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Entanglement: what is it?

Quantum system in a pure state |Ψ〉
The density matrix is ρ = |Ψ〉〈Ψ|
(Trρn = 1) H = HA ⊗HB

Alice can measure only in A, while Bob in the remainder B

Alice measures are entangled with Bob’s ones: Schmidt deco

|Ψ〉 =
∑
n

cn|Ψn〉A|Ψn〉B cn ≥ 0,
∑
n

c2
n = 1

If c1 = 1 ⇒ |Ψ〉 unentangled
If ci all equal ⇒ |Ψ〉 maximally entangled

A natural measure is the entanglement entropy

SA = −
∑
n

c2
n log c2

n = SB

SA = 0 when |Ψ〉 is unentangled and its maximal = log dimHmin A,B

when cn are equals
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Entanglement meets cond-mat (and QFT)

|Ψ〉 is the ground state of a local Hamiltonian H
Is entanglement special?

Yes, if A is a large compact spatial
subset

How does SA depend on the size of A?

What about the shape of A?

Is there any universality?
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Area law and criticality

Area Law: SA ∝ A [Non extensive]

Srednicki ’93
↓

(lots of works)
↓

Wolf et al ’07

Only in gapped systems

Holzhey, Larsen, Wilczek ’94: In a 1+1D T = 0 CFT

SA =
c

3
ln

`

a

Vidal, Latorre, Rico, Kitaev ’03: QI perspective

Extensive reviews by Amico et al., Eisert et al. [RMP]
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Entanglement and CFT (with J. Cardy)

Replica trick: SA = −TrρA log ρA = − lim
n→1

∂

∂n
TrρA

n

For n integer, Trρn
A is a partition function ⇒ analytic calcs are possible!

In CFT, Trρn
A transforms like the correlation function of m (# of points

between A & B) primary fields with scaling dimension

∆Φ = c
24

(
n − 1

n

)
⇒ Tr ρn

A = cn

(
`

a

)− c
6 (n− 1

n )

⇒ SA =
c

3
ln

`

a
+ c ′1

Finite temperature

SA =
c

3
log

„
β

πa
sinh

π`

β

«
+c ′1 '

8>>><>>>:
πc

3

`

β
, `� β classical extensive

c

3
log

`

a
, `� β T = 0 non− extensive

Finite size

SA =
c

3
log

„
L

πa
sin

π`

L

«
+ c ′1 Symmetric `→ L− `. Maximal for ` = L/2
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Open systems

Tr ρA
n = c̃n

(
2`

a

) c
12

(n− 1
n
)

⇒ SA =
c

6
log

2`

a
+ c̃ ′1

finite temperature

SA(β) =
c

6
log

„
β

πa
sinh

2π`

β

«
+ c̃ ′1

and finite size

SA(L) =
c

6
log

„
2L

πa
sin

π`

L

«
+ c̃ ′1

c̃ ′1 − c ′1/2 = ln g boundary entropy
[Affleck, Ludwig] [From Laflorencie et al ’06]
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Developments

Since the early papers in 2003 about 1000 papers on the subject!

Effective way of detecting and characterizing quantum criticality

In random (no conformal invariance!) quantum spin chains SA ∝ log `
Rafael and Moore, Laflorencie, Santachiara. . .

It is related to the number of broken singlets. Is it true for clean chains? NO
Alet et al, Jacobsen and Saleur

Topological entanglement entropy

SA = αL− γ, γ is the topological charge

Kitaev and Preskill, Levin and Wen, Fradkin and Moore, Schoutens et al., Furukawa and Misguich, Li and Haldane. . .

New numerical methods based on entanglement to simulate d > 1
Vidal, Latorre, Cirac, Hastings . . . . . . . . .

Time dependence and DMRG-like simulability of non-equilibrium
PC and JC, Vidal, Schollwoeck, Kollath, Eisert, Cirac, Hastings, Peschel . . . . . . . . .

Holography: SA = length of the geodesic in the AdS bulk
Ryu and Takayanagi. . .

Too many more, sorry if YOUR name is not here!
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Universal finite size scaling in Heisenberg chains

Joint work with B. Nienhuis and M. Campostrini

H = −
L∑

j=1

[σx
j σx

j+1 + σy
j σy

j+1 −∆σz
j σz

j+1]

with periodic boundary conditions

1 −1 ≤ ∆ ≤ 1: gapless

2 ∆ = 0: free fermions
3 ∆ = −1/2 with L odd: magic

Doubly degenerate ground state with no FS for the energy
E0 = −3/2L exactly Baxter

The components of the ground-state wavefunction (suitable
normalized) are integer numbers related to the combinatorics
of Alternating Sign Matrices, Plane partitions etc Razumov-Stroganov

Correlations are simple functions (rational/factorial) of L

What about the reduced density matrix?
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The magic of ∆ = 1/2

ρA can be written in terms of integers numbers (obvious)
Method:

Getting the GS for a sequence of L

Select A of length n, and trace over B

ρA is rational: find/guess how depends on the system size L

ρ1(L) =

»
(L + 1)/2L 0

0 (L − 1)/2L

–

ρ2(L) =
1

24L2

2664
2((L + 2)2 − 1) 0 0 0

0 6L2 − 6 5L2 + 3 0

0 5L2 + 3 6L2 − 6 0

0 0 0 2((L − 2)2 − 1)

3775
We worked out the analytic expression for any L up to ` = 6

For L →∞ reduces to Sato and Shiroishi

The denominators of ρn(L) are: 2n2
Ln

[n/2]∏
k=1

(L2 − 4k2)n−2k
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The magic of ∆ = 1/2: combinatorics?

ρn(L)[1, 1] is the emptiness formation ⇒ follows the ASM sequence

Few other elements of ρn(L) can be derived trough recursion
relations. We were not able to recognize the others

The eigenvalues are not simple for general L, also in the TD limit

In the TD limit

S1 = ln 2, S2 = 0.95075, S3 = 1.09287, S4 = 1.19076, S5 = 1.26588, S6 = 1.32701

also from Sato Shiroishi. Growing like 1/3 log `. OK

For finite L

Sn(L) =
1

3
log

L

π
sin

πn

L
+ 0.730503 + O(1/L2)
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The magic of ∆ = 1/2: combinatorics? II

L = ∞, Trρ2
n = rn/22n2

(∝ n−c/4 CFT)

r1 = 2, r2 = 130, r3 = 107468, r4 = 1796678230

r5 = 413605561988912, r6 = 1768256505302499935380

Grows too quickly to be guessed

numerically:

R1 = 0.5, R2 = 0.5078, R3 = 0.4099, R4 = 0.4183, R5 = 0.3673, R6 = 0.3744

It alternates!!

A finite size sequence Qn = Trρ2
n(L = (n ± 1)/2)

Q1 =
5

9
, Q2 =

327

625
, Q3 =

11393

24696
, Q4 =

3865135

8732691
, Q5 =

135038791915

326039858001

Grows slower, but still too quick to be guessed!
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The spectrum of the reduced density matrix

The pattern repeats at the top and bottom of the spectrum

The smallest eigenvalues seems to scale like e−an2

This is true for the “all up” eigenvalue (ρ[1, 1] =EFP) that at
2/3 (3/4) of the spectrum for n odd (even).
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Effective Hamiltonian for the subsystem

ρn(L) = e−Ĥn

See also Li & Haldane

Properties of Ĥn:

A nearest neighbor hopping term (JjS
+
j S−j+1 +h.c)

A diagonal interaction term (Jz
j Sz

j Sz
j+1)

in approximately the same ratio as in the original H (∼ 1/2)

Other terms (multiple hops, far hops, multispin) are at least
one (typically two) order of magnitude smaller

The couplings in Ĥ depends on the position quadratically

Jz
j (n) ' A

j(n − j)

n
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A surprise

GS doubly degenerate at L ⇒ symmetrized density matrix

ρs
A =

1

2
(|Ψ+

0 〉〈Ψ
+
0 |+ |Ψ

−
0 〉〈Ψ

−
0 |) ,

has minimum energy ⇒ T = 0 mixed state (no interpretation in CFT)

S s
n(L) =

1

3
log n + 0.730503 + O(1/L2)

No sign of a sinπn/L. No insight why!

Entanglement is measured by

Mn = Sn + SL−n − SL ,

restoring the symmetry (by definition),

and roughly a parabola (obvious)
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Larger n for asymptotic scaling: DMRG

Sα ≡
1

1− α
Trρα

A =
c

6
(1 + α−1) ln

L

π
sin

πn

L
+ c ′α
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Exact result for XX

TD limit
dα(n) ≡ Sα(n)− SCFT

α (n)

= n−pαf ±α

Using the exact knowledge of cα

⇒ pα = 2/α!!
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Exact result for XX [Finite Size]

Sα(n, L) = SCFT
α (n, L) +

[
L

π
sin

πn

L

]−pα

F±,±
α (n/L)

All n for several odd L from 17 to 4623 [∼ 105 points]:

F±,−
2 (x) ∝ cos πx and F±,+

2 (x) x independent
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The finite size ansatz for any ∆

Sα(n, L) = SCFT
α (n, L) +

»
L

π
sin

πn

L

–−pα

F±,±
α (n/L)

pα and Fα(x) are universal. They are not due to irrelevant operators, but are
characteristic of the fixed point.

Similar the the “Friedel” oscillations with OBC for SA [Laflorencie et al], but here is PBC

The analytic derivation remains an open problem!

For ∆ = −1/2, α = 2

Similar plots for any ∆, odd and even L,
any α

Fα depends on the parity of L, pα does not

Fα(x) has no symmetry, but for α = 2
looks perfectly antisymmetric

pα = 2K/α!!! why?
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The analytic derivation remains an open problem!

For ∆ = −1/2, α = 2
Similar plots for any ∆, odd and even L,
any α

Fα depends on the parity of L, pα does not

Fα(x) has no symmetry, but for α = 2
looks perfectly antisymmetric

pα = 2K/α!!! why?
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The density of eigenvalues (with A. Lefevre)

Trρα
A =

∑
i λ

α
i = cα`−

c
6 (α− 1

α ) = cαe−b(α− 1
α ) gives more info than SA

E.G.: Maximum eigenvalue λM = e−b
Peschel, Orus et al.

Also the full distribution: P(λ) =
∑

i δ(λ− λi )∑
i

L−1
α→t(λ

α
i ) =

∑
i

δ(t + log λi ) →
∫

dλP(λ)δ(t + log λ) = P(e−t)

Ignoring α-dependence of cα we get

P(λ) = δ(λM − λ) + θ(λM − λ)
b

λ

√
1

b log λM

λ

I1

(
2

√
b log

λM

λ

)
P(λ) starts from λM with a delta peak
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The density of eigenvalues: simple consequences

# eigenvalues larger than λ:

n(λ) =

∫ λmax

λ
dλP(λ) = I0(2

√
b ln(λM/λ)) .

Normalization:
∑

λi = 1 ⇒
∫

λP(λ)dλ = 1

Entanglement entropy: S = −
∫ λM

0 λ lnλP(λ)dλ = −2 lnλM

Majorization:

s(M) ≡
M∑
i=1

λi → λM

[
1 +

∫ I−1
0 (M)

0
dye−y2/4bI1(y)

]

at fixed M, is a monotonous function of λM (that is a
monotonous function of `). agrees Orus et al.
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The density of eigenvalues: Check in the XX chain

Deviations from CFT at M ' ln `
[lattice effects]

Scaling variable x = 2
√

b ln(λM/λ)
n(λ) = I0(x) model indipendent !!.

The degeneracies of the eigenvalues are not reproduced, but we observe

b ln
λµ

λν
' k ⇒ λν

λµ
' e−

6k
ln `/a

”entanglement gap”, related to the scaling of the eigenvalues of the
corner transfer matrix Peschel & Truong ’87
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Conclusion

Entanglement has still a lot to teach us even in 1D!

Thank you
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