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We present an exponential formula for the correlation
functions of the XXZ model. The formula is given in
terms of a kind of monodromy operators in the sense of
the quantum inverse scattering method. The opertors sat-
isfy anti-commutation relations, and acting on the space of
quasi-local operators as annihilation operators. Construc-
tion of creation operators is also given.



Hamiltonian of the XX7 model is given by
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Let |vac) be the lowest eigenvector of the Hamiltonian.
Our goal is to compute the correlation functions.
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Integrability of the Hamiltonian is based on the Yang-
Baxter equation.

q¢ —q ¢! e y
R(C) — q— q—l

Ry 2(C1/C2) R13(C1/ ) Ra3(C2/C3)
= Ro3((o/3) R13(C1/G3)R12(¢1/¢2) on (C?); ® (C?)y ® (C?)s.

Transfer matrices commute.

Tu(C) = RanlC/En) -+ Raa(C/€1) € End (€2, @ (€O,
1(C1), 1(C2)] = 0 where ¢(¢) = TraT4(C)



YBE is a consequence of Uq<;[2> symmetry.
h _ —h
Uysly) : ¢"eq™" = ¢e.q"fa" = q [ le, f] = %
Uq(g[g) :eo, fo, ho,e1, fi,h1 level 0: hg+hy =0
A gives tensor product representation A(h;) = h; ® 1 +1® h,,
Ale)=e@1+¢" e, A(f)=e@q¢ " +1® f.
universal R matrix intertwines two representations
Ut = (e, e1, ™), U™ = {fo, ., Re U@ U~
RA(z) = P(A(z))R, Pa®y)=y®=x
R12R13R23 = Ro3R13R10
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Commuting transfer matrix, which acts on quantum
space, is obtained by taking trace over auxiliary space.

t(C)quan — Traux (Waux(C) X unan) R.

We replace the auxiliary space End(C?) by the ¢ oscillator

algebra Osc, which is generated by a, a*, ¢

1 2D+2 D

¢"a*q " = qa, ¢"ag" = ¢'a, aa* = 1—¢*P*?, a*a = 1—¢*".

Up to a scalar multiple, R is represented in Osc®End(C?)

by C]_D_C2QD+2 _Can
o= (" e h TR



In the construction of L operator we use the algebra
homomorphism U,” — Osc,

ey — a, e] — a*, t1:t61|—>qD,

—1 1

q9—4q q—q
To obtain commuting transfer matrix we use the a-trace
Tr% : Osc — C(q%):

1
Triqu d:ef TrAQQQquD _

Hm (m - Z)

Transfer matrix is a-twisted accordingly.

T(Q) = ¢ PALam(C/&n) -+ Laa(C/€1) € Osc @ End ((C2)

Q(¢1), QW(¢)] = 0 where Q©)(¢) = T4T(¢)

)



We have a triangular decomposition of fusion {a, A}:

Liay(©) CF AR, (O La (O Fas

3
_ [ * LajlgQ)q i 0 3
Ca(C) « Laj(q7'¢)g""?
Baxter’s T'(Q) relation is obtained from this decomposition.
(BLZ construction)

tH(OQY(C) = % QW (g71) + * QW (¢C)

Here * means irrelevant scalar factors.



For the formulas of the correlation functions, we use ad-
joint version, and take the off diagonal part.
We denote T, (¢, a)(X) = Tu(¢) g X T, (¢)~L.

Here x = q or A, H* = O'Z) or 2DA, and X € End <(C2>ﬁ>7?n])

is a local operator.
We define two operators.

(¢, a)(X) = Tr {Ta(¢, @) (X))},
k(¢,a)(X) = Trao{o " Ta(¢, ) Ta(¢, a)C" (g > X)}

Here S = Z;nzl 05—’ is the total spin operator and S is its
adjoint.
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Correlation functions are given in the exponential form:
(O) = tr® (quzaS(O)(’)) .

Here, O is a local operator. It is multiplied by the pri-
mary field,

50 = R R RIS
tr(X) = - - - trftrgtrg - - (X)),

tr(q_%‘wg) 7
is used to ensure the reduction relation,

tro‘qo‘ag = tr*l = 1.
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The exponent €2 is a nilpotent operator acting on the
space of quasi-local operators. In particular, we have Q(g?*(0)) =
0. It is given in terms of Grassmann operators b and c:

0 = res_es g1l /Gb(GelG) S
)=~ (1) acwic. o
y=¢", v¥(Ca)= %gz j 16‘)‘,

A(F(Q) = F(g¢) — F(g ()



The following are the basic properties of b(¢) and ¢(().
(i) Grassmann

[b(C1), b(G2)l+ = [e(Cr), ()4 = [b(C1), €(Ga)]+ = 0

(ii) Singular expansion
k(¢,a) = (¢, @) + e(qC, @) +elg ¢, a)
+£(q¢,a) — £(g7'¢, a),

b(¢) = ¢~ (bo L3 1>pbp>
e(¢) = ¢ ( S 1)%)



(iii) Reduction
b (resp., c¢) send quasi-local operators of twist o and spin
s to those of twist a + 1 (resp., @ — 1) and spin s — 1
(resp., s + 1).
(iv) Annihilation (x = b or c)
suppx,(X) C [1,m]| 1<p<m—1
suppX C [1,n] = ¢ suppx,(X) C [I,m —1] p=m
Xp(X> =0 p>m
(v) Large kernel created by local integrals

t7(C1), t7(¢2)] = [e(C1), t7(¢2)] = [b(C1), t7 ()] =0
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We can construct creation operators b*, ¢* conjugate to
b, c.

b*(¢, ) = f(cIC a) +£(g7'¢, a) — t(C, )f (¢, a),

>x< _ oz QZ p 1b>x<
c <>=<—a—22<c2—1>p—1
=1

p
CAR holds for {b}, c;, by, ¢, }p>1
by, ¢, also commute with t*

suppX C [1,n] = supp b, (X) C [1,n + p|
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In terms of basis created by t*, b*.c*, the correlation
functions are given in the form of determinants.

trt*(C)(X) = 2tr"(X),

617 (C)(X) = resca_w0(C /€, a)tre(€)(X)

In other words, the functional v(® given by
v (X) = tr® (eQOX) :

d¢?
? .

d¢t dés
Q= resgleresclazlwo(fl/@, oz)b((l)c(g“g)??
1 62
serves as the dual vacuum:

o (E°(Q)X) = 20(X), v (b*()X) = v (e*()X) = 0.



