# Electrons in quantum dots – one by one



•Single electron interference

Single photon detection

T. Ihn

A. C. Gossard UCSB W. Wegscheider, Regensburg







# InAs nanowire dot with charge detector in a 2DEG



I. Shorubalko, R. Leturcq, A. Pfund



Nanoletters 8, 382 (2008)

# **Time**-resolved detection of single electron transport



Schleser et al., APL 85, 2005 (2004) Vandersypen et al., APL 85, 4394 (2004)



# Determination of the individual tunneling rates

• Exponential distribution of waiting times for independent events







- Count number n of electrons entering the dot within a time t<sub>0</sub>: I = e<n>/t<sub>0</sub>
- Max. current = few fA (bandwidth = 30 kHz)
- BUT no absolute limitation for low current and noise measurements

- here:  $I \approx$  few aA,  $S_1 \approx 10^{-35}$  A<sup>2</sup>/Hz

# Histogram of current fluctuations



# Histogram of current fluctuations





asymmetric coupling

symmetric coupling

Theory: Hershfield *et al.,* PRB **47,** 1967 (1993) Bagrets & Nazarov, PRB **67,** 085316 (2003) Expt: Gustavsson et al., PRL **96**, 076605 (2006)

# Histogram of current fluctuations





# Current fluctuations vs. asymmetry

Reduction of the second and third moments for symmetric coupling



Theory: Hershfield *et al.,* PRB **47,** 1967 (1993) Bagrets & Nazarov, PRB **67,** 085316 (2003)



# Double quantum dot in a ring



see also: electron counting in double dots: Fujisawa et al., Science 312, 1634 (2006)



# Double slit experiment <-> Aharonov Bohm



Amer. J. of Physics 57 117 (1989)

### Aharonov-Bohm oscillations



huge visibility! >90%, stable in temperature up to 400 mK little decoherence - > cotunneling is much faster than decoherence time

Gustavsson et al., Nanoletters 8, 2547 (2008)

### What about back action?



### Resonances in double dot



### Different biases across the QPC



# The triangles grow with increasing bias



# Microwave emission of a QPC

- Voltage biased tunnel junction
- Emission spectrum
  - Linear increase with bias
  - Cut-off at f=eV<sub>bias</sub>/h



$$S_{I}(\omega) = \frac{4e^{2}}{h}T(1-T)\frac{eV-\hbar\omega}{1-e^{-(eV-\hbar\omega)/k_{B}T}}$$

spectral noise density for the emission side ( $\omega > 0$ )

R. Aguado and L. Kouwenhoven, PRL **84**, 1986 (2000)

## **Tunable noise detector**

- The detuning of the quantum dots acts as a selective frequency filter
- The detuning is easily changed with gate voltages



R. Aguado and L. Kouwenhoven, PRL **84**, 1986 (2000)

# Single photon detection by a quantum dot





extreme near field optics

### Simon Gustavsson Thank you



#### Thomas Ihn



#### Renaud Leturcq



#### Ivan Shorubalko



#### Plans:

- time resolution
- spatial resolution
- correlation experiments
- spin blockade
- graphene