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Introduction

Briefly recall the two-body problem: two par-
ticles interacting via a spherically-symmetric
(‘square well') potential of the size ag and
strength —V/.

In 3D a bound state first appears when Voa% >
72 /4. Hence the Wigner (1933) and Bethe—
Peierls (1935) approximation: take the limit
ag — 0 and Vp — oo but such as Vpa3 =
const. This is the same as a boundary con-
dition on the wave-function:

lim In(r¥) = 1

r—0 a
where a is the scattering length.

An effective range expansion [Landau-Smorodinski
(1944)]
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constitutes the next-to leading approxima-
tion where the parameter R* > 0 is the effec-

tive potential range.



e Thomas (1935) - a variational calculation
- no lower limit on trimer bound state energy
in the zero-range approximation - ‘Thomas
collapse’.

e Skorniakov & Ter-Martirosian (1957) de-
rived their equation for the ‘waive-function’
(k) of bound trimer states:
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and a different equation for fermions (-A? is
the trimer energy).

X

e Danilov (1961) and Minlos & Faddeev (1961)
discovered the problem with the bosonic STM
equation: it has an infinite number of bound
states with energies extending to —oo.

e Efimov (1970) solved the problem by us-
ing a real-space regularization scheme (not



the effective range expansion) and found a
universal hierarchy of trimer states

E, = _’ige—an/so

where n is an integer (n > 1), sg ~ 1.00624
and k+«R* was only known numerically so far
being approximately 2.5 [for a recent review
see Braaten & Hammer (2007)].

e Petrov (2004) used the effective range ex-
pansion to regularize the STM equation and
investigated it numerically.



Regularized STM equation

One can start directly from the Feshbach
resonance model [Lona-Lasinio, Pricoupenko
and Castin (2007)]
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The three-body problem can be solved using
the ansatz
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leading to the equation
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where the R* = 2x/A? is the effective range.
With
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and integrating over the angles, one finds
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Quantum mechanics

In order to make progress we take several
steps

e Since the integrand is odd under k' — —FK/,
we extend k to include negative values but re-
quire that wave-functions are odd, ¥ (—k) =
— (k). The integral above is then taken over
all k', with the replacement 2/ — 1 /.

e A useful substitution is

2\
k=""sinh¢, £€eR,
zomhe, ¢

under which two things happen: (i) the root
in the integrand rationalizes, and (ii) the log-
arithmic kernel becomes homogeneous and
hence is reduced (after much algebra) to a
difference kernel
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with Fourier transform
Awr 8 sinh(ws/6)
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e Any difference kernel acts on a test function
g(&) as a differential operator,

[ dg'T( — €)g(€) = T(~id/dE)g(&).

The function T thus plays the role of a kinetic
energy operator. For the standard Schrodinger
equation, T'(s) = s2/2m. Here the dispersion
relation starts as T'(s) ~ s2 at small momen-
tum and levels off to 47 /(3+/3) as s — oco. It
is thus bounded from below and from above,
similar to what happens for a typical band
structure of a solid.

e T he regularized STM equation thus as-
sumes the final form
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[after rescaling ¥(&) — [1+U(€)]v(€)], where
the ‘energy’ is £ = 47/(3v/3) — 1 ~ 1.41899
and the potential is:
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U(¢) = — R*)\coshé€.

(&) aACcosh & + :
This quantum-mechanical equation for the
antisymmetric wave-function ¢ (§) = —y(—=£)

formally describes the 1D motion of a fic-
titious particle with non-standard dispersion
relation in the potential U(£), at energy €.

e \WWhat is the mechanism for regularization at
R* > 07 It is quite simple within our picture:
The potential U(£) approaches +oco0 at &€ —
+o00, and hence all eigenstates must be quan-
tized bound state solutions, similar to what
happens for a simple quantum-mechanical har-
monic oscillator.

e \What is the spectrum is the resonant limit
(a = oc0)? In our case, the ‘energy’ &£ is al-
ways fixed but the true spectral parameter is



A — only those values of X\ are allowed (pos-
sibly a finite set or countable infinity), where
a bound state with energy &£ exists. These
discrete values A\, (indexed by n € Z) then
determine the Efimov trimer bound state en-
ergies E, = —)\2. As R*A < 1, one sees that
n > 1, zero energy therefore represents a
spectral accumulation point.

Taking £ > 0, the potential U(£) can be ne-
glected to exponential accuracy against £ in
the region £ < &, where & = In[2/(R*A\)] >
1. In this region, with T'(sg) = &, the (anti-
symmetric) solution must therefore be 191(€) =
c1 Sin(sp€) with some amplitude cj.

On the other hand, for all £ > 1 (including
the region & =~ £«), the potential takes the
form U(¢) = e$~%+, again to exponential ac-
curacy. Shifting & by &«, the vicinity of the
turning point is thus described by the univer-
sal (parameter-free) equation

(A, B
[T <_Zd_§> + e —5] (&) = 0.



For £ — —oo, we have e¢ — 0, and thus
the asymptotic behavior ¢ (&) ~ sin(sgé 4+ 7)
with a non-trivial phase shift v is expected.
Coming back to the original &, we find that
the solution for 1 <« & K &« is of the form
Y2(&) = cosin[sg(§ —&«) +m], where co is an-
other amplitude, and should match 1. With
n € Z, this implies the quantization condition

m(n + )
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yielding the on-resonance Efimov trimer en-
ergies

Ex(An) = In[2/(R™\n)] =
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with the famous universal ratio E,41/En, =
e~27/50 ~ 1/515.03 between subsequent lev-
els. The three-body parameter kx« iS kK« R* =
De~T7/%0. To determine ks« we need to calcu-
late v from the universal problem.




Universal problem

Remarkably, this problem can be solved ex-
actly in terms of a Barnes-type integral
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which implies the recurrence relation

[T(iv) — E]C(v) = -C(v+ 1)

the solution to which also solves the differen-
tial equation provided that C(v) has no poles
in the strip 0 < Rev < 1.

To construct the solution to the recurrence
relation, we use the Weierstrass theorem to
express the function in the recurrence rela-
tion as a convergent infinite product
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in terms of poles +bp, by =2p+ 1, and zeros

Tup: twoO zeros are on imaginary axes ug =



1sg, the other are real u1 = 4, uy, = 4,6...
The solution with correct analytic properties
IS

T
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. . r(V‘I'Up)r(l—V‘l‘bp)
Cy) =11 F(v+ b)) (1 — v+ up)

p=0

The poles of C(v) nearest to the strip are
v = 2 and v = +sg implying ¥(§) ~ e2% as

£ — oo and Y(&) ~ sin(sp€ + v) as £ — —oo.
The exact phase factor follows from the
ration of the residues at two poles v = Fisq:

1 1
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The three-body parameter is thus determines
as

ke R¥ = 2¢~TV/50 ~ 2.6531.

T his exact result roughly agrees with the avail-
able numerical estimate of 2.5.



