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Many of the exact results in low-dimensional systems come from exact solu-

tions in 1 4+ 1—dimensional QFT

at criticality
Conformal Field Theory

operator algebra

Virasoro representations

no direct notion of particles

away from criticality

Integrable Field Theory
particle solution
S—matrix

no direct notion of fields

Recovering the space of fields from the S-matrix is important in principle and

in practice



Space of conformal fields (BPZ '84)

Correspondence with the lowest weight representations of the Virasoro alge-
bra. The space of fields splits into families, each one consisting of a primary
Py and infinitely many descendants
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The actual ‘filling’ of each level depends on the existence of null vectors

The role of internal symmetries is best understood using modular invariance
(Cardy '86)



Two-dimensional massive field theories

Since a massive theory is a perturbation of a CFT, it should have the same
field content (up to internal symmetry breaking effects).

How to see this now that conformal symmetry is gone?

Integrable theories. The S-matrix is known exactly

|Aa(01) Ap(02))in = S5E(01 — 02)|Ac(01) Ad(02)) out

Field content and correlation functions must be determined from particle
dynamics

I'll consider a large class of theories (includes sine-Gordon) characterized by

1) abelian internal symmetry group G

2) asymptotic diagonality, i.e.  lim S(9) = eF2imomse s



Form factor equations (Karowski,Weisz '78; Smirnov '80s)
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The form factor equations contain only the spin and charge data of the field
— infinitely many solutions. Look at asymptotic behavior



The operators A, (GD '08)
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Introduce a "dual charge” C (defined modZ), so that
Yo, 0, = Ca,Co, + Co,Cop,

S¢=C¢é¢+n¢ ne € 7

@ET/f (C@:C'e):S@:O) @aE@(a)Z/\a@

aw = —vo,0 = —Co,C) S-matrix determines values of C

So, = —Qgq+no, ©, parafermionic if au, & Z/2 (cfr Smirnov '90)
Yoa = 5o — S, = —[CaCo + (Co + Cu)Co,] + ko q koo = ne — nae,,

JF = space of fields

= space of form factor solutions = @ Fl e dimF/ 5 = oo
C,Cn

] n n—=k,
Na o F c,C g Cc+C,,C+Co, (mod Z)
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e Lower bound on asymptotic behavior

D) = AFP(0) = FP(0) lim el¥eatse)l = p®(0) |im e*°w’
(P ) 2 () = F7(0) lim e 2(0) lim ™o

(Py) <o == s¢,<0 ie.

Yoo > s if FP(0)#0

— Yo, takes integer-spaced values and is bounded from below, like the con-
formal level

— the form factor eqs (Lorentz and analytic properties) imply a semi-infinite
integer gradation for the space of fields

e Upper bound on asymptotic behavior (GD, Mussardo '95)

From the spectral representation of correlation functions in reflection-positive
theories

Yoo < Xo/2 If s =0

= 0<ypq<l1 for & scalar, relevant with F® £ 0

— since yo , takes integer-spaced values, only the minimal value is selected

— explains the observed effectiveness of the upper bound



Eigenfields of A, : Naba = Ap, Ga

¢o C,C-conjugate of ¢, s4, =s3 =0

—  Y¢..o = 0 minimal asymptotic behavior allowed for scalar fields
@fo 0 if C,#0

Qbae 0.0 an: a
Dc Fco Do F, oc if Co=20

Ao, (Pa) e
N FP = — Ay, = — universal number
F(b“ <¢C_L>
a
¢a ¢ﬁ
For example: lim F¢ “(61,02) = Fa'bg
6>—+00 (pa)

Example of asymptotic factorization (Smirnov '90; Koubek,Mussardo '93;
GD,Simonetti,Cardy '96; GD,Niccoli '05; Balog,Weisz '07)



Call 2, the space of solutions of the form facto~r equations satisfied by the
eigenfield(s) ¢, (i.e. same spin=0, same C and ()

criticality (CFT) off-criticality (IFT)
Va = ED VA Q, = EB 2.k
1=0 k=0
[ = l_:IeveI k = kcp,a = Yb.a
primary € Vao ®a € $24,0
(80) Va1 C Vait; (00) Quk C Qu kit

Natural conjectures

— Critical and off-critical field spaces are isomorphic. In particular
Q= Va
A€D,
— Simplest cases: k=1 Qi = Dacp, Vau

— More generally it could be k—1 fixed and positive for some A (e.g. irrelevant
primaries)

— $2,4,0 should be spanned by primary fields. Do the basis of ¢,'s and that of
primaries coincide when dim€2,0 > 17



Sine-Gordon Asq = [ d?x (% (Oup)? — 7 COS ﬁgp)
Particles: soliton/antisoliton A4

Amplitudes:

. x ¢
oodeIHhﬁ(l—;) - 01
SIin —

STT(0) = So(0) = —exp —i /
0

z sinhZcoshZ
Sj:(@) - _sinhSi%n(r;%—e i) So(6)
SJ_:(H) - _sinsi;(he% i) So(0) <= 8:—?62
Asymptotic phases: =~ (147%) ab=—2ab a,b= %1
Cy==1 — Co, = Z—Z& (modZ) so, = Z—Z + neo,
Primaires:  Upn.(z) = €' [FFmE@)+vie()] Cy,,=m Cuy,, =v(modZ)
Predicted eigenfields of Ax:  ¢x = Us10+ Upron/pe = €7 7 4 €75

Can be checked in principle against the Lukyanov-Zamolodchikov form factors



Model G a C, b Co, | se (modZ) Da
sine-Gordon | U(1) +1 a —Qﬁ—fab Qﬁ—fa Qﬁ—f eT! 5P 4 T %
minimal Zy Znv | 1,...,N-1 | a i o —%2 ON—a+ UN_a

no symmetry I mod. dep. | O 0 0 all primaries

Conjecture: the eigenfields of A,, .../A,, are primaries with charge —> " | C,,




T heories without internal symmetries

Co=20 Ya — nNoO mMass degeneracy; ag = 0 Ya,b
tanh 2(0 4 invy)
Sa(0) = ] 4(6) t,(6) = T
ot tanh 5(0 — imy)
Cop = C'¢ =0 Vo — Sp € Z, Yb.a = kcb,a c Z Vo
F= @ R =R =DDVvas o
se€Z,k>s k>0 A >0

Ising model with magnetic field at T'=1T,:
Gi1 = {2/3,2/5,1/15} — 8 particles (Zamolodchikov '88)
—0.640902..

— (GD, Mussardo '95; GD, Simonetti '96)
(@) _3.70658..

o
Ao = =

|FY /{o)| = 0.6408(3), |Fi/{e)| =3.707(7) (Caselle,Hasenbusch '00, lattice)

— The solutions of A¢ = A\3¢ are the primaries



Checking out levels: the Lee-Yang model (GD, Niccoli '08)
A= A, + g [ P ()

Critical theory (¢ =0): c¢c= —-22/5 simplest non-trivial fixed point
two primaries: I (A=A =0) pi2=¢ (A=A=-1/5)
tanh 2 (642

Massive theory: S(0) = (Cardy, Mussardo '89)

=)
tanh 2(9—2z)
Expectation for scalar sector: k=1 J-'g’é = @ Vay

We show this and its analogue for any value of the spin by form factor
counting

Differences with previous counting works:

— Cardy, Mussardo '90: thermal Ising (free, chiral)

— Koubek '95: Lee-Yang (no notion of levels in the massive theory)

— Smirnov '95; Jimbo, Miwa, Takeyama '03: generalization to sine-Gordon
and restrictions (again no levels)



Form factor parameterization (Al.Zamolodchikov '91):

FT?’(QL co,0n) = (0|D(0)|01...0,) = UTCLD(QL .o, 0n) H1<Z<j<n cosh & fﬁézh(z - —0,)+1]

0o g+ cosh: .o (im—0)t
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U®(61,...,0,) linear combinations of symmetric polynomials a,ﬁ”)(eel, et

n
Counting:
The basis of " kernel fields"” AR
4 1l
3
A basis for initial conditions is 2 | R A
0 T O
0, n< N
plmalg o 6,) = N N
(U( ))AH1<2<N 1(‘7( ))a H1<z<j<N Fnin(0i — 05), n=N
ai,...,an—_1 hon-negative integers, A€ Z s = va:_ll ia; + NA

Fjsfal""aN_l‘A)(Ql +a,... ,Qj + Cl&,@j_|_1, e 7‘971) ~e¥t a— +oo, 1<7<N-1

y; = 3_1 ta; + 7 (ZN_]l a;+ A+ N — ]> y = Max{y;}=(1,..N-1}



Define the non-negative integers | = Max{s,y,0} I=1-s
Count how many solutions of type (I,1) can be obtained in terms of a1, ...,any_1, A
Result : d(l,1) = % of solutions of type (I,1)
= di(Ddr(l) + d¢(l)d¢(l)
di(l) =) P(N,l— N(N+1)) d,(1) = )  P(N,l—N?)
N=0 N=0

P(N, M) = # of partitions of the integer M into the integers 1,2,..., N

de (1) = # of conformal descendants of the primary & at level (I,0)

= d(I,l) coincides with the total number of fields at level (I,I) in Ma25s

— The critical and off-critical spaces of fields are isomorphic

— The integers [,1 we defined in the massive theory are the conformal levels
(Il = k in the scalar case)

— A complete identification of the solutions exists for [, < 7 (GD,Niccoli '05)



Summary

The program of deriving the field content from the S-matrix is in an advanced
state for massive integrable theories

— A large class of these theories admits a general classification of fields in
terms of charges, spin and asymptotic behavior of form factors

— The asymptotic behavior admits a lower bound and takes integer-spaced
values reproducing the semi-infinite level gradation familiar from CFT

— The form factor equations allow for the introduction of operators A, map-
ping fields into fields

— The scalar eigenfields of the operators A, have minimal (constant) asymp-
totic behavior and appear to select primary fields in the massive theory

— The isomorphism of critical and off-critical field spaces has been shown for
a theory emanating from a non-trivial RG fixed point

Perspectives
— Any integrable theory
— Dropping integrability ?

— Higher dimensions ?



