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Introduction

Briefly recall the two-body problem: two par-

ticles interacting via a spherically-symmetric

(‘square well’) potential of the size a0 and

strength −V0.

In 3D a bound state first appears when V0a
2
0 >

π2/4. Hence the Wigner (1933) and Bethe–

Peierls (1935) approximation: take the limit

a0 → 0 and V0 → ∞ but such as V0a
2
0 =

const. This is the same as a boundary con-

dition on the wave-function:

lim
r→0

ln(rΨ) = −
1

a

where a is the scattering length.

An effective range expansion [Landau-Smorodinski

(1944)]

1

a
→
1

a
−
1

2
R∗k2

constitutes the next-to leading approxima-

tion where the parameter R∗ > 0 is the effec-

tive potential range.



• Thomas (1935) - a variational calculation
- no lower limit on trimer bound state energy

in the zero-range approximation - ‘Thomas

collapse’.

• Skorniakov & Ter-Martirosian (1957) de-

rived their equation for the ‘waive-function’

ψ(k) of bound trimer states:

ψ(k) +
2

π

∫ ∞

0
dk′ ln

(
k2 + kk′+ k′2 + λ2

k2 − kk′+ k′2 + λ2

)

×
ψ(k′)

a−1 −
√
3k′2/4+ λ2

= 0

and a different equation for fermions (-λ2 is

the trimer energy).

• Danilov (1961) and Minlos & Faddeev (1961)

discovered the problem with the bosonic STM

equation: it has an infinite number of bound

states with energies extending to −∞.

• Efimov (1970) solved the problem by us-

ing a real-space regularization scheme (not



the effective range expansion) and found a

universal hierarchy of trimer states

En = −κ2∗e
−2πn/s0

where n is an integer (n � 1), s0 ' 1.00624

and κ∗R∗ was only known numerically so far

being approximately 2.5 [for a recent review

see Braaten & Hammer (2007)].

• Petrov (2004) used the effective range ex-

pansion to regularize the STM equation and

investigated it numerically.



Regularized STM equation

One can start directly from the Feshbach

resonance model [Lona-Lasinio, Pricoupenko

and Castin (2007)]

H =
∑

k

εka
†
kak+

∑

K

(E0 + εK/2)b
†
KbK

+Λ
∑

k,K

(
b
†
Kak+K/2a−k+K/2 + h.c.

)
.

The three-body problem can be solved using

the ansatz

∑

K



βKb
†
Ka
†
−K+

∑

k

AK,ka
†
k+K/2a

†
−k+K/2a

†
−K



 |0〉,

leading to the equation
(√

λ2 + 3K2/4− a−1 + (λ2 + 3K2/4)R∗
)

βK

=
1

π2

∫
d3K′

βK′

K′2 +K2 +K′ ∙K+ λ2
,

where the R∗ = 2π/Λ2 is the effective range.

With

ψ = k(a−1−R∗(
3

4
k′2+ λ2)−

√
3k′2/4+ λ2)βk



and integrating over the angles, one finds

ψ(k) +
2

π

∫ ∞

0
dk′ ln

(
k2 + kk′+ k′2 + λ2

k2 − kk′+ k′2 + λ2

)

×
ψ(k′)

a−1 −R∗(34k
′2 + λ2)−

√
3k′2/4+ λ2

= 0



Quantum mechanics

In order to make progress we take several

steps

• Since the integrand is odd under k′ → −k′,

we extend k to include negative values but re-

quire that wave-functions are odd, ψ(−k) =

−ψ(k). The integral above is then taken over

all k’, with the replacement 2/π → 1/π.

• A useful substitution is

k =
2λ
√
3
sinh ξ, ξ ∈ R,

under which two things happen: (i) the root

in the integrand rationalizes, and (ii) the log-

arithmic kernel becomes homogeneous and

hence is reduced (after much algebra) to a

difference kernel

T (ξ) =
4π

3
√
3
δ(ξ)−

4

π
√
3
ln

(
e2ξ + eξ +1

e2ξ − eξ +1

)

,



with Fourier transform

T̂ (s) =
∫ ∞

−∞
dξeisξT (ξ) =

4π

3
√
3
−
8
√
3

sinh(πs/6)

s cosh(πs/2)
.

• Any difference kernel acts on a test function

g(ξ) as a differential operator,
∫ ∞

−∞
dξ′T (ξ − ξ′)g(ξ′) = T̂ (−id/dξ)g(ξ).

The function T̂ thus plays the role of a kinetic

energy operator. For the standard Schrödinger

equation, T̂ (s) = s2/2m. Here the dispersion

relation starts as T̂ (s) ∼ s2 at small momen-

tum and levels off to 4π/(3
√
3) as s→∞. It

is thus bounded from below and from above,

similar to what happens for a typical band

structure of a solid.

• The regularized STM equation thus as-

sumes the final form
[

T̂

(

−i
d

dξ

)

+ U(ξ)− E

]

ψ(ξ) = 0



[after rescaling ψ(ξ)→ [1+U(ξ)]ψ(ξ)], where

the ‘energy’ is E = 4π/(3
√
3) − 1 ' 1.41899

and the potential is:

U(ξ) = −
1

aλ

1

cosh ξ
+R∗λ cosh ξ.

This quantum-mechanical equation for the

antisymmetric wave-function ψ(ξ) = −ψ(−ξ)

formally describes the 1D motion of a fic-

titious particle with non-standard dispersion

relation in the potential U(ξ), at energy E.

•What is the mechanism for regularization at

R∗ > 0? It is quite simple within our picture:

The potential U(ξ) approaches +∞ at ξ →

±∞, and hence all eigenstates must be quan-

tized bound state solutions, similar to what

happens for a simple quantum-mechanical har-

monic oscillator.

• What is the spectrum is the resonant limit

(a = ∞)? In our case, the ‘energy’ E is al-

ways fixed but the true spectral parameter is



λ – only those values of λ are allowed (pos-

sibly a finite set or countable infinity), where

a bound state with energy E exists. These

discrete values λn (indexed by n ∈ Z) then
determine the Efimov trimer bound state en-

ergies En = −λ2n. As R
∗λ� 1, one sees that

n � 1, zero energy therefore represents a

spectral accumulation point.

Taking ξ > 0, the potential U(ξ) can be ne-

glected to exponential accuracy against E in
the region ξ � ξ∗, where ξ∗ = ln[2/(R∗λ)] �
1. In this region, with T̂ (s0) = E, the (anti-
symmetric) solution must therefore be ψ1(ξ) =

c1 sin(s0ξ) with some amplitude c1.

On the other hand, for all ξ � 1 (including

the region ξ ≈ ξ∗), the potential takes the

form U(ξ) = eξ−ξ∗, again to exponential ac-

curacy. Shifting ξ by ξ∗, the vicinity of the

turning point is thus described by the univer-

sal (parameter-free) equation
[

T̂

(

−i
d

dξ

)

+ eξ − E

]

ψ(ξ) = 0.



For ξ → −∞, we have eξ → 0, and thus

the asymptotic behavior ψ(ξ) ∼ sin(s0ξ+πγ)

with a non-trivial phase shift γ is expected.

Coming back to the original ξ, we find that

the solution for 1 � ξ � ξ∗ is of the form

ψ2(ξ) = c2 sin[s0(ξ−ξ∗)+πγ], where c2 is an-

other amplitude, and should match ψ1. With

n ∈ Z, this implies the quantization condition

ξ∗(λn) = ln[2/(R∗λn)] =
π(n+ γ)

s0
,

yielding the on-resonance Efimov trimer en-

ergies

En = −
h̄2κ2∗
m

e−2πn/s0,

with the famous universal ratio En+1/En =

e−2π/s0 ' 1/515.03 between subsequent lev-

els. The three-body parameter κ∗ is κ∗R∗ =

2e−πγ/s0. To determine κ∗ we need to calcu-

late γ from the universal problem.



Universal problem

Remarkably, this problem can be solved ex-

actly in terms of a Barnes-type integral

ψ(ξ) =

i∞+0+∫

−i∞+0+

dν

2πi
e−νξC(ν),

which implies the recurrence relation

[T̂ (iν)− E]C(ν) = −C(ν +1)

the solution to which also solves the differen-

tial equation provided that C(ν) has no poles

in the strip 0 < Reν < 1.

To construct the solution to the recurrence

relation, we use the Weierstrass theorem to

express the function in the recurrence rela-

tion as a convergent infinite product

T̂ (iν)− E =
∞∏

p=0

ν2 − u2p
ν2 − b2p

in terms of poles ±bp, bp = 2p+1, and zeros

±up: two zeros are on imaginary axes u0 =



is0, the other are real u1 = 4, u2 = 4,6...

The solution with correct analytic properties

is

C(ν) =
π

sin(π(ν − is0))
C+(ν),

with

C+(ν) =
∞∏

p=0

Γ(ν + up)Γ(1− ν + bp)

Γ(ν + bp)Γ(1− ν + up)
.

The poles of C(ν) nearest to the strip are

ν = 2 and ν = ±s0 implying ψ(ξ) ∼ e2ξ as

ξ → ∞ and ψ(ξ) ∼ sin(s0ξ + γ) as ξ → −∞.

The exact phase factor follows from the

ration of the residues at two poles ν = ±is0:

γ =
1

2
−
1

π
ArgC+(is0) ' −0.090518155 .

The three-body parameter is thus determines

as

κ∗R
∗ = 2e−πγ/s0 ' 2.6531.

This exact result roughly agrees with the avail-

able numerical estimate of 2.5.


