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Typical shock (or bore) in fluid mechanics:
- eg flow flips from supersonic to subsonic,
- eg abrupt change of depth in a channel.

¢ Velocity field changes rapidly over a small distance,
Model by a discontinuity in v(x, f),

Nevertheless, there are conserved quantities - mass,
momentum, for example.

Are shocks allowed in integrable QFT?
If yes, what are their properties?
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Consider the x-axis with a shock located at xg

u(x,t) Xo v(x,t)
How to sew the two fields together at xp?
Expect, in a Lagrangian description,
L(u,v)=0(xo— X)L(u) + 6(x — x0)L(V) + 6(x — x0)B(u, v),

where B(u, v) could depend on u, v, u;, v, . . ..
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Example: u, v are free Klein-Gordon fields with mass m

(ux + ¥)

B(u,v) = —%uv+ 5

(u—v)
leading to

(P+mPu = 0 x<0

@P+mP)y = 0 x>0
u = v X=X
Vx — Uy = AU X=X

This is a basic d-impurity.

e Typically, a 5-impurity has reflection and transmission;

e For interacting fields, a é-impurity is not, generally,
integrable (eg Goodman, Holmes and Weinstein, Physica
D161 2002)
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domains:

o’u = —%, X <0
ou

2y = -V xoo
ov

e How can the fields be ‘sewn’ together in a manner preserving
integrability?

e First, consider a simple argument and return to the general
question afterwards



e Potential problem: there is a distinguished point, translation
symmetry is lost and the conservation laws - at least some of
them - (for example, momentum), are violated unless the
impurity has the property of adding by compensating terms.



e Potential problem: there is a distinguished point, translation
symmetry is lost and the conservation laws - at least some of
them - (for example, momentum), are violated unless the
impurity has the property of adding by compensating terms.

Consider the field contributions to momentum:

0 0
p:—/ mww—/ ax ViVy.

Then, using the field equations, 2P is given by



e Potential problem: there is a distinguished point, translation
symmetry is lost and the conservation laws - at least some of
them - (for example, momentum), are violated unless the
impurity has the property of adding by compensating terms.

Consider the field contributions to momentum:

0 0
p:—/ mww—/ ax ViVy.

Then, using the field equations, 2P is given by
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If there are ‘sewing’ conditions for which the last step is valid
then P + Ps will be conserved, with Ps a function of u, v, and
possibly derivatives, evaluated at x = 0.

(Note: this does not happen for a §-impurity.)
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Next, consider the energy density and calculate
(Cj = [UXUt]o — [Vth]O-

Setting ux = vi + X(u, v), vx = ut+ Y(u, v) we find

E=uX—-wY.

This is a total time derivative provided for some S

0S 0S

X=-22y=22
ou’ ov

Then
as

E)
and £ + S is conserved, with S a function of the fields
evaluated at the shock.

é——
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This is a total time derivative provided the first piece is a perfect
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.... and

#RS 9SS 1 [/0S\* 1 /8S\?
— = =|=] —-=|= )] = — V(v).
v our’ 2 <8u> 2 <8v> ulw) (v)
e By setting S = f(u + v) + g(u — v) and differentiating the left
hand side of the functional equation with respect to u and v one
finds:
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) = U(u) — V(v).

e By setting S = f(u+ v) + g(u — v) and differentiating the left
hand side of the functional equation with respect to u and v one
finds:

”/f/,

fl//g/ — g
If neither of f or g is constant we also have

m_g"_ e
f/ g/ ’

where « is constant (possibly zero). Thus....
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uvy — ugv

L = 9(—x)£(u)+5(x)< 5

S(u, v)) +6(x)L(v)

The usual E-L equations provide both the field equations for
u, v in their respective domains and the 'sewing’ conditions.

o Note:

In the free case, with a wave incident from the left half-line
U= (eikx I Re—ikx) e Wty — TekXg—iwt 2 _ p2 4 2

we find:

(iw — msinhn) _
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sine-Gordon

Choosing u, v to be sine-Gordon fields (and scaling the
coupling and mass parameters to unity), we take:

S(u,v) =2 <acosu+v+a_1 cosU; V)

to find
X<Xy: 0°u = —sinu,
X>xy: 0°v = —sinv,
_ UV . Uu-—
X=X U = vi—osin——/——o 'sin——,
u+v 4 u—
X=Xp: Vx = U+ o8SsIn 5 — o Ssin 5

The last two expressions are a Backlund transformation frozen
at x = xp.
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e What happens to a soliton when it encounters a shock of this
kind?
Consider a soliton incident from x < 0 (any point will do), then it

will not be possible to satisfy the sewing conditions (in general)
unless a similar soliton emerges into the region x > 0.

; 14+IE 14+ izE

iuj2 _ v/2 _ _ paxtbt+c
© 1—E’ 1 E7° ’
a=cosh#, b= —sinhd.

Here z is to be determined. As previously, set o = e~ ".
e We find p
/’7 J—
=coth [ —— |.
z = cot ( 5 )

This result has some intriguing consequences....
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Suppose 0 > 0.
e ) < 0 implies z < 0; ie the soliton emerges as an anti-soliton.

-The final state will contain a discontinuity of magnitude 4 at
x =0.

e n = 0 implies z = 0 and there is no emerging soliton.

- The energy-momentum of the soliton is captured by the
‘defect’.

- The eventual configuration will have a discontinuity of
magnitude 27 at x = 0.

e 1 > # implies z > 0; ie the soliton retains its character.

Thus, the ‘defect’ or ‘shock’ can be seen as a new feature
within the sine-Gordon model.
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Comments and questions....

e The shock is local so there could be several shocks located at
X=X < Xo < X3 <---< Xp; these behave independently each
contributing a factor z; for a total ‘delay’ of z = z1z> . . . zj.

e When several solitons pass a defect each component is
affected separately

- This means that at most one of them can be filtered out’
(since the components of a multisoliton in the sine-Gordon
model must have different rapidities).

e Can solitons be controlled? (Eg see EC, Zambon, 2004.)

e Since a soliton can be absorbed, can a starting configuration
with u = 0, v = 27 decay into a soliton?

- No, there is no way to tell the time at which the decay would
occur (and presumably quantum mechanics would be needed
to provide the probability of decay as a function of time).
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49 = g(a-x)a



e Checking integrability
Adapt an idea from Bowcock, EC, Dorey, Rietdijk, 1995.
Two regions overlapping the shock location: x > a, x < b with

a<xp<b.

b

a

In each region, write down a Lax pair representation:

£
£
&P

&

~ fa-x)a®

= 4P - %G(b — X)

— 9(x—b)ay

a? — ;Q(X - a) (ux —Vi+ 68)

ou

oS
Vx — U — -



]

Al = w2+ e (A AT ).

i

ag = —aq are the two roots of the extended su(2) (ie aﬁ”)
algebra, and H, E,, are the usual generators of su(2).

There are similar expressions for agb), af(b).

Then

atag(a) - 3xa§a) + [af,a),aff)} =0 & sine Gordon
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The zero curvature condition for the components of the Lax
pairs &, ay in the two regions imply:

e The field equations for u,vin x < aand x > b,
respectively,

e The shock conditions at a, b,
e For a < x < bthe fields are constant,

e For a < x < bthere should be a ‘gauge transformation’ «
so that

Otk = magb) — aga)/ﬁ

This setup requires the previous expression for S(u, v) when
k= e VHI2 5 uH/2 and i = |y |H + % (Eny + Ea,) .

That is

1 1
S(u,v)=o Z guilutv)/2 | 1 Z ei(u=)/2_
0 0
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e Description of a shock defect in sine-Gordon quantum field
theory.

Assume o > 0 then...

e Expect Pure transmission compatible with the bulk
S-matrix;

e Expect Two different ‘transmission’ matrices (since the
topological charge on a defect can only change by +2 as a
soliton/anti-soliton passes).

e Expect Transmission matrix with even shock labels ought
to be unitary, the transmission matrix with odd labels might
not be;

e Expect Since time reversal is no longer a symmetry, expect
left to right and right to left transmission to be different
(though related).
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Schematic triangle relation

Il
~~

S(O) TH2(02) TS (06) = Tor (05) T3 (02)SEH(O)

With © = 6, — 0, and sums over the ‘internal’ indices £, c, d.
o Satisfied separately by €¢"T and °%T.

e The solution was found by Konik and LeClair, 1999.



Zamolodchikov’s sine-Gordon S-matrix - reminder

A0 0O
cd . 0 C B O
$2©)=r©| o 5 ¢ o
0 0 0 A
where
gxa X X1 X2 1
A _7_7789 = — - —, ®)=qg-— —
(@)= "7 o BO =10~ C@) =4
and
rM+2r(1—~v—2) X '
p(©) = ( )2(7”. 7 )HRK(@)RK(ITF—@)
1
Fr2ky +2)r(1 +2ky+z
Ri(©) = (2ky + 2)I( v +2)

W@k+ﬂv+ﬂﬂ1+@k+ny+4’Z:W“*



The Zamolodchikov S-matrix depends on the rapidity variables
# and the bulk coupling ;5 via

87
2

and it is also useful to define the variable
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The Zamolodchikov S-matrix depends on the rapidity variables
# and the bulk coupling ;5 via

X:erye7 q:eiﬂ"y) ’y:gg_1)
and it is also useful to define the variable
Q= 42/ 32 — \/jq
e K-L solutions have the form
o 58 —1/2 4y(60—n) §8—2
b3/ Q% 6, q e oh
Tao (0) = f(q, ) ( q-1/2 e1(0-n) 5g+2 Qo 55 )

where f(g, x) is not uniquely determined but, for a unitary
transmission matrix should satisfy....



....namely

f(g.x) = f(q.qx)
fg. 0.0 = (1+e0)"



....namely

a.x) = Ka.q%)
-1
f(q7 X)f(q, qx) = (1 + 627(0—17)>
A slightly alternative discussion of these points is given in

Bowcock, EC, Zambon, 1995, where most of the properties
noted below are also described.



....namely

fa,x) = f(q.qx)
Mg 0fg.qx) = (1+e0)"

A slightly alternative discussion of these points is given in
Bowcock, EC, Zambon, 1995, where most of the properties
noted below are also described.

e A ‘minimal’ solution has the following form

em(1+)/4 r(x)

Ha.x) = 1+ iev(0-n) F(x)’

where it is convenient to put z = jy(6 — n)/27 and

5 [(ky+1/4 - 2)[((k+1)y +3/4 - 2)
r(x) = ;Ho M((k+1/2)y +1/4 = 2)[((k +1/2)y +3/4 - 2)
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o 58 —1/2 4y(6—n) §8—2
b3, Q“ 5, q'/ce O
Taa (0) = 1(q, x) ( q-1/2 1(6-n) §0+2 Q- s’ )

Remarks (6 > 0): it is tempting to suppose 7 (possibly
renormalized) is the same parameter as in the classical model.

e 1 < 0 - the off-diagonal entries dominate;
e § > n > 0 - the off-diagonal entries dominate;
e 1 > 0 > 0 - the diagonal entries dominate;

e These are the same features we saw in the classical
soliton-shock scattering.
e = n is not special but there is a simple pole nearby at

O=n— =, B0
2y
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e This pole is like a resonance, with complex energy,
E = mscosh 8 = ms(coshncos(w/2v) — isinhnsin(r/27))
and a ‘width’ proportional to sin(xr/2).

Using this pole and a bootstrap to define °%? T leads to a
non-unitary transmission matrix - interpret as the instability
corresponding to the classical feature noted at § = 7.

e The Zamolodchikov S-matrix has ‘breather’ poles
corresponding to soliton-anti-soliton bound states at

©=ir(1—n/v), n=1,2,..., Nnax;

use the bootstrap to define the transmission factors for
breathers and find for the lightest breather:

sinh (O—Tu')

)

sinh (%52 —
T(0) = —i (

e
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....This is simple and coincides with the expression we
calculated previously in the linearised model.

e This is also amenable to perturbative calculation and it works
out (with a renormalised 7) - See Bajnok and Simon, 2007.

e The diagonal terms in the soliton transmission matrix are
strange because they treat solitons (a factor Q%) and
anti-solitons (a factor Q—¢) differently

- this feature is directly attributable to the Lagrangian term

d(x)(uvt — vuy)
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Consider the x-axis with a shock located at xy and asymptotic
values of the fields

u=2ar/p Xo v =2br/3
Compare (0,0) and (&, b) in functional integral representations:
u—u-—2ar/f, v—-v-—2br/3, A— A+ A

with -
A= / dt(av: — buy) = % (@v — biu)y

Soliton: (a,b) — (a—1,b—1),s00u=d6v=-2r/p
Anti-soliton: (a,b) — (a+ 1,b+1),s0 du=o6v =27/



....leads to relative changes of phase

gt2in?(a-b)/?

or



....leads to relative changes of phase
gt2im?(a—b)/3

or
Q:I:a/2.



....leads to relative changes of phase

gt2in?(a-b)/?

or
Q:I:a/2.

Note: the labelling of states by the integers representing the
‘vacuum’ states at x = +oo leads to a slightly different
representation of the transmission matrix than that shown
before. However they are related by a change of basis
Bowcock, EC, Zambon, 2005.



Further questions....

e Moving shocks can be constructed in sine-Gordon theory but
their quantum scattering is not yet completely analysed, though
there is a candidate S-matrix compatible with the soliton
transmission matrix. (see Bowcock, EC, Zambon, 2005)

Other field theories - shocks can be constructed within the
ap) affine Toda field theories (Bowcock, EC, Zambon, 2004)
and there are several types of transmission matrices, though
only partially analysed (EC, Zambon, 2007).
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Further questions....

e Moving shocks can be constructed in sine-Gordon theory but
their quantum scattering is not yet completely analysed, though
there is a candidate S-matrix compatible with the soliton
transmission matrix. (see Bowcock, EC, Zambon, 2005)

e Other field theories - shocks can be constructed within the
ap) affine Toda field theories (Bowcock, EC, Zambon, 2004)
and there are several types of transmission matrices, though
only partially analysed (EC, Zambon, 2007).

- NLS, KdV, mKdV (EC, Zambon, 2006; Caudrelier 2006)
- Fermions and SUSY field theories (Gomes, Ymai, Zimerman)

e Backlund transformations are mysterious but appear to be
essential for these types of integrable defect.

- can they be realised in any physical system?
- might they be technologically useful? To control solitons?



