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Fractionalization in 1D: Polyacetylene

Assume a one-dimensional tight-binding model for electrons

Coupling electrons to phonons induces either the dimerization pattern

or the dimerization pattern

Fractionalization of the electron charge occurs at defects in the
dimerization pattern

DEFECTDEFECT
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Ingredient for fractionalization in Polyacetylene

Polyacetylene has two Fermi points. (The rule in 1D but
exceptional in 2D.)

A perturbation couples the two Fermi points and stabilizes a bond
density wave (BDW) for the electrons by opening a single-particle
gap at the Fermi energy.

There are two degenerate BDW associated to the spontaneous
breaking of Z2 translation invariance in the thermodynamic limit.

There are solitons that interpolate between the two degenerate
BDW at a finite energy cost.

There are single-particle states at the Fermi energy in the
background of the soliton.

The fractional charge is calculated as the difference between the
local single-particle density of states with and without the soliton.

C. Mudry (PSI) Electron fractionalization ... 4 / 26



Fractionalization in 2D: Fractional Quantum Hall Effect

Incompressible Laughlin state at filling fraction 1/m, m = 2n + 1,

Quasi-hole excited state with charge quantum number e/m
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is obtained by adiabatically increasing a flux φ from 0 to φ0 = hc/e
through an infinitesimal solenoid at the origin.
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Ingredient for fractionalization in the FQHE

Time-reversal symmetry is broken.

The many-body ground state at filling fraction 1/m, m = 2n + 1, is
incompressible, i.e., it is featureless as it does not break
spontaneously any symmetry.

The ground state manifold is degenerate in the thermodynamic
limit if 2D space is chosen to be a torus: Quantum topological
order has emerged.
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Polyacetylene versus FQHE

Fractionalization in Polyacetylene (Rebbi and Jackiw 1976, Su,
Schrieffer, and Heeger 1979)

arises out of spontaneous breaking of a symmetry

and was believed (in the condensed matter community) to be
special to 1D (for energetical reasons).

Fractionalization in the FQHE (Laughlin 1983, Halperin 1984, Wen
1990)

arises out of quantum topological order.

The notion of quantum topological order has played an essential role in
attempts to identify examples of quantum-number fractionalization in
space larger than 1D (e.g., in high-Tc superconductivity).
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3 steps for 2D fractionalization “à la Polyacetylene”

We seek a model for non-interacting electrons in 2D with two
Fermi points.

We need to open a gap at the Fermi energy by breaking
spontaneously a symmetry.

We need defects in the textured background for the electrons.
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Step 1: Two Fermi points in 2D

We seek a 2D electronic dispersion with a valence and conduction
band that touch at two isolated non-equivalent points in the
Brillouin zone.
Choose 2D lattice Λ with sublattices ΛA and ΛB

H = −
∑
〈ij〉

tr i ,r j

(
a†

r i
br j

+ b†
r j

ar i

)
, tr i ,r j

∈ R,

and the hopping amplitudes so that valence and conduction bands
touch at two points.
Two possible solutions are

{Λ = square lattice, t ′s give the π flux phase}

or
{Λ = honeycomb lattice, t ′s uniform}.
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Square lattice with π flux phase
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kk y
x

G

K+
K-

b2

b1

Pxπ/a

π/a
Py

C. Mudry (PSI) Electron fractionalization ... 10 / 26



Honeycomb lattice with graphene-like dispersion

Direct space
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Low-energy effective Hamiltonian

kx

ky
K+

K-

b2

b1 G

H → H :=

∫
d2r Ψ†(r) KD(r) Ψ(r)

where

KD =


0 −2i∂z 0 0

−2i∂z̄ 0 0 0
0 0 0 2i∂z
0 0 2i∂z̄ 0

 , Ψ(r) =


ub(r)
ua(r)
va(r)
vb(r)

 .
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Step 2: Opening of a single-particle gap for graphene

s1

s2

s3

a1

a2 H = −
∑
r∈ΛA

3∑
i=1

(
t + δtr ,i

)
a†

rbr+si
+H.c.

with δtr ,i = ∆(r) eiK +·si eiG·r/3 + c.c.

kx

ky
K+

K-

b2

b1 G KD =


0 −2i∂z ∆(r) 0

−2i∂z̄ 0 0 ∆(r)
∆̄(r) 0 0 2i∂z

0 ∆̄(r) 2i∂z̄ 0


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Pattern of symmetry breaking

Time-reversal and sublattice symmetries are preserved.

The lattice Z3 symmetry [the U(1) chiral symmetry in the
continuum] is broken by a finite ∆ ∈ C.

Sublattice symmetry is broken by a TRS charge density wave µs
and by a TRS-breaking next-nearest-neighbor hopping η

KD =


(µs + η) (r) −2i∂z ∆ 0
−2i∂z̄ − (µs + η) (r) 0 ∆

∆̄ 0 − (µs − η) (r) 2i∂z
0 ∆̄ 2i∂z̄ (µs − η) (r)


(Semenoff 1984 and Haldane 1988).
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Step 3: U(1) vortices support zero modes

Take advantage of the fact that ∆(r) has a phase,

∆(r) = ∆0(r) ei(α+nθ), ∆0(r) > 0, n ∈ Z, z = r exp(iθ).

KD has zero modes iff(
∂r − ir−1∂θ

)
ua(r) + ieiθ∆(r) va(r) = 0,

ie−iθ∆̄(r) ua(r)−
(
∂r + ir−1∂θ

)
va(r) = 0,

holds on sublattice ΛA while the equations obtained from ua → ub,
va → vb, and θ → −θ must also hold on sublattice ΛB.
If n = −1, then

ua(r , θ) =
ei(α

2 +π
4 )

√
2π

e−
R r

0 dr ′ ∆0(r ′)√∫∞
0 dr r e−2

R r
0 dr ′ ∆0(r

′)
,

va(r , θ) = ūa(r , θ).

is a solution supported on ΛA.
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Comments

Same equations for zero modes were solved in two different contexts:

When coupling a charge q scalar Higgs field to gauge fields
carrying a flux of n/q in 2D space. (Jackiw and Rossi 1981)

For mid-gap states in a 2D p-wave superconductor. (Read and
Green 2000)

Charge is not a conserved quantum number in both cases.
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Charge fractionalization
Because we are dealing with a single-particle problem, we can
compute the local charge accumulated around a vortex from

ν(r , ε) ≡
∑
ε′

ψ†
ε′(r)ψε′(r)δ(ε− ε′).

The charge bound to the vortex is

δν(r , ε) ≡ ν|n|=1(r , ε)− ν|n|=0(r , ε).

With sublattice symmetry and adiabatic switch-on of a vortex, then∫
d2r

(
2
∫ 0−

−∞
dε δν(r , ε) + |ψ0(r)|2

)
= 0.

But the single zero mode ψ0(r) is normalized to one and∫
d2r

∫ 0−

−∞
dε δν(r , ε) = −1/2.
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Exotic quantum number assignments
Density of states:

q for spinless fermion: −e/2 if unfilled or +e/2 if filled.

(q,S) for spinfull fermion: (−e,0)︸ ︷︷ ︸
unfilled

or (+e,0)︸ ︷︷ ︸
doubly filled

or (0,±1/2)︸ ︷︷ ︸
singly filled

.
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Where is the missing charge e/2? We must impose charge neutrality
for the vortices:

This is the counterpart to periodic boundary conditions in 1D

DEFECTDEFECT
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Is the sublattice symmetry essential for fractionalization? No:

Fractionalization is then irrational (Goldstone and Wilczek 1981, Rice
and Mele 1982, Jackiw and Semenoff 1983, Kivelson 1983). In 2D,

n0 =
µs

m
, n1 =

Re ∆

m
, n2 =

Im ∆

m
, m =

√
µ2

s + |∆|2
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Where does ∆(r) come from?

First, we need to open the gap.
Phonons do not do the job for graphene because t is very large.

A repulsive nearest-neighbor interaction V does the job for
spinless fermions if V > V MF

c with V MF
c = 1.906|t |. However, there

are other competing instabilities and the long-range Coulomb
interaction has been ignored.

Second, we need vortices.

Vortices can be generated at finite temperature if their energy cost
grows logarithmically with separation at zero temperature.

At commensuration, vortices are linearly confined at zero
temperature. Away from commensuration, vortices are
logarithmically confined at zero temperature while mid-gap states
survive (Hasegawa et al. 2006).
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Can we deconfine the fractional charge at zero
temperature?
The answer is, at the level of quantum field theory, yes (Jackiw and Pi
2007): Screen the bare vortex logarithmic interactions with dynamical
chiral gauge fields. The fractional charge is then always rational, i.e.,
1/2, and we recover quantum topological order.
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Fullerenes do the job

Building on pioneering work done by Gonzalez, Guinea, Vozmediano
(1992 and 1993), Pachos, Stone, and Temme 2008 propose that the
Kekulé texture with defective Higgs and chiral gauge fields is
geometrically induced at a finite energy cost by wrapping graphene on
a sphere (C60+6k fullerenes):
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Summary

We found a mechanism for charge fractionalization in 2D similar to
that of Polyacetylene in 1D, without breaking time-reversal
symmetry or requiring quantum topological order.

This mechanism demands the existence of two-Fermi points, a
bond ordering instability, and vortices in the bond ordering
parameter.

kx

K+

ky

K-

G

This mechanism is robust to the small breaking of the sublattice
symmetry (irrational fractionalization) and is reinforced by the
small breaking of the point-group symmetry.

kx

K+

ky

K-

G
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Caption for fractional charge as a function of µ(∞)

(e) The fermion density profile of
(c) for a square lattice with open
boundary conditions and 144× 144
sites. (f) The fermion number as a
function of the scaling variable
µs(∞)/∆(∞) in the presence of the
single charge-1 vortex (c) or with
the addition of the axial charge-1/2
vortex (d) with core radius
c = 0.01. The staggered chemical
potential µs takes the values 0.01t
(black), 0.03t (red), 0.06t (green),
and 0.1t (blue). The thick and thin
lines are the theoretical predictions
without the axial vortex and
Q = 1/2, respectively.
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