Cold atoms in 2D optical lattices under staggered rotation

Cristiane MORAIS SMITH

Institute for Theoretical Physics, Utrecht University, The Netherlands

Collaborators

Lih-King Lim and Andreas Hemmerich

Outline

Low-D systems: observation of quantum effects 2DES in a B_{\perp} : several interesting quantum phases

- electron-liquid phases: Laughlin, Moore-Read, Read-Rezayi
- electron-solid phases: Wigner crystals, bubbles, stripes
- nematic phases, BEC of excitons in bilayers, etc...

2D Systems: cond-mat

<u>Uniform</u>

graphene

2D Systems: cold atoms

<u>Uniform</u>

Lattice

rotating BECs in optical lattices

Sorensen, Demler, Lukin, PRL 94, 086803 (2005) quadrupolar potential + tunneling for bosons

FQHE Laughlin state: 95% overlap

larger gap than in harmonically trapped BECs because in-

teraction energy is larger

3D: M. Greiner et al., Nature 419, 51 (2002) 2D: Phillips group, PRL 100, 120404 (2008)

Superfluid-Mott insulator transition

Theoretical description: Bose-Hubbard model

$$H = -J \sum_{\langle i,j \rangle} a_i^{\dagger} a_j + H.c. + U \sum_i n_i (n_i - 1)$$

- simulators of cond-mat systems
 - full control of lattice parameters
 - load with bosons or fermions
 - control of interactions (Feshbach resonance)
 - no disorder
- generate NEW situations
 - alternating magnetic fields

Haldane 1988: graphene with zero net magnetic field per plaquette

QHE: no uniform B, but break time-reversal symmetry

A. Hemmerich and C.M.S., PRL 99, 113002 (2007) Bosons and fermions

Staggered rotational field

Novel phases

Staggered Rotational Field

A. Hemmerich and C.M.S., PRL 99, 113002 (2007) How to realize it experimentally? Linearly polarized bichromatic light-field

$$E_1(\mathbf{r},t) \equiv A_1 e^{i(\omega+\Omega)t} |\phi(x,y)| e^{iS(x,y)}$$

$$E_2(\mathbf{r},t) \equiv A_2 e^{i\omega t} |\phi(x,y)| e^{-iS(x,y)}$$

We assume $|\Omega| \ll \omega$, $|\phi(x,y)|^2 = \sin^2(kx) + \sin^2(ky)$ $S(x,y) = \arctan\left[\frac{\sin(kx) - \sin(ky)}{\sin(kx) + \sin(ky)}\right]$

Staggered Rotational Field

A. Hemmerich and C.M.S., PRL 99, 113002 (2007)

$$I(x, y, t) \equiv \mathbf{E}(\mathbf{r}, t)\mathbf{E}^*(\mathbf{r}, t) = I_L(x, y) + I_R(x, y, t)$$

- Stationary term $I_L(x,y) = (A_1 + A_2)^2 |\phi(x,y)|^2$
- Time-dependent term $I_R(x, y, t) = 2A_1A_2 |\phi(x, y)|^2 \cos (2S(x, y) - \Omega t)$

Optical Setup

Two nested Michelson interferometers

- PZT: piezoelectric transducer
- M: mirror BS: beam splitter

AOM: acousto-optic frequency shifter

Time-Dependent Bose-Hubbard Model

$$\begin{split} \hat{H}(t) &= -\sum_{\mathbf{r}\in A, l=1-4} J_{l}(t) \left\{ \hat{a}_{\mathbf{r}}^{\dagger} \ \hat{a}_{\mathbf{r}+\mathbf{e}_{l}} + \text{H.c.} \right\} \\ &+ \sum_{\mathbf{r}\in A\oplus B} \epsilon_{\mathbf{r}}(t) \ \hat{n}_{\mathbf{r}} + \frac{1}{2} U \sum_{\mathbf{r}\in A\oplus B} \hat{n}_{\mathbf{r}} \ (\hat{n}_{\mathbf{r}} - 1) \end{split}$$

where $J_l(t) = J + (-1)^l \kappa V_0 \chi_1 \sin(\Omega t)$ anisotropic time-varying hopping

> $\epsilon_{\mathbf{r}\in A,B}(t) = \pm 2\kappa V_0 \chi_2 \cos(\Omega t)$ time-varying energy offset

Effective Hamiltonian

Hamiltonian is periodic: $\hat{H}(t) = \hat{H}(t + \tau_n)$ with $\tau_n \equiv 2n\pi/\Omega$ Dyson Series: $\hat{U}(\tau_n) = e^{-\frac{i}{\hbar}\hat{H}_{eff}\tau_n}$

$$\hat{U}(\tau_n) = 1 + \left(\frac{-i}{\hbar}\right) \int_0^{\tau_n} dt \hat{H}(t) + \left(\frac{-i}{\hbar}\right)^2 \int_0^{\tau_n} dt \int_0^t dt' \hat{H}(t) \hat{H}(t')$$

Effective Hamiltonian

$$\hat{H}_{\text{eff}} \approx -\sum_{\mathbf{r} \in A, l=1-4} \left\{ \frac{|\mathbf{c}|}{\mathbf{e}^{i\theta(-1)^{l}}} \hat{a}_{\mathbf{r}}^{\dagger} \ \hat{a}_{\mathbf{r}+\mathbf{e}_{l}} + \text{H.c.} \right\} + \frac{1}{2} U \sum_{\mathbf{r} \in A \oplus B} \hat{n}_{\mathbf{r}} \left(\hat{n}_{\mathbf{r}} - 1 \right)$$

$$|c| = \sqrt{J^2 + W^2}$$
 $\theta = \tan^{-1}\left(\frac{W}{J}\right)$ $W = \frac{2\kappa^2 V_0^2 \chi_1 \chi_2}{\hbar\Omega}$

Single-particle spectrum

Write \hat{H} in k-space

$$\hat{H}_0 = \sum_{\mathbf{k}} E_{\mathbf{k}}^- \hat{\beta}_{\mathbf{k}}^\dagger \hat{\beta}_{\mathbf{k}} + E_{\mathbf{k}}^+ \hat{\alpha}_{\mathbf{k}}^\dagger \hat{\alpha}_{\mathbf{k}}$$

 $E_{\mathbf{k}}^{\pm} = \pm |\epsilon_{\mathbf{k}}| = \pm 2|c|[\cos^2 k^+ + \cos^2 k^- + 2\cos k^+ \cos k^- \cos(2\theta)]^{1/2}$ $k^+ = (k_x + k_y)/2 \qquad k^- = (k_x - k_y)/2$

Bosons: Mean Field Theory

$$Z = \int \mathcal{D}a^* \mathcal{D}a \exp\{-S[a^*, a]/\hbar\}$$
$$S[a^*, a] = \int_0^{\hbar\beta} d\tau \left[\sum_{\mathbf{r}} a^*_{\mathbf{r}}(\tau) \left(\hbar\partial_{\tau} - \mu\right) a_{\mathbf{r}}(\tau) + H_{\text{eff}}\right]$$

Mott regime

- Hubbard-Stratonovich field $\psi_{\mathbf{r}}(\tau)$ to decouple the hopping term
- Integrate out the boson fields (a^*, a)
- **E**ffective action (quadratic order in $\psi^{A}_{\omega,\mathbf{k}}$, $\psi^{B}_{\omega,\mathbf{k}}$)

Mean Field Theory - Effective Action

$$S^{(2)}[\psi^*,\psi] = -\sum_{\omega,\mathbf{k}} \begin{pmatrix} \psi^A_{\omega,\mathbf{k}} \\ \psi^B_{\omega,\mathbf{k}} \end{pmatrix}^{\dagger} \begin{pmatrix} \epsilon^2_{\mathbf{k}} f_{\omega} & \epsilon_{\mathbf{k}} \\ \epsilon^*_{\mathbf{k}} & (\epsilon^*_{\mathbf{k}})^2 f_{\omega} \end{pmatrix} \begin{pmatrix} \psi^A_{\omega,\mathbf{k}} \\ \psi^B_{\omega,\mathbf{k}} \end{pmatrix}$$

Real frequencies ($i\omega \rightarrow \omega$), T = 0Quasi-particle (hole) energy dispersion

$$\epsilon_{\mathbf{k}}^{qp,qh} = -\mu + \frac{U}{2}(2n-1) - \frac{|\epsilon_{\mathbf{k}}|}{2} \pm \frac{1}{2}\hbar\,\omega_{\mathbf{k}}$$

where $\hbar \omega_{\mathbf{k}} = \sqrt{|\epsilon_{\mathbf{k}}|^2 - (4n+2)|\epsilon_{\mathbf{k}}|U+U^2}$: energy for creating a quasiparticle-quasihole pair.

Phase Diagram

L.-K. Lim, C.M.S., and A. Hemmerich, PRL 100, 130402 (2008)

Phase Diagram

Bosons: BEC at lowest single-particle state $\theta < \pi/4$: min at $\mathbf{k} = (0,0)$ GS is uniform SF $\theta > \pi/4$: min at $\mathbf{k} = (\pi,\pi)$ GS is finite *k* SF

Superfluid Phases

Variational mean-field ansatz for the ground state:

 $\begin{aligned} |\xi,\sigma\rangle &= (e^{-i\xi/2}\cos(\sigma)\hat{\beta}_0^{\dagger} + e^{i\xi/2}\sin(\sigma)\hat{\beta}_{\pi}^{\dagger})^N |0\rangle \\ \theta &< \pi/4: \ \sigma = \sigma_0 = 0 \\ \theta &> \pi/4: \ \sigma = \sigma_0 = \pi/2 \end{aligned}$

Order parameter σ_0 changes discontinuously by $\pi/2$ at $\theta = \pi/4$

Finite momentum SF: analogies with Abrikosov lattice and "FFLO states"

Experimental Detection

Momentum distribution:

 $\langle \Psi^{\dagger}(\mathbf{k})\Psi(\mathbf{k})\rangle = |W(\mathbf{k})|^2 S_B(\mathbf{k}) S_P(\mathbf{k})$

(a) Uniform SF

(b) Staggered vortex SF

 $W(\mathbf{k})$: Fourier transform of Wannier function

 $S(\mathbf{k})$: structure factor (B: Bravais lattice, P: plaquette)

Fermions in optical lattices

At half-filling: anisotropic Dirac cones Graphene under uniaxial pressure At $\theta = \pi/4$: staggered- π flux phase (HTSC)

Simulating Graphene

2 ineq. points: $K = (\pm \pi, 0)$ $K' = (0, \pm \pi)$ Long-wavelength expansion around K and K' $\epsilon_k \sim -2a|c|[k_x \cos \theta + ik_y \sin \theta]$ $\epsilon_k \sim -2a|c|[k_y \cos \theta + ik_x \sin \theta]$

$$H = -\sum_{k} \epsilon_{k}^{*} a_{k}^{\dagger} b_{k} + H.c.$$

Tight-binding model for graphene ($\theta = \pi/4$)

$$H = \sum_{k} (k_x - ik_y) a_{F,+}^{\dagger}(\mathbf{k}) b_{F,+}(\mathbf{k}) + (-k_x - ik_y) a_{F,-}^{\dagger}(\mathbf{k}) b_{F,-}(\mathbf{k})$$

Graphene under uniaxial pressure

Cheol-Hwan Park et al., Nature Physics 4, 213 (2008) P. Dietl, F. Piechon, G. Montambaux, cond-mat/0707.0219

t = t'

t' = 2t

Fermions and Bosons

$$S = S_B + S_F + S_{\text{int}}$$

$$S_{B} = \int d\tau \Big\{ \sum_{i,j} a_{B}^{\dagger}(i,\tau) T_{ij} b_{B}(j,\tau) + H.c. \\ + \sum_{i} a_{B}^{\dagger}(i,\tau) (\hbar \partial_{\tau} - \mu_{B}) a_{B}(i,\tau) + \sum_{i} b_{B}^{\dagger}(i,\tau) (\hbar \partial_{\tau} - \mu_{B}) b_{B}(i,\tau) \\ + \frac{U}{2} \sum_{i} \Big[a_{B}^{\dagger}(i,\tau) a_{B}^{\dagger}(i,\tau) a_{B}(i,\tau) a_{B}(i,\tau) + b_{B}^{\dagger}(i,\tau) b_{B}^{\dagger}(i,\tau) b_{B}(i,\tau) b_{B}(i,\tau) \Big]$$

Fermions: same terms, replace B by F, neglect U terms (spin polarized fermions: neglect p-wave collisions at low-T)

Fermions and Bosons

$$S_{I} = T_{BF} \int d\tau \left\{ \sum_{i} a_{F}^{\dagger}(i,\tau) a_{F}(i,\tau) a_{B}^{\dagger}(i,\tau) a_{B}(i,\tau) \right. \\ \left. + \sum_{i} b_{F}^{\dagger}(i,\tau) b_{F}(i,\tau) b_{B}^{\dagger}(i,\tau) b_{B}(i,\tau) \right\}$$

Bosons condense at k_0 : integrate them out New "phonon-mediated" interaction which couples fermions in *A*-*B* sublattices

V(r): Yukawa-like interaction

MF decoupling: generate Mass term for fermions See Kekulé distortion for graphene \rightarrow C. Mudry

Conclusions

Cold atoms in optical lattices under staggered rotation:

- Superfluid / Mott-insulator transition
- Staggered flux phase (bosons) finite momentum condensate
- Simulate graphene under pressure (fermions)
- Simulate staggered- π flux phase for high-Tc superconductors at $\theta = \pi/4$
- Simulate Kekulé distortion in graphene (fermions and bosons)
- Novel Phases? QHE, bilayers, supersolids, etc...

Perspectives

Hofstadter butterfly

cond-mat: $B = 10^4 \text{T}$ uniform B

Perspectives

Staggered $N\sqrt{2} \times N\sqrt{2}$ field

- role of interactions
- ring-exchange and longer-range int.
- triangular, hexagonal geometries

