Quantum information processing with cold Fermi gases in the fast pairing regime

Razvan Teodorescu

Center for Nonlinear Studies, Los Alamos National Laboratory

September 19, 2008

Schrödinger's ket

Quantum Information ...

Quantum information theory ...

Schrödinger's ket

Quantum Information ...

Quantum information theory ...

 $|\text{State}\rangle = c_1 |\text{Alive}\rangle + c_2 |\text{Not}\rangle, \quad c_{1,2} \in \mathbb{C}, \quad |c_1|^2 + |c_2|^2 = 1.$

Quantum Information ...

Topological quantum computation: why?

Quantum Information ...

Topological quantum computation: why?

• The "other" qubits (spin, flux, charge) - two-level systems:

$$H = \Delta \sigma_x + [\epsilon + \eta(t)]\sigma_z, \quad \langle \eta(t)\eta(t') \rangle = C(t,t'),$$

Quantum Information ...

Topological quantum computation: why?

• The "other" qubits (spin, flux, charge) - two-level systems:

$$H = \Delta \sigma_x + [\epsilon + \eta(t)]\sigma_z, \quad \langle \eta(t)\eta(t') \rangle = C(t,t'),$$

• Decoherence and damping: for $C(t,t') \sim \delta(t,t')$

Quantum Information ...

Topological quantum computation: why?

• The "other" qubits (spin, flux, charge) - two-level systems:

$$H = \Delta \sigma_x + [\epsilon + \eta(t)]\sigma_z, \quad \langle \eta(t)\eta(t') \rangle = C(t,t'),$$

- Decoherence and damping: for $C(t,t') \sim \delta(t,t')$
- Effects of time-correlated noise ?

$$C(t,t') = V e^{-|t-t'|/\tau}$$

Quantum Information ...

The trouble with "usual" quantum computation

Quantum Information ...

The trouble with "usual" quantum computation

• Locality

 $H = H_0 + H_1$

Quantum Information ...

The trouble with "usual" quantum computation

• Locality

$$H = H_0 + H_1$$

• Decay channels

$$E_{0,1} = \pm \sqrt{\epsilon^2 + |\Delta|^2}, \quad E_2, E_3, \dots$$

Quantum Information ...

Non-abelian anyons, non-local excitations from FQHE

Quantum Information ...

Non-abelian anyons, non-local excitations from FQHE

Quantum Information ...

Fractional Quantum Hall Effect: a refresher

• Berry phase, Aharonov-Bohm:
$$\Psi(\vec{r}) \sim \exp\left[\frac{ie}{\hbar c} \int_{\vec{r}_0}^{\vec{r}} \vec{A} \cdot d\vec{\ell}\right]$$

Quantum Information ...

Fractional Quantum Hall Effect: a refresher

• Berry phase, Aharonov-Bohm: $\Psi(\vec{r}) \sim \exp\left[\frac{ie}{\hbar c} \int_{\vec{r}_0}^{\vec{r}} \vec{A} \cdot d\vec{\ell}\right]$

$$\oint_{\Gamma} \vec{A} \cdot d\vec{\ell} = \iint_{\Omega} \vec{\nabla} \times \vec{A} \cdot dS = N \frac{hc}{e} \to \Phi = N \Phi_0$$

Quantum Information ...

Fractional Quantum Hall Effect: a refresher

• Berry phase, Aharonov-Bohm: $\Psi(\vec{r}) \sim \exp\left[\frac{ie}{\hbar c} \int_{\vec{r}_0}^{\vec{r}} \vec{A} \cdot d\vec{\ell}\right]$

$$\oint_{\Gamma} \vec{A} \cdot d\vec{\ell} = \iint_{\Omega} \vec{\nabla} \times \vec{A} \cdot dS = N \frac{hc}{e} \to \Phi = N \Phi_0$$

- Quantization (Streda's formula): $\sigma = \frac{\delta A}{\delta J} \sim \frac{\delta N_{\phi}}{\delta N_e} = \nu$
- The $\nu = 5/2$ state: Laughlin's wavefunction:

$$\Psi_{GS}(z_1, \dots z_{2n}) = \Pr[(z_i - z_j)^{-1}] \prod_{k < l} (z_k - z_l)^2 \prod_j e^{-|z_j|^2/4},$$

$$\Pr(A) = \sqrt{\operatorname{Det}(A)}$$

Quantum Information ...

Two-point functions in the $\nu = 5/2$ state

$$\Psi_{2qh}(z_1, z_2; z_3, \dots z_{2n}) = \Pr\left[\frac{z_1 - z_2}{z_1 z_2(z_i - z_j)}\right] \prod_m z_m \prod_{k < l} (z_k - z_l)^2 \prod_j e^{-|z_j|^2/4},$$

$$\Psi(z_2, z_1) = \Psi(z_1, z_2) e^{\frac{2i\pi}{\kappa}}, \quad \kappa \in \mathbb{Z}.$$

• $\kappa = 1$: bosons

• $\kappa = 2$: fermions

•
$$\kappa = 4$$
: Pfaffians (for $\nu = 5/2$)

Quantum Information ...

Kitaev's proposal: the good news ...

• Non-local (noise-protected)

Quantum Information ...

Kitaev's proposal: the good news ...

- Non-local (noise-protected)
- Non-decaying (zero modes, topological)

Quantum Information ...

Kitaev's proposal: the good news ...

- Non-local (noise-protected)
- Non-decaying (zero modes, topological)
- Non-abelian (non-trivial information)

Quantum Information ...

... and the bad

• Difficult experiment: attempts for $\nu=5/2$

- Difficult experiment: attempts for $\nu = 5/2$
- Worse yet not universal: representations of $SU(2)_2$ not dense in the Hilbert state-space

- Difficult experiment: attempts for $\nu = 5/2$
- Worse yet not universal: representations of $SU(2)_2$ not dense in the Hilbert state-space
- Ideas?

- Difficult experiment: attempts for $\nu = 5/2$
- Worse yet not universal: representations of $SU(2)_2$ not dense in the Hilbert state-space
- Ideas?
- 2D quantum field \rightarrow CFT \rightarrow Virasoro algebra (conformal invariance)

- Difficult experiment: attempts for $\nu = 5/2$
- Worse yet not universal: representations of $SU(2)_2$ not dense in the Hilbert state-space
- Ideas?
- 2D quantum field \rightarrow CFT \rightarrow Virasoro algebra (conformal invariance)

$$[L_n, L_m] = (n-m)L_{n+m} + \frac{c}{12}n(n^2 - 1)\delta_{n+m,0}$$

• Bosons: c = 1;

- Difficult experiment: attempts for $\nu = 5/2$
- Worse yet not universal: representations of $SU(2)_2$ not dense in the Hilbert state-space
- Ideas?
- 2D quantum field \rightarrow CFT \rightarrow Virasoro algebra (conformal invariance)

$$[L_n, L_m] = (n-m)L_{n+m} + \frac{c}{12}n(n^2 - 1)\delta_{n+m,0}$$

• Bosons: c = 1; fermions: c = 1/2

- Difficult experiment: attempts for $\nu = 5/2$
- Worse yet not universal: representations of $SU(2)_2$ not dense in the Hilbert state-space
- Ideas?
- 2D quantum field \rightarrow CFT \rightarrow Virasoro algebra (conformal invariance)

$$[L_n, L_m] = (n-m)L_{n+m} + \frac{c}{12}n(n^2 - 1)\delta_{n+m,0}$$

• Bosons: c = 1; fermions: c = 1/2; non-abelian anyons?

Quantum Information ...

Kac-Moody-Virasoro algebras (loop groups)

Quantum Information ...

Kac-Moody-Virasoro algebras (loop groups)

• Loop current algebra (local anomaly):

$$J^{i} = \frac{\delta W}{\delta A_{i}} = \left(\bar{\psi}\gamma^{i}\psi\right) = \sum_{-\infty}^{\infty} J_{n}^{i} z^{-n-1},$$

$$[J_n^i, J_m^k] = i f^{ik\ell} J_{n+m}^\ell$$

Quantum Information ...

Kac-Moody-Virasoro algebras (loop groups)

• Loop current algebra (local anomaly):

$$J^{i} = \frac{\delta W}{\delta A_{i}} = \left(\bar{\psi}\gamma^{i}\psi\right) = \sum_{-\infty}^{\infty} J_{n}^{i} z^{-n-1},$$

$$[J_n^i, J_m^k] = i f^{ik\ell} J_{n+m}^\ell + \frac{k}{2} \delta^{ij} \delta_{n+m,0}$$

• Wess-Zumino-Novikov-Witten theory (maps from space-time to SU(2))

Quantum Information ...

Kac-Moody-Virasoro algebras (loop groups)

• Loop current algebra (local anomaly):

$$J^{i} = \frac{\delta W}{\delta A_{i}} = \left(\bar{\psi}\gamma^{i}\psi\right) = \sum_{-\infty}^{\infty} J_{n}^{i} z^{-n-1},$$

$$[J_n^i, J_m^k] = i f^{ik\ell} J_{n+m}^\ell + \frac{k}{2} \delta^{ij} \delta_{n+m,0}$$

• Wess-Zumino-Novikov-Witten theory (maps from space-time to SU(2))

$$c = \frac{3k}{k+2},$$

Quantum Information ...

Kac-Moody-Virasoro algebras (loop groups)

• Loop current algebra (local anomaly):

$$J^{i} = \frac{\delta W}{\delta A_{i}} = \left(\bar{\psi}\gamma^{i}\psi\right) = \sum_{-\infty}^{\infty} J_{n}^{i} z^{-n-1},$$

$$[J_n^i, J_m^k] = i f^{ik\ell} J_{n+m}^\ell + \frac{k}{2} \delta^{ij} \delta_{n+m,0}$$

• Wess-Zumino-Novikov-Witten theory (maps from space-time to SU(2))

$$c = \frac{3k}{k+2}, \quad k = 1 \to c = 1; \ k = 2 \to c = \frac{3}{2} = 1 + \frac{1}{2}.$$

Quantum Information ...

WZNW and Knizhnik-Zamolodchikov equations

Quantum Information ...

WZNW and Knizhnik-Zamolodchikov equations

• WZNW: maps g(z) from \mathbb{C} to SU(2) (generically Lie group G):

$$S = \mathbf{k} \cdot \frac{1}{4\pi} \left[\operatorname{Tr} \int d^2 \xi \frac{1}{2} \partial^{\mu} g^{-1} \partial_{\mu} g + \epsilon^{\mu\nu} \int_0^1 d\tau \int d^2 \xi g^{-1} \partial_{\tau} g g^{-1} \partial_{\mu} g g^{-1} \partial_{\nu} g \right]$$

• Equations for field g (K-Z equations):

Quantum Information ...

WZNW and Knizhnik-Zamolodchikov equations

• WZNW: maps g(z) from \mathbb{C} to SU(2) (generically Lie group G):

$$S = \mathbf{k} \cdot \frac{1}{4\pi} \left[\operatorname{Tr} \int d^2 \xi \frac{1}{2} \partial^{\mu} g^{-1} \partial_{\mu} g + \epsilon^{\mu\nu} \int_0^1 d\tau \int d^2 \xi g^{-1} \partial_{\tau} g g^{-1} \partial_{\mu} g g^{-1} \partial_{\nu} g \right]$$

• Equations for field g (K-Z equations):

$$\left[(k+2)\frac{\partial}{\partial z_i} + \sum_{j\neq i}^n \frac{\tau_i^a \tau_j^a}{z_i - z_j}\right] \langle g(z_1)g(z_2)...g(z_n) \rangle = 0.$$

Quantum Information ...

The solution in search of a model

Wanted:

• Non-local (multi-particle)

Quantum Information ...

The solution in search of a model

Wanted:

- Non-local (multi-particle)
- Non-abelian anyons

Quantum Information ...

The solution in search of a model

Wanted:

- Non-local (multi-particle)
- Non-abelian anyons
- Degenerate (zero modes)

Quantum Information ...

The solution in search of a model

Wanted:

- Non-local (multi-particle)
- Non-abelian anyons
- Degenerate (zero modes)
- Dense representations

Is there such a physical system within reach ?

Quantum Information ...

The pairing model

Richardson (1964), Gaudin (1972)

$$\hat{H} = \sum_{\mathbf{p},\sigma} \epsilon_{\mathbf{p}} \hat{c}^{\dagger}_{\mathbf{p},\sigma} \hat{c}_{\mathbf{p},\sigma} - g \sum_{\mathbf{p},\mathbf{k}} \hat{c}^{\dagger}_{\mathbf{p}\uparrow} \hat{c}^{\dagger}_{-\mathbf{p}\downarrow} \hat{c}_{-\mathbf{k}\downarrow} \hat{c}_{\mathbf{k}\uparrow}$$

Quantum Information ...

The pairing model

Richardson (1964), Gaudin (1972)

$$\hat{H} = \sum_{\mathbf{p},\sigma} \epsilon_{\mathbf{p}} \hat{c}^{\dagger}_{\mathbf{p},\sigma} \hat{c}_{\mathbf{p},\sigma} - g \sum_{\mathbf{p},\mathbf{k}} \hat{c}^{\dagger}_{\mathbf{p}\uparrow} \hat{c}^{\dagger}_{-\mathbf{p}\downarrow} \hat{c}_{-\mathbf{k}\downarrow} \hat{c}_{\mathbf{k}\uparrow}$$

$$c \to t$$
, $[t_i^3, t_j^{\pm}] = \pm \delta_{ij} t_j^{\pm}$, $[t_i^+, t_j^-] = 2\delta_{ij} t_j^3$,

Quantum Information ...

The pairing model

Richardson (1964), Gaudin (1972)

$$\hat{H} = \sum_{\mathbf{p},\sigma} \epsilon_{\mathbf{p}} \hat{c}^{\dagger}_{\mathbf{p},\sigma} \hat{c}_{\mathbf{p},\sigma} - g \sum_{\mathbf{p},\mathbf{k}} \hat{c}^{\dagger}_{\mathbf{p}\uparrow} \hat{c}^{\dagger}_{-\mathbf{p}\downarrow} \hat{c}_{-\mathbf{k}\downarrow} \hat{c}_{\mathbf{k}\uparrow}$$

$$c \to t$$
, $[t_i^3, t_j^{\pm}] = \pm \delta_{ij} t_j^{\pm}$, $[t_i^+, t_j^-] = 2\delta_{ij} t_j^3$,

$$H_P = \sum_{l \in \Lambda} 2\epsilon_l t_l^3 - g \sum_{l,l'} t_l^+ t_{l'}^- = \sum_{l \in \Lambda} 2\epsilon_l t_l^3 - g \mathbf{t}^+ \cdot \mathbf{t}^-$$

Quantum Information ...

$$H_P = 2\sum_{l \in \Lambda} \epsilon_l R_l + \text{const}, \quad R_l = t_l^3 - \frac{g}{2} \sum_{l' \neq l} \frac{\mathbf{t}_l \cdot \mathbf{t}_{l'}}{\epsilon_l - \epsilon_{l'}}$$

Quantum Information ...

$$H_P = 2\sum_{l \in \Lambda} \epsilon_l R_l + \text{const}, \quad R_l = t_l^3 - \frac{g}{2} \sum_{l' \neq l} \frac{\mathbf{t}_l \cdot \mathbf{t}_{l'}}{\epsilon_l - \epsilon_{l'}}$$
$$[R_i, R_k] = 0$$

Quantum Information ...

$$H_P = 2\sum_{l \in \Lambda} \epsilon_l R_l + \text{const}, \quad R_l = t_l^3 - \frac{g}{2} \sum_{l' \neq l} \frac{\mathbf{t}_l \cdot \mathbf{t}_{l'}}{\epsilon_l - \epsilon_{l'}}$$
$$[R_i, R_k] = 0$$

$$|\Psi\rangle = \prod_{k=1}^{N} b_k^{\dagger} |0\rangle, \quad b_k^{\dagger} = \sum_l \frac{t_l^{\dagger}}{2\epsilon_l - e_k}, \quad \frac{1}{g} = \sum_{p \neq k} \frac{2}{e_k - e_p} + \sum_l \frac{1}{2\epsilon_l - e_k}$$

Quantum Information ...

$$H_P = 2\sum_{l \in \Lambda} \epsilon_l R_l + \text{const}, \quad R_l = t_l^3 - \frac{g}{2} \sum_{l' \neq l} \frac{\mathbf{t}_l \cdot \mathbf{t}_{l'}}{\epsilon_l - \epsilon_{l'}}$$
$$[R_i, R_k] = 0$$

$$|\Psi\rangle = \prod_{k=1}^{N} b_k^{\dagger} |0\rangle, \quad b_k^{\dagger} = \sum_l \frac{t_l^{\dagger}}{2\epsilon_l - e_k}, \quad \frac{1}{g} = \sum_{p \neq k} \frac{2}{e_k - e_p} + \sum_l \frac{1}{2\epsilon_l - e_k}$$

$$R_k \Psi = 0, \quad H_P \Psi = 0.$$

Quantum Information ...

Richardson-Gaudin as singular limit of WZNW

• String of results (1991 – 1999):

Quantum Information ...

- String of results (1991 1999):
- Reformulate Richardson-Gaudin on a torus, group ${\cal G}$

- String of results (1991 1999):
- Reformulate Richardson-Gaudin on a torus, group ${\cal G}$
- Torus \rightarrow Cylinder \rightarrow Plane = Elliptic \rightarrow Trigonometric \rightarrow Rational

- String of results (1991 1999):
- Reformulate Richardson-Gaudin on a torus, group ${\cal G}$
- Torus \rightarrow Cylinder \rightarrow Plane = Elliptic \rightarrow Trigonometric \rightarrow Rational
- k + 2 = torus modular parameter:

- String of results (1991 1999):
- Reformulate Richardson-Gaudin on a torus, group ${\cal G}$
- Torus \rightarrow Cylinder \rightarrow Plane = Elliptic \rightarrow Trigonometric \rightarrow Rational
- k + 2 = torus modular parameter:

$$(k+2)\frac{\partial\Psi}{\partial\epsilon_i} + \widetilde{R}_i\Psi = 0, \quad \widetilde{R}_i \sim \sum_{i\neq j} \tau_i^a \tau_j^a \zeta(\epsilon_i - \epsilon_j)$$
$$\boxed{c = \frac{3k}{k+2} \to -\infty}$$

Quantum Information ...

The limit $c \rightarrow -\infty$: how to approach it?

• Problem: $e^{i\pi/(k+2)}$ - anything

Quantum Information ...

The limit $c \rightarrow -\infty$: how to approach it?

- Problem: $e^{i\pi/(k+2)}$ anything
- Special choice in elliptic formulation gives $\frac{c}{12} \in \mathbb{Z}$: c = -12m

Quantum Information ...

The limit $c \rightarrow -\infty$: how to approach it?

- Problem: $e^{i\pi/(k+2)}$ anything
- Special choice in elliptic formulation gives $\frac{c}{12} \in \mathbb{Z}$: c = -12m

$$k = \frac{-8m}{4m+1}, \quad e^{i\pi/(k+2)} = e^{i\pi/2}$$

Quantum Information ...

The limit $c \rightarrow -\infty$: how to approach it?

- Problem: $e^{i\pi/(k+2)}$ anything
- Special choice in elliptic formulation gives $\frac{c}{12} \in \mathbb{Z}$: c = -12m

$$k = \frac{-8m}{4m+1}, \quad e^{i\pi/(k+2)} = e^{i\pi/2}$$

- Same commutation relations like k = 2, but different level of $SU(2)_k$
- Fractional level representations: Gaberdiel et. al.

Quantum Information ...

Summary of properties

We have:

• Non-local (collective modes)

Summary of properties

We have:

- Non-local (collective modes)
- Non-abelian anyons with k=2 statistics

Summary of properties

We have:

- Non-local (collective modes)
- Non-abelian anyons with k=2 statistics
- Degenerate (zero modes)

Summary of properties

We have:

- Non-local (collective modes)
- Non-abelian anyons with k = 2 statistics
- Degenerate (zero modes)
- Dense representations $k \neq 1, 2, 4$

Semiclassical approximation

$$H_{MF} = \sum_{l \in \Lambda} \epsilon_l S_l^3 - \frac{g}{4} |J^-|^2, \quad \mathbf{J} = \sum_{l \in \Lambda} \mathbf{S}_l$$

Commutators give Poisson brackets, nonlinear Bloch equations

$$\{S_i^{\alpha}, S_j^{\beta}\} = 2\epsilon^{\alpha\beta\gamma}S_i^{\gamma}\delta_{ij}, \quad \dot{\vec{S}}_i = 2(-\vec{\Delta} + \epsilon_i \hat{z}) \times \vec{S}_i$$

Classical gap parameter, constants of motion:

$$\vec{\Delta} = \frac{1}{2}(gJ_x, gJ_y, 0), \quad r_i = \frac{1}{2} \left[S_i^z - \frac{g}{2} \sum_{j \neq i} \frac{\vec{S}_i \cdot \vec{S}_j}{\epsilon_i - \epsilon_j} \right]$$

GGI seminar 2008

Cold atoms

Elliptic solutions

Levitov-Barankov-Spivak Ansatz:

$$\epsilon_k = -\epsilon_{-k}, \quad S_k^{y,z} = -S_{-k}^{y,z}, \quad S_k^x = S_{-k}^x$$
$$S_k^x = A_k\Omega, \quad S_k^y = B_k\dot{\Omega}, \quad S_k^z = C_k + D_k\Omega^2, \quad \Omega = |\Delta|$$

$$|\vec{S}_k| = 1 \Rightarrow (\dot{\Omega})^2 = (\Omega^2 - \Omega_-^2)(\Omega_+^2 - \Omega^2).$$

Constants Ω_\pm fixed by initial conditions and

$$1 = g \sum_{k} A_k$$

Cold atoms

Quantum Information ...

Multi-frequency (multi-cut) hyperelliptic solutions

Dubrovin equations:

$$i\frac{\dot{\Omega}}{\Omega} = \sum_{k=1}^{n-1} u_k, \quad \dot{u}_i = \frac{2iy(u_i)}{\prod_{j\neq i} (u_i - u_j)},$$

Spectral curve:

$$y^{2}(\lambda) = \prod_{i=1}^{n} (\lambda - \epsilon_{i})^{2} \det \left[\sigma_{3} + \frac{g}{2} \sum_{i=0}^{n} \frac{\vec{S}_{i} \cdot \vec{\sigma}}{\lambda - \epsilon_{i}} \right] = \prod_{i=0}^{2n} (\lambda - E_{i})$$

Quantum Information ...

Open questions

• Imposing additional (symmetry) constraints?

Open questions

- Imposing additional (symmetry) constraints?
- Practical gate design?

Open questions

- Imposing additional (symmetry) constraints?
- Practical gate design?
- Using exited states?

Open questions

- Imposing additional (symmetry) constraints?
- Practical gate design?
- Using exited states?