New results on block entanglement in 1D systems

Pasquale Calabrese

Dipartimento di Fisica Università di Pisa

Florence September 2008

With J. Cardy, M, Campostrini & B. Nienhuis, A. Lefevre

 $\begin{array}{l} \mbox{Quantum system in a pure state } |\Psi\rangle \\ \mbox{The density matrix is } \rho = |\Psi\rangle\langle\Psi| \\ ({\rm Tr}\rho^n = 1) & \mathcal{H} = \mathcal{H}_{\rm A}\otimes\mathcal{H}_{\rm B} \end{array}$

・ 同・ ・ ヨ・

Alice can measure only in A, while Bob in the remainder B

 $\begin{array}{l} \mbox{Quantum system in a pure state } |\Psi\rangle \\ \mbox{The density matrix is } \rho = |\Psi\rangle\langle\Psi| \\ ({\rm Tr}\rho^n = 1) & \mathcal{H} = \mathcal{H}_{\mathcal{A}}\otimes\mathcal{H}_{\mathcal{B}} \end{array}$

Alice can measure only in A, while Bob in the remainder B Alice measures are entangled with Bob's ones: Schmidt deco

$$|\Psi\rangle = \sum_{n} c_{n} |\Psi_{n}\rangle_{A} |\Psi_{n}\rangle_{B}$$
 $c_{n} \ge 0, \sum_{n} c_{n}^{2} = 1$

 $\begin{array}{l} \mbox{Quantum system in a pure state } |\Psi\rangle \\ \mbox{The density matrix is } \rho = |\Psi\rangle\langle\Psi| \\ ({\rm Tr}\rho^n = 1) & \mathcal{H} = \mathcal{H}_{\mathcal{A}}\otimes\mathcal{H}_{\mathcal{B}} \end{array}$

Alice can measure only in A, while Bob in the remainder B Alice measures are entangled with Bob's ones: Schmidt deco

$$|\Psi\rangle = \sum_{n} c_{n} |\Psi_{n}\rangle_{A} |\Psi_{n}\rangle_{B}$$
 $c_{n} \ge 0, \sum_{n} c_{n}^{2} = 1$

• If
$$c_1 = 1 \Rightarrow |\Psi\rangle$$
 unentangled

• If c_i all equal $\Rightarrow |\Psi
angle$ maximally entangled

 $\begin{array}{l} \mbox{Quantum system in a pure state } |\Psi\rangle \\ \mbox{The density matrix is } \rho = |\Psi\rangle\langle\Psi| \\ ({\rm Tr}\rho^n = 1) & \mathcal{H} = \mathcal{H}_{\mathcal{A}}\otimes\mathcal{H}_{\mathcal{B}} \end{array}$

Alice can measure only in A, while Bob in the remainder B Alice measures are entangled with Bob's ones: Schmidt deco

$$|\Psi\rangle = \sum_{n} c_{n} |\Psi_{n}\rangle_{A} |\Psi_{n}\rangle_{B}$$
 $c_{n} \ge 0, \sum_{n} c_{n}^{2} = 1$

• If
$$c_1=1$$
 \Rightarrow $|\Psi
angle$ unentangled

• If c_i all equal $\Rightarrow |\Psi
angle$ maximally entangled

A natural measure is the entanglement entropy

$$S_{\mathbf{A}} = -\sum_{n} c_n^2 \log c_n^2 = S_{\mathbf{B}}$$

 ${\cal S}_{A}=0$ when $|\Psi\rangle$ is unentangled and its maximal = log dim ${\cal H}_{min\,A,B}$

 $|\Psi\rangle$ is the ground state of a local Hamiltonian H ls entanglement special?

回 と く ヨ と く ヨ と

 $|\Psi\rangle$ is the ground state of a local Hamiltonian H ls entanglement special?

```
Yes, if A is a large compact spatial subset
```


- How does S_A depend on the size of A?
- What about the shape of A?
- Is there any universality?

Area law and criticality

```
• Area Law: S_A \propto \mathcal{A} [Non extensive]
```

```
Srednicki '93
↓
(lots of works)
↓
Wolf et al '07
```

Only in gapped systems

-2

< ≣ >

• Area Law: $S_A \propto \mathcal{A}$ [Non extensive]

```
Srednicki '93
↓
(lots of works)
↓
Wolf et al '07
```


Only in gapped systems

• Holzhey, Larsen, Wilczek '94: In a 1+1D T = 0 CFT

$$S_A = \frac{c}{3} \ln \frac{\ell}{a}$$

• Area Law: $S_A \propto \mathcal{A}$ [Non extensive]

```
Srednicki '93

\downarrow

(lots of works)

\downarrow

Wolf et al '07
```


Only in gapped systems

• Holzhey, Larsen, Wilczek '94: In a 1+1D T = 0 CFT

$$S_A = rac{c}{3} \ln rac{\ell}{a}$$

• Vidal, Latorre, Rico, Kitaev '03: QI perspective

• Area Law: $S_A \propto \mathcal{A}$ [Non extensive]

```
Srednicki '93

\downarrow

(lots of works)

\downarrow

Wolf et al '07
```


Only in gapped systems

• Holzhey, Larsen, Wilczek '94: In a 1+1D T = 0 CFT

$$S_A = rac{c}{3} \ln rac{\ell}{a}$$

- Vidal, Latorre, Rico, Kitaev '03: QI perspective
- Extensive reviews by Amico et al., Eisert et al. [RMP]

Replica trick: $S_A = -\text{Tr}\rho_A \log \rho_A = -\lim_{n \to 1} \frac{\partial}{\partial n} \text{Tr}\rho_A^n$ For *n* integer, $\text{Tr}\rho_A^n$ is a partition function \Rightarrow analytic calcs are possible!

(4回) (4回) (4回)

Replica trick: $S_A = -\text{Tr}\rho_A \log \rho_A = -\lim_{n \to 1} \frac{\partial}{\partial n} \text{Tr}\rho_A^n$ For *n* integer, $\text{Tr}\rho_A^n$ is a partition function \Rightarrow analytic calcs are possible! In CFT, $\text{Tr}\rho_A^n$ transforms like the correlation function of *m* (# of points between A & B) primary fields with scaling dimension

$$\Delta_{\Phi} = \frac{c}{24} \left(n - \frac{1}{n} \right) \Rightarrow \quad \operatorname{Tr} \rho_{A}^{n} = c_{n} \left(\frac{\ell}{a} \right)^{-\frac{c}{6} \left(n - \frac{1}{n} \right)} \Rightarrow \quad S_{A} = \frac{c}{3} \ln \frac{\ell}{a} + c_{1}^{\prime}$$

<ロ> (四) (四) (日) (日) (日)

Replica trick: $S_A = -\text{Tr}\rho_A \log \rho_A = -\lim_{n \to 1} \frac{\partial}{\partial n} \text{Tr}\rho_A^n$ For *n* integer, $\text{Tr}\rho_A^n$ is a partition function \Rightarrow analytic calcs are possible! In CFT, $\text{Tr}\rho_A^n$ transforms like the correlation function of *m* (# of points between A & B) primary fields with scaling dimension

$$\Delta_{\Phi} = \frac{c}{24} \left(n - \frac{1}{n} \right) \Rightarrow \quad \operatorname{Tr} \rho_{A}^{n} = c_{n} \left(\frac{\ell}{a} \right)^{-\frac{c}{6} \left(n - \frac{1}{n} \right)} \Rightarrow \quad S_{A} = \frac{c}{3} \ln \frac{\ell}{a} + c_{1}^{\prime}$$

Finite temperature

$$S_{A} = \frac{c}{3} \log \left(\frac{\beta}{\pi a} \sinh \frac{\pi \ell}{\beta} \right) + c_{1}' \simeq \begin{cases} \frac{\pi c}{3} \frac{\ell}{\beta} , & \ell \gg \beta & \text{classical extensive} \\ \\ \frac{c}{3} \log \frac{\ell}{a} , & \ell \ll \beta & T = 0 \text{ non-extensive} \end{cases}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Replica trick: $S_A = -\text{Tr}\rho_A \log \rho_A = -\lim_{n \to 1} \frac{\partial}{\partial n} \text{Tr}\rho_A^n$ For *n* integer, $\text{Tr}\rho_A^n$ is a partition function \Rightarrow analytic calcs are possible! In CFT, $\text{Tr}\rho_A^n$ transforms like the correlation function of *m* (# of points between A & B) primary fields with scaling dimension

$$\Delta_{\Phi} = \frac{c}{24} \left(n - \frac{1}{n} \right) \Rightarrow \quad \operatorname{Tr} \rho_{A}^{n} = c_{n} \left(\frac{\ell}{a} \right)^{-\frac{c}{6} \left(n - \frac{1}{n} \right)} \Rightarrow \quad S_{A} = \frac{c}{3} \ln \frac{\ell}{a} + c_{1}^{\prime}$$

Finite temperature

$$S_{\mathbf{A}} = \frac{c}{3} \log \left(\frac{\beta}{\pi a} \sinh \frac{\pi \ell}{\beta} \right) + c'_{1} \simeq \begin{cases} \frac{\pi c}{3} \frac{\ell}{\beta} &, \quad \ell \gg \beta & \text{classical extensive} \\ \\ \frac{c}{3} \log \frac{\ell}{a} &, \quad \ell \ll \beta & T = 0 \text{ non - extensive} \end{cases}$$

Finite size

$$S_A = \frac{c}{3} \log \left(\frac{L}{\pi a} \sin \frac{\pi \ell}{L} \right) + c'_1$$
 Symmetric $\ell \to L - \ell$. Maximal for $\ell = L/2$

4

・ロン ・四と ・日と ・日と

finite temperature

$$S_{\mathsf{A}}(eta) = rac{c}{6} \log\left(rac{eta}{\pi a} \sinh rac{2\pi \ell}{eta}
ight) + ilde{c}_1'$$

and finite size

$$S_{A}(L) = rac{c}{6} \log\left(rac{2L}{\pi a} \sin rac{\pi \ell}{L}
ight) + ilde{c}_{1}^{\prime}$$

 $\tilde{c}'_1 - c'_1/2 = \ln g$ boundary entropy [Affleck, Ludwig]

・ロン ・回 と ・ ヨ と ・ ヨ と

-2

finite temperature

$$\mathcal{S}_{\mathsf{A}}(eta) = rac{c}{6} \log\left(rac{eta}{\pi a} \sinh rac{2\pi \ell}{eta}
ight) + ilde{c}_1'$$

and finite size

$$S_{A}(L) = rac{c}{6} \log\left(rac{2L}{\pi a} \sin rac{\pi \ell}{L}
ight) + ilde{c}_{1}'$$

 $\tilde{c}'_1 - c'_1/2 = \ln g$ boundary entropy [Affleck, Ludwig]

Developments

Since the early papers in 2003 about 1000 papers on the subject!

□ > < ∃ >

< ≣ >

4

Developments

Since the early papers in 2003 about 1000 papers on the subject!

- Effective way of detecting and characterizing quantum criticality
- In random (no conformal invariance!) quantum spin chains $S_A \propto \log \ell$

Rafael and Moore, Laflorencie, Santachiara...

It is related to the number of broken singlets. Is it true for clean chains? NO Alet et al, Jacobsen and Saleur

Topological entanglement entropy

 $S_A = \alpha L - \gamma$, γ is the topological charge

Kitaev and Preskill, Levin and Wen, Fradkin and Moore, Schoutens et al., Furukawa and Misguich, Li and Haldane...

New numerical methods based on entanglement to simulate d > 1

Vidal, Latorre, Cirac, Hastings

Time dependence and DMRG-like simulability of non-equilibrium

PC and JC, Vidal, Schollwoeck, Kollath, Eisert, Cirac, Hastings, Peschel

• Holography: S_A = length of the geodesic in the AdS bulk

Ryu and Takayanagi...

・ロト ・回ト ・ヨト ・ヨト

• Too many more, sorry if YOUR name is not here!

Universal finite size scaling in Heisenberg chains

Joint work with B. Nienhuis and M. Campostrini

$$H = -\sum_{j=1}^{L} [\sigma_j^x \sigma_{j+1}^x + \sigma_j^y \sigma_{j+1}^y - \Delta \sigma_j^z \sigma_{j+1}^z]$$

with periodic boundary conditions

< 注→ < 注→

Universal finite size scaling in Heisenberg chains

Joint work with B. Nienhuis and M. Campostrini

$$H = -\sum_{j=1}^{L} [\sigma_j^x \sigma_{j+1}^x + \sigma_j^y \sigma_{j+1}^y - \Delta \sigma_j^z \sigma_{j+1}^z]$$

with periodic boundary conditions

・ 同 ト ・ ヨ ト ・ ヨ ト

- ${\color{black} \textbf{0}} \ -1 \leq \Delta \leq 1 \text{: gapless}$
- **2** $\Delta = 0$: free fermions
- **3** $\Delta = -1/2$ with L odd: magic
 - Doubly degenerate ground state with no FS for the energy $E_0 = -3/2L$ exactly $_{\rm Baxter}$
 - The components of the ground-state wavefunction (suitable normalized) are integer numbers related to the combinatorics of Alternating Sign Matrices, Plane partitions etc Razumov-Stroganov Correlations are simple functions (rational/factorial) of *L*

Universal finite size scaling in Heisenberg chains

Joint work with B. Nienhuis and M. Campostrini

$$H = -\sum_{j=1}^{L} [\sigma_j^x \sigma_{j+1}^x + \sigma_j^y \sigma_{j+1}^y - \Delta \sigma_j^z \sigma_{j+1}^z]$$

with periodic boundary conditions

- $\bullet \quad -1 \leq \Delta \leq 1: \text{ gapless}$
- **2** $\Delta = 0$: free fermions
- **3** $\Delta = -1/2$ with L odd: magic
 - Doubly degenerate ground state with no FS for the energy $E_0=-3/2L$ exactly $_{\rm Baxter}$
 - The components of the ground-state wavefunction (suitable normalized) are integer numbers related to the combinatorics of Alternating Sign Matrices, Plane partitions etc Razumov-Stroganov Correlations are simple functions (rational/factorial) of *L*

What about the reduced density matrix?

 ρ_A can be written in terms of integers numbers (obvious) Method:

- Getting the GS for a sequence of L
- Select A of length n, and trace over B
- ρ_A is rational: find/guess how depends on the system size L

 ρ_A can be written in terms of integers numbers (obvious) Method:

- Getting the GS for a sequence of L
- Select A of length n, and trace over B
- ρ_A is rational: find/guess how depends on the system size L

$$\rho_1(L) = \begin{bmatrix} (L+1)/2L & 0\\ 0 & (L-1)/2L \end{bmatrix}$$

$$\rho_2(L) = \frac{1}{2^4 L^2} \left[\begin{array}{cccc} 2((L+2)^2 - 1) & 0 & 0 & 0 \\ 0 & 6L^2 - 6 & 5L^2 + 3 & 0 \\ 0 & 5L^2 + 3 & 6L^2 - 6 & 0 \\ 0 & 0 & 0 & 2((L-2)^2 - 1) \end{array} \right]$$

We worked out the analytic expression for any L up to $\ell=6$

For $L \to \infty$ reduces to Sato and Shiroishi The denominators of $\rho_n(L)$ are: $2^{n^2}L^n \prod_{k=1}^{\lfloor n/2 \rfloor} (L^2 - 4k^2)^{n-2k}$

The magic of $\Delta = 1/2$: combinatorics?

- $\rho_n(L)[1,1]$ is the emptiness formation \Rightarrow follows the ASM sequence
- Few other elements of ρ_n(L) can be derived trough recursion relations. We were not able to recognize the others
- The eigenvalues are not simple for general L, also in the TD limit
- In the TD limit

 $S_1 = \ln 2, S_2 = 0.95075, S_3 = 1.09287, S_4 = 1.19076, S_5 = 1.26588, S_6 = 1.32701$

0.8 0.6

also from Sato Shiroishi. Growing like $1/3 \log \ell$. OK

• For finite *L*

 $S_n(L) = \frac{1}{3} \log \frac{L}{\pi} \sin \frac{\pi n}{L} + 0.730503 + O(1/L^2)$

The magic of $\Delta = 1/2$: combinatorics? II

•
$$L = \infty$$
, $\operatorname{Tr} \rho_n^2 = r_n / 2^{2n^2} (\propto n^{-c/4} \text{ CFT})$
 $r_1 = 2$, $r_2 = 130$, $r_3 = 107468$, $r_4 = 1796678230$
 $r_5 = 413605561988912$, $r_6 = 1768256505302499935380$

Grows too quickly to be guessed

• numerically:

 $R_1=0.5, \quad R_2=0.5078, \quad R_3=0.4099, \quad R_4=0.4183, \quad R_5=0.3673, \quad R_6=0.3744, \quad R_6=0.3744, \quad R_8=0.3744, \quad R_8$

It alternates!!

• A finite size sequence $Q_n = \text{Tr}\rho_n^2(L = (n \pm 1)/2)$

$$Q_1 = rac{5}{9}, \quad Q_2 = rac{327}{625}, \quad Q_3 = rac{11393}{24696}, \quad Q_4 = rac{3865135}{8732691}, \quad Q_5 = rac{135038791915}{326039858001}$$

・回 ・ ・ ヨ ・ ・ ヨ ・

3

Grows slower, but still too quick to be guessed!

The spectrum of the reduced density matrix

- The pattern repeats at the top and bottom of the spectrum
- The smallest eigenvalues seems to scale like e^{-an^2}
- This is true for the "all up" eigenvalue ($\rho[1,1] = \text{EFP}$) that at 2/3 (3/4) of the spectrum for *n* odd (even).

Effective Hamiltonian for the subsystem

$$\rho_n(L) = e^{-\hat{H}_n}$$

See also Li & Haldane

Properties of \hat{H}_n :

- A nearest neighbor hopping term $(J_j S_i^+ S_{i+1}^- + h.c)$
- A diagonal interaction term $(J_i^z S_i^z S_{i+1}^z)$
- ullet in approximately the same ratio as in the original H $(\sim 1/2)$
- Other terms (multiple hops, far hops, multispin) are at least one (typically two) order of magnitude smaller
- The couplings in \hat{H} depends on the position quadratically

A surprise

GS doubly degenerate at $L \Rightarrow$ symmetrized density matrix

$$\rho_{\mathbf{A}}^{\mathbf{s}} = \frac{1}{2} (|\Psi_{0}^{+}\rangle\langle\Psi_{0}^{+}| + |\Psi_{0}^{-}\rangle\langle\Psi_{0}^{-}|),$$

has minimum energy \Rightarrow *T* = 0 mixed state (no interpretation in CFT)

3

何 ▶

★ 문 ► ★ 문 ►

A surprise

GS doubly degenerate at $L \Rightarrow$ symmetrized density matrix

$$\rho_{\mathbf{A}}^{\mathbf{s}} = \frac{1}{2} (|\Psi_0^+\rangle \langle \Psi_0^+| + |\Psi_0^-\rangle \langle \Psi_0^-|),$$

has minimum energy \Rightarrow T = 0 mixed state (no interpretation in CFT)

$$S_n^s(L) = \frac{1}{3} \log n + 0.730503 + O(1/L^2)$$

No sign of a sin $\pi n/L$. No insight why!

同 と く き と く き と

A surprise

GS doubly degenerate at $L \Rightarrow$ symmetrized density matrix

$$\rho_{\mathbf{A}}^{\mathbf{s}} = \frac{1}{2} (|\Psi_0^+\rangle \langle \Psi_0^+| + |\Psi_0^-\rangle \langle \Psi_0^-|),$$

has minimum energy \Rightarrow T = 0 mixed state (no interpretation in CFT)

$$S_n^s(L) = \frac{1}{3}\log n + 0.730503 + O(1/L^2)$$

No sign of a sin $\pi n/L$. No insight why!

restoring the symmetry (by definition), and roughly a parabola (obvious)

・ロト ・回ト ・ヨト

Entanglement in 1D systems

Larger *n* for asymptotic scaling: DMRG

$$S_{lpha} \equiv rac{1}{1-lpha} \mathrm{Tr}
ho_{\mathcal{A}}^{lpha} = rac{c}{6} (1+lpha^{-1}) \ln rac{L}{\pi} \sin rac{\pi n}{L} + c_{lpha}'$$

4

・ロン ・回と ・ヨと ・

Larger *n* for asymptotic scaling: DMRG

$$S_{\alpha} \equiv rac{1}{1-lpha} \mathrm{Tr}
ho_{A}^{lpha} = rac{c}{6} (1+lpha^{-1}) \ln rac{L}{\pi} \sin rac{\pi n}{L} + c_{lpha}'$$

Pasquale Calabrese Entanglement in 1D systems

500

Exact result for XX

TD limit

$$d_{lpha}(n)\equiv S_{lpha}(n)-S_{lpha}^{
m CFT}(n)$$

4

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶

Exact result for XX

TD limit

$$d_{\alpha}(n) \equiv S_{\alpha}(n) - S_{\alpha}^{
m CFT}(n) = n^{-p_{\alpha}} f_{\alpha}^{\pm}$$

Pasquale Calabrese Entanglement in 1D systems

Exact result for XX [Finite Size]

$$S_{\alpha}(n,L) = S_{\alpha}^{\rm CFT}(n,L) + \left[\frac{L}{\pi}\sin\frac{\pi n}{L}\right]^{-p_{\alpha}}F_{\alpha}^{\pm,\pm}(n/L)$$

All *n* for several odd *L* from 17 to 4623 [$\sim 10^5$ points]:

The finite size ansatz for any Δ

$$S_{\alpha}(n,L) = S_{\alpha}^{\mathrm{CFT}}(n,L) + \left[\frac{L}{\pi}\sin\frac{\pi n}{L}\right]^{-\rho_{\alpha}}F_{\alpha}^{\pm,\pm}(n/L)$$

 p_{α} and $F_{\alpha}(x)$ are universal. They are **not** due to irrelevant operators, but are characteristic of the fixed point.

Similar the the "Friedel" oscillations with OBC for S_A [Laflorencie et al], but here is PBC The analytic derivation remains an open problem!

The finite size ansatz for any Δ

$$S_{\alpha}(n,L) = S_{\alpha}^{\mathrm{CFT}}(n,L) + \left[\frac{L}{\pi}\sin\frac{\pi n}{L}\right]^{-\rho_{\alpha}}F_{\alpha}^{\pm,\pm}(n/L)$$

 p_{α} and $F_{\alpha}(x)$ are universal. They are not due to irrelevant operators, but are characteristic of the fixed point.

Similar the the "Friedel" oscillations with OBC for S_A [Laflorencie et al], but here is PBC The analytic derivation remains an open problem!

- Similar plots for any Δ , odd and even *L*, any α
- F_{α} depends on the parity of *L*, p_{α} does not
- *F*_α(x) has no symmetry, but for α = 2 looks perfectly antisymmetric
- $p_{\alpha} = 2K/\alpha!!!$ why?

The density of eigenvalues (with A. Lefevre)

 $\operatorname{Tr} \rho_A^{\alpha} = \sum_i \lambda_i^{\alpha} = c_{\alpha} \ell^{-\frac{c}{6}(\alpha - \frac{1}{\alpha})} = c_{\alpha} e^{-b(\alpha - \frac{1}{\alpha})} \text{ gives more info than } S_A$ E.G.: Maximum eigenvalue $\lambda_M = e^{-b}$ Peschel, Orus et al.

・ロン ・回 と ・ ヨ と ・ ヨ と

The density of eigenvalues (with A. Lefevre)

$$\operatorname{Tr} \rho_{A}^{\alpha} = \sum_{i} \lambda_{i}^{\alpha} = c_{\alpha} \ell^{-\frac{c}{6}(\alpha - \frac{1}{\alpha})} = c_{\alpha} e^{-b(\alpha - \frac{1}{\alpha})} \text{ gives more info than } S_{A}$$

E.G.: Maximum eigenvalue $\lambda_{M} = e^{-b}$
Peschel, Orus et al.
Also the full distribution: $P(\lambda) = \sum_{i} \delta(\lambda - \lambda_{i})$
$$\sum_{i} c_{i}^{-1} (\lambda_{i}^{\alpha}) = \sum_{i} \delta(t + \log \lambda_{i}) = \int_{i} d\lambda_{i} B(\lambda_{i}) \delta(t + \log \lambda_{i}) = B(e^{-t})$$

$$\sum_{i} \mathcal{L}_{\alpha \to t}^{-1}(\lambda_{i}^{\alpha}) = \sum_{i} \delta(t + \log \lambda_{i}) \to \int d\lambda P(\lambda) \delta(t + \log \lambda) = P(e^{-t})$$

Ignoring α -dependence of c_{α} we get

$$P(\lambda) = \delta(\lambda_M - \lambda) + \theta(\lambda_M - \lambda) \frac{b}{\lambda} \sqrt{\frac{1}{b \log \frac{\lambda_M}{\lambda}}} I_1\left(2\sqrt{b \log \frac{\lambda_M}{\lambda}}\right)$$

 $P(\lambda)$ starts from λ_M with a delta peak

→ Ξ → < Ξ →</p>

The density of eigenvalues: simple consequences

• # eigenvalues larger than λ :

$$n(\lambda) = \int_{\lambda}^{\lambda_{\max}} d\lambda P(\lambda) = I_0(2\sqrt{b\ln(\lambda_M/\lambda)}).$$

- Normalization: $\sum \lambda_i = 1 \Rightarrow \int \lambda P(\lambda) d\lambda = 1$
- Entanglement entropy: ${\cal S}=-\int_0^{\lambda_M}\lambda\ln\lambda P(\lambda)d\lambda=-2\ln\lambda_M$
- Majorization:

$$s(M) \equiv \sum_{i=1}^{M} \lambda_i \rightarrow \lambda_M \left[1 + \int_0^{I_0^{-1}(M)} dy e^{-y^2/4b} I_1(y) \right]$$

at fixed M, is a monotonous function of λ_M (that is a monotonous function of ℓ). agrees Orus et al.

・ロト ・回ト ・ヨト ・ヨト

The density of eigenvalues: Check in the XX chain

Deviations from CFT at $M \simeq \ln \ell$ [lattice effects]

3

3

The density of eigenvalues: Check in the XX chain

Deviations from CFT at $M \simeq \ln \ell$ [lattice effects]

The density of eigenvalues: Check in the XX chain

The degeneracies of the eigenvalues are not reproduced, but we observe

$$b\lnrac{\lambda_{\mu}}{\lambda_{
u}}\simeq k \Rightarrow ~~rac{\lambda_{
u}}{\lambda_{\mu}}\simeq e^{-rac{6k}{\ln\ell/a}}$$

"entanglement gap", related to the scaling of the eigenvalues of the corner transfer matrix Peschel & Truong '87

Entanglement has still a lot to teach us even in 1D!

Thank you

< 注→ < 注→

Pasquale Calabrese Entanglement in 1D systems