e )

i,j'ES,

Y

[13,24] = o0



NASS state: quasi-hole wavefunctions

Step 3.

Decompose wavefunction over ‘P[12,34] and 111[13 241 and impose consistency
upon fusing some of the parafermions ¥, with the O35

This requires Operator Products Expansions (OPE), and 4-point functions in
the SU(3), WZW model [Knizhnik-Zamolodchikov, 1984]

Building blocks are hypergeometric functions

_ 1 -1 2
F1(0) — x 8/15 (1 _ x)1/15F(§’?’§’x)
1 6 4 7
Fz(O) _ 5x7/15(1 _ x)1/15 F(g’g’g’x)
FO _ x1/15(1_ x)1/15F(% i § x)
1 5 95 95 °

> 4 3 ¥ = (Wl _Wz)(w3 W4)

F2(1) _ —3x1/15(1 _ x)msF(gagagax) (W1 —w, )(w3 Wz)



NASS state: quasi-hole wavefunctions

Final result

O S A
1P3333 (Wl,wz 9W3 9W4 ,Zl ,Zz,---,zlv ,Zzu ,...) =

A(OJ) ({Wi})qj[lz,%]({wi;zi’zj' }) + B(OJ) ({Wi})qj[l?:,%]({wi;zi’Zj'})

3333 3333

Aég;_% = :W12W34:4/5x_2/15(1_ x)2/3F2(0)(x)
- 94/5 _ 2/3
By, = | WipnWs | X 2/15(1_ x) F(x) 1 F3(3)F(i)
C2 _ 5 5
@ T 14/5 8/5 -2/15 2/3 (1) 9 3(3 1
Az =|Wpws | (D77 Cx (l—x) F,"(x) r - r <
- 14/5 _ 2/3
By, =[wpws, | (DO (1-x) T FP(x)



NASS state: quasi-hole braiding

Explicit expressions for 4 quasi-hole wavefunction:

(0) B 14/5 _2/15 273 1+(0)
Azzy =|WpWa | X (1 ) F,7(x)

g Pt L
3333 (W19W2 9W3 9W4 ,Zl 9Z2, ,Zl ,Zz 90 )
(0) [ 14/5 _-2/15 2/3 1(0)
4O By =[wiws | X7 (1-x)TT FO(x)
( W.Z Z v}) _ _
3333 ({ }) 12 34] { 1219 J A:())l?))?)?) — _W12W34_4/5(—1)8/5C.x_2/15 (1 )2/3F(1)( )
( 1) ] s .
: 1) 8/5 —2/15 )
3333 ({W }) [13 24]({Wi’zi’zj'}) By =|wpws | (D77 Cx (1 ) F(x)

Example of braiding: w, <--> wj.
this swaps Wjp347and Wpiso4; ; furthermore
F°(1-x) = CoF”(x)+ CF(x), etc. T

4/5 T
Ci=(\5-1)=7, clic=—7 < Uss =(-1)

VT -7



NASS state: quasi-hole braiding

Full set of braiding relations on the 4 quasi-hole wavefunctions at M=0

et T ) i

3 8/15 T (—1)_3/5\/;
U = (—1) ((_1)3/5\/; (_1)—1/51_ )

This shows that the NASS quasi-holes are Fibonacci anyons indeed!

Ardonne-KjS, 2007



NASS states: bulk and edge

NASS state
at filling 4/7

quasi-holes
(Fibonacci anyons)
spanning a /

quantum register l/}1 ’ UJZ
neutral edge
modes: SU(3),
parafermions



Fibonacci meets Ising: NASS / MR

NASS state
at filling 4/7

MR state
at filling 1/2

Grosfeld - S, 2008



Fibonacci meets Ising: NASS / MR

NASS state
at filling 4/7

parafermion
modes, c=6/5

Majorana
fermion
c=1/2

MR state
at filling 1/2

Grosfeld - S, 2008




Fibonacci meets Ising: NASS / MR

NASS state
at filling 4/7
parafermion
modes, c=6/5
Mechanism:

due to inter-edge interactions,
a factor [(c=1/2) | x (c=1/2)g]
develops a mass gap, leaving
a net [(c=7/10)g]

Majorana
fermion
c=1/2

MR state
at filling 1/2

Grosfeld - S, 2008




Fibonacci meets Ising: NASS / MR

NASS state
at filling 4/7

MR state
at filling 1/2

minimal model
modes, c=7/10

1/’1#’2\

neutral edge neutral edge mode:

modes: SU(3), Majorana fermions
parafermions (c=1/2)

/



