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Introduction

String theory is a very powerful tool to analyze field theories, and in
particular gauge theories.

Behind this, there is a rather simple and well-known fact: in the field

theory limit o/ — 0, a single string scattering amplitude reproduces a
sum of different Feynman diagrams

e
J o Yl e
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Introduction

String theory is a very powerful tool to analyze field theories, and in
particular gauge theories.

Behind this, there is a rather simple and well-known fact: in the field

theory limit o/ — 0, a single string scattering amplitude reproduces a
sum of different Feynman diagrams

Q;X +>m<+...

String theory S-matrix elements = vertices and effective actions in
field theory
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In general, a N-point string amplitude Ay is given schematically by

An :/z (Voy - Vou)s

where
> V,, is the vertex for the emission of the field ¢;: V5, = ¢; Vy,
» 3 is a Riemann surface of a given topology

> (...)s is the v.e.v. with respect to the vacuum defined by ¥..
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In general, a N-point string amplitude Ay is given schematically by

An Z/z (Voy - Vou)s

where
> V,, is the vertex for the emission of the field ¢;: V5, = ¢; Vy,
» 3 is a Riemann surface of a given topology

> (...)s is the v.e.v. with respect to the vacuum defined by ¥..

The simplest world-sheets ¥ are:

spheres for closed strings and disks for open strings
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In general, a N-point string amplitude Ay is given schematically by

An Z/z (Voy - Vou)s

where
> V,, is the vertex for the emission of the field ¢;: V5, = ¢; Vy,
» 3 is a Riemann surface of a given topology
> (...)s is the v.e.v. with respect to the vacuum defined by ¥..
For any closed string field ¢ ¢oscq, ON€ has
< V"’ closed >sphcrc =0 = < ®C1030d>sphcrc =0
and for any open string field ¢ ..., One has

<V®npcn >disk =0 = <¢’0pcn>disk =0
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» Since
< ¢closed>sphere =0 , <¢0Pen>disk =0

spheres and disks can describe only the trivial vacuum around
which ordinary perturbation theory is performed

» Spheres and disks are inadequate to describe non-perturbative
backgrounds!



» Since
< ¢Closed>sphere =0 , <¢0Pen>disk =0

spheres and disks can describe only the trivial vacuum around
which ordinary perturbation theory is performed

» Spheres and disks are inadequate to describe non-perturbative
backgrounds!
However, after the discovery of D-branes, the perspective has
drastically changed, and nowadays also some non-perturbative
properties of field theories can be analyzed using string theory!

Dclosed Dclosed

= v — <¢closed>disk # 0

/

source [Di Vecchia et al. 1997,...]

D-brane
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In this talk

» We will extend this idea to open strings —

<¢°Pen>disk 7& 0
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In this talk

» We will extend this idea to open strings = ( dopen) i # 0

» We will see how instantons in (supersymmetric) gauge theories
can be described using open strings and D-branes.



String description of SYM theories and their instantons

The effective action of a SYM theory can be given a simple and
calculable string theory realization:

» The gauge degrees of freedom are realized by open strings
attached to NV D3 branes.
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String description of SYM theories and their instantons

The effective action of a SYM theory can be given a simple and
calculable string theory realization:

» The gauge degrees of freedom are realized by open strings
attached to NV D3 branes.

o
« D-inStantons
/ )

» The instanton sector of charge k is realized by adding k D(—1)
branes (D-instantons).




Let us discuss this construction for A/ = 2 theories
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N =2 SU(N) SYM theory from fractional branes

» It is realized by the massless d.o.f. of orbifold
open strings attached to N fractional
D3-branes in the orbifold background

R* x R? x R*/Z;

where

Zo {x8, ., x% — {—x5 .., —x°} , ,
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N =2 SU(N) SYM theory from fractional branes

» It is realized by the massless d.o.f. of orbifold
open strings attached to N fractional
D3-branes in the orbifold background

R* x R? x R*/Z;

where x*, x5

Zo {x8, ., x% — {—x5 .., —x°} , ,

» The orbifold breaks 1/2 SUSY in the bulk, the D3 branes a further
1/2:

1
32 x - x - =8 real supercharges — N =2SUSY

2

N =
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||O123|45|6789
D3||————|>k >k|>k x % %

Since
SO(10) — SO(4) x U(1) x SO(4)

the ten dimensional string coordinates X", 4/ and spin fields S split
as follows

XM — XPL’X’)_(7XI 9 1/JM _)77/}#7\U7\Tjawi
SA — S5,5.S4,5%S7S%,8,5.S,, 8 S4

For example

Ve ((2,2),0,(1,1)) , W oe ((1.1),-1,(1,1))
52584 € ((2,1),-1/2,(2,1)) , S.S5:S, € ((2.1),+1/2,(1,2))



String vertex operators and fields

» String vertex operators:

Vo ~ A y# ePX e
g 1
Vo ~ AAS,S SpePXez¢

V, ~ ¢WePXe ¥

with all polarizations in the adjoint of SU(N)



String vertex operators and fields

» String vertex operators:

Va =~ A, qpHtePXe?
g 1
Vo ~ AAS,S SpePXez¢

V, ~ ¢WePXe ¥

with all polarizations in the adjoint of SU(N)

» Field content: A/ = 2 vector superfield

D(x,0) = d(x) + ON(x) + %«90‘“’«9 Fi(x)+--



Gauge action from disks on D3’s

Q;K +>,<+...

» String amplitudes on disks attached to the D3 branes in the limit
o' — 0 with gauge quantities fixed

give rise to the ' = 2 SYM action

Sevm = /d4x Tr{% F2,+2D,¢ D" —2AsD N

ng

+iV2gRac®[ 6, Re] + V2 g Nens[ 5,0%] + [ 6,5]° }



Effective action

» We are interested in the low-energy effective action on the
Coulomb branch parametrized by the v.e.v.s of the adjoint chiral
superfields:

<q>uv> = <(Duv> :auv:au5UV 5 uv= 17---3N 5 Zauzo
u
breaking SU(N) — U(1)N-"

» Up to two-derivatives, N/ = 2 SUSY constrains the effective action
for ® to be of the form

Sul®] = / d*x a0 () + c.c
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» The prepotential F(®) has a perturbative part and a non -
perturbative part due to instantons.
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» The prepotential F(®) has a perturbative part and a non -
perturbative part due to instantons.

» For example, for N = 2 we have

F(d) = 7¢2 Iog + Z}‘ (o



» The prepotential F(®) has a perturbative part and a non -
perturbative part due to instantons.

» For example, for N = 2 we have

F(®) = 7¢2 Iog + Z FR) (o

» We will now discuss how to obtain the instanton corrections F¥)
to the prepotential F in our string set-up.
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Instantons and D-instantons

» Consider the effective action for a stack of N D3 branes
1
D.B.l. + / {04 + —CoTr(FAF)
D3 2

The topological density of an instanton configuration corresponds
to a localized source for the R-R scalar Cy, i.e., to a distribution of
D-instantons inside the D3’s.
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Instantons and D-instantons

» Consider the effective action for a stack of N D3 branes
1
D.B.l. + / {04 + —CoTr(FAF)
D3 2

The topological density of an instanton configuration corresponds
to a localized source for the R-R scalar Cy, i.e., to a distribution of
D-instantons inside the D3’s.

» Instanton-charge k solutions of SU(N) gauge theories correspond
to k D-instantons inside N D3-branes.
[Witten 1995, Douglas 1995, Dorey 1999, ...]
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Stringy description of gauge instantons

Jo 1 2 3|4 5[/6 7 89
D3 — — — —|*x x|*x *x *x %
D(—1) || * * % * [*x *x[%x % *x =x
N D3-branes
=

N -
L)

® o
3 . D—ins;ant

ons

/
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Moduli vertices and instanton parameters

Open strings with at least one end on a D(—1) carry no momentum:

they are moduli, rather than dynamical fields.
|| ADHM Meaning Vertex Chan-Paton
D(—1)/D(-1) (NS) a, centers Pre™? adj. U(k)
% aux. Ve @ :
D. Lagrange mult. T 7 PH
D(-1)/D(-1) (R) MeA partners SuS_Spe 2%
Mo Lagrange mult. S®S*SAe~2¥
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Moduli vertices and instanton parameters

Open strings with at least one end on a D(—1) carry no momentum:
they are moduli, rather than dynamical fields.

|| ADHM Meaning Vertex Chan-Paton
D(1)D(1) (NS) || 4, centers P e® adj. U(k)
% aux. Ve @ :
De Lagrange mult. T 7 PH
D(-1)/D(-1) (R) MeA partners SuS_Spe 2%
Mo Lagrange mult. S®S*SAe~2¥
D(~1)/D3 (NS) We sizes AS¥ ¥ kx N
We sizes AS*e™? N x k
D(-1)/D3 (R) e partners AS_Spe2¢ k x N
s AS_Spe3¥ N x k




Super-coordinates and centered moduli

» Among the D(—1)/D(—1) moduli we can single out the instanton
center x and its super-partners gieis

ad" = x{Mgxx+Yys T (T°=generators of SU(k))
MaA _ HaA “kxk _*_(ng TC

The moduli x} and 64 decouple from many interactions and play
the réle of \/ = 2 superspace coordinates.

» We will distinguish the moduli M into
Mk — {Xoﬁ ; M\(k)}

where /\7(,() are the so-called centered moduli.
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Disk amplitudes and effective actions
D3 disks

Alberto Lerda (U.PO.)

u]
‘ @
I
ul
it



Disk amplitudes and effective actions
D3 disks

D(-1) disks
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Disk amplitudes and effective actions
D3 disks
D(-1) disks

Mixed disks
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Disk amplitudes and effective actions

D3 disks
Disk amplitudes
field theory limit o/ — 0
D(—1) disks
Effective actions
D3 disks D(-1) and mixed disks
Mixed disks
N =2 SYM action ADHM measure
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An example of a mixed disk amplitude

Consider the following mixed disk diagram

Nl

which corresponds to the following amplitude

(i) = 0 [ T2 v vtz Viae)) = . = {3 )

where C, = 872 /g is the disk normalization.



The action for the instanton moduli

From all D(—1) and mixed disk diagrams with insertion of all moduli
vertices, we can extract the ADHM moduli action (at fixed k)

Snoa = Siod + Ser” + 58

with

k G, TR
S8 = trk{—2[x’f,a’u][x,a’“]+><*wdw X + XWaW x*}

V2 V2
S8 = i 5 Peasn®x! 15" MAeagl!, ME]}
$® = tnd = iDo(Wa(r) P w; + 70, [2", "))

—iXG (AW + o + [ M)}



The action for the instanton moduli

From all D(—1) and mixed disk diagrams with insertion of all moduli
vertices, we can extract the ADHM moduli action (at fixed k)

Snoa = Siod + Ser” + 58

with

S8 = trk{ —2[x", & ]lx, @" + X" Wawx + xWe Wd‘xT}

S8 = i 5 Peasn®x! 15" MAeagl!, ME]}
$® = tnd = iDo(Wa(r) P w; + 70, [2", "))

—iXG (AW + o + [ M)}

> In S the bosonic and fermionic ADHM constraints appear



Take for simplicity k =1 (— [, ] = 0). The bosonic “equations of
motion” -
Wys X = 0 5 V_Vdu(Tc)aﬂWuﬁ =0

determine the classical vacua.



Take for simplicity k =1 (— [, ] = 0). The bosonic “equations of
motion” -
Wua X =0 , Wy (Tc)aﬁWuB =0

determine the classical vacua.

There are two types of solutions:

X#Ov Wud:O

(-
D3

=--f---=>0

D(-1)




Take for simplicity k =1 (— [, ] = 0). The bosonic “equations of
motion” -
Wua X =0 , Wy (Tc)aﬁWuB =0

determine the classical vacua.

There are two types of solutions:

1
X#0 , Wy =0 X:07Wud:/0( 2z >

f X D3
D3
]:(—1) i‘/\

D(-1)




Properties of the moduli action S,

» Snos depends only on the centered moduli /T/l\(k) but does not
depend on the center x) and its super-partners goA



Properties of the moduli action S,

> S..q depends only on the centered moduli /\7(,() but does not
depend on the center x/ and its super-partners o

» Integration over all moduli leads to the instanton partition function
[Polchinski 1994, ..., Dorey et al. 1999, ...]

2 =
Z(k) — /d4X0 d4(9 d.//\/\l(k) e_:Tk_Smod(M(k))

where the exponent is

11l
+
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Instanton classical solution

» The mixed disks are the sources for a non-trivial gauge field
whose profile is exactly that of the classical instanton!!

[Bill6 et al. 2002,...]
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Instanton classical solution

» The mixed disks are the sources for a non-trivial gauge field
whose profile is exactly that of the classical instanton!!

[Bill6 et al. 2002,...]
Let us consider the following mixed-disk amplitude:
w
p R,
- 1
1 J—
Af(p) ; = < VAﬁ(P) >mixed disk
'l
'l
w



Instanton classical solution

» The mixed disks are the sources for a non-trivial gauge field

whose profile is exactly that of the classical instanton!!
[Bill6 et al. 2002,...]

Using the explicit expressions of the vertex operators, for SU(2) with
k =1 one finds

( Vg (p) Dmixed disk = (Vi Vas(P) V)

=TS () e PR = A% (i w o)

» On this mixed disk the gauge vector field has a non-vanishing
tadpole!



» Taking the Fourier transform of A7 (p; w, xo), after inserting the
free propagator 1/p?, we obtain

(X — X0)”
(x —x0)*

where we have used the solution of the ADHM constraints and
defined w® w, = 2 p°.

An(x) = / . A2 (D W, Xo) g €1P% =227
H ' (zﬂ)z (AU 0? pv

» This is the leading term in the large distance expansion of an
SU(2) instanton with size p and center xg in the singular gauge!!
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» Taking the Fourier transform of A7 (p; w, xo), after inserting the
free propagator 1/p?, we obtain

[ dp U o 2e (X—X0)"
AACL(X):'/ (2r)2 AZ(p? W, Xo) Eelpxzzp 7751/()(_7

where we have used the solution of the ADHM constraints and
defined w® w, = 2 p°.

» This is the leading term in the large distance expansion of an
SU(2) instanton with size p and center xg in the singular gauge!!
» In fact

X —Xp)¥
AC(x = 2,%7° ( -
,u( )instanton P v (X_X0)2 [(X_XO)2 +P2]
o (x—xo)” P
_ oo XX 0”7
1Y 7];1,1/ (XX0)4< (X—X0)2 + )
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» The subleading terms in the large distance expansion can be
obtained from mixed disks with more insertions of moduli.

» For example, at the nexi-to-leading order we have to consider the
following mixed disk which can be easily evaluated for o/ — 0

'
.
/\\~ o4

» Its Fourier transform gives precisely the 2nd order in the large
distance expansion of the instanton profile

c(x)® = _p e XZX0)
A,u,(x) - 2p T]ul/ (X—X0)6
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Summary

» Mixed disks are sources for open strings

.-
.

’
'} QPopen

- QNN T <V®0wen >mixed disk ?é 0

A

A}

N /
~
-

mixed disk source

» The gauge field emitted from mixed disks is precisely that of the
classical instanton

& A,

< VAu >mixed disk ~ linstanton

» This procedure can be easily generalized to the SUSY partners of
the gauge boson.

Alberto Lerda (U.PO.) Instantons _



Introducing v.e.v.s for the scalars

» One can introduce v.e.v's a and a for the scalars of the gauge
multiplet by computing mixed disk diagrams with insertions of
Vi—zand V;_

aora



Introducing v.e.v.s for the scalars

» One can introduce v.e.v's a and a for the scalars of the gauge
multiplet by computing mixed disk diagrams with insertions of
V,_,and V;

¢p=a

aora

I
» This amounts to the following shifts

x—x—-a, x' -x'-2a

» In the resulting action the v.e.v.’s a and a are not on the same
footing: a does not appear in the fermionic part of the action.
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Field-dependent moduli action (1)

» Exploiting the broken translational symmetry, we can promote a
(or a) to the full dynamical field ¢(xy) (or ¢(xp)) through diagrams
like

¢(x0) or (xo)

g
g
Q
.
I--'

where X is the instanton center (denoted x from now on)
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Field-dependent moduli action (1)

» Exploiting the broken translational symmetry, we can promote a
(or a) to the full dynamical field ¢(xy) (or ¢(xp)) through diagrams
like

¢(x0) or (xo)

g
Q
.
I--'

where X is the instanton center (denoted x from now on)

» Thus, the field-dependent action Syeq(¢, ¢; /\7(,()) is thus simply
obtained from S,..4(a. &; /\7(,()) by

a - o) , & — X
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Field-dependent moduli action (Il)

» Exploiting the broken SUSY, we can promote ¢(x) to the full chiral
superfield ®(x, 0) through diagrams like



Field-dependent moduli action (Il)

» Exploiting the broken SUSY, we can promote ¢(x) to the full chiral
superfield ®(x, 0) through diagrams like

» Thus, the superfield-dependent action Speq(®, ®; /\7(,()) is thus
simply obtained from S,.4(2, &; /\//\l(k)) by

a — o¢(x) — ox,0) , a — o¢okx) — &(x,0)



Instanton contributions to the prepotential

Integrating over the moduli one gets the instanton induced effective
action for ¢:

_ _ 8mk o
Se(flf() [d)] — /d4x d49 dM(k) e o2 Smod(d),d),_/\/l(k))

= / d*x d*0 FH (o)

Correspondingly, the prepotential () for the low energy ' = 2 theory
is given by the centered instanton partition function

f(k)((b) _ / dM\(k) e_SZer - Smod(d):&)?ﬂ(k))



» For example, for the N' = 2 SYM theory with SU(2) (broken to
U(1)), one finds

()

where A is the dynamically generated scale, and the coefficients
¢, can be obtained by evaluating the integral over the instanton
moduli:

4k
FO(0) = ¢, 02 (’\>

1 5
=5 CzZE )

(in perfect agreement with the Seiberg-Witten exact solution of the
theory).

Now let us study instanton effects in AV = 1 SYM theories.
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N =1 SYM theories from fractional branes

» They can be realized by the massless d.o.f. of open strings
attached to fractional D3-branes in the orbifold background

R* x R®/ (Zy x Zp)

where the orbifold group acts as

o X7 x8 x% — X8, —x7,—x8, —x®
g

o - XA x°x8 X% — {—x* —x% x8 —x%

» This orbifold breaks 1/4 SUSY in the bulk, the D3 branes a further
1/2:

32><1><

2 = 4 real supercharges — N =1 SUSY

N —



» In this orbifold there 4 types of fractional D3 branes, giving rise to
the following quiver gauge theory

Ny No



» In this orbifold there 4 types of fractional D3 branes, giving rise to
the following quiver gauge theory

N No

Ns Ny
» If we take Ny = N, No = N¢, N3 = Ny = 0, the theory living on the
N; D3 branes is
N =1 SQCD with gauge group SU(N;) and N flavors

N, c Nf

o <> @
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Now let us add the D(—1) branes to incorporate gauge instanton
effects. Then, the quiver diagram
Ne Q Q

o <—9

Ny



Now let us add the D(—1) branes to incorporate gauge instanton
effects. Then, the quiver diagram

Ne

becomes
Ne

k - D(-1)

wheretAhe dashed lines represent the ADHM instanton moduli
{x0,6, Wi}-
Alberto Lerda (U.RPO.) Instantons _



To obtain the moduli action, we have to compute all (mixed) disk

diagrams. As before, we have, for example
D3, D3,

D3¢

which leads to
<<vA Vi VM>> — A Wy
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Now, however, there are new kinds of diagrams. For example, we have

= D3, Qf D3/
D3¢ .-,
3 5o &
at '-: = I3 \/ ?[ i
+ DD ,:
D3, I W oy
M i N

which leads to



Putting together all these (mixed) diagrams

7
= 1 < ':3\ +
_____ -

one finds (for k = 1)
8m? ~
R IO

where

) - S .
S(0.0) = Sw(QQ'+Q QWi+ Sl — S Ol

2
S0 = {—1De(Wal(r) P wy) — X3 (7w + s 1) }



Thus, the 1-instanton induced effective action is
sihiQ, &) = / X 26 Ay ¢ & QDS
and the superpotential is
W = dMy e —#-
- / e dNey dNeg N a T o

Lt =4 i Qt p—ixs (i wat s )

» Integrating over A% yields ~ (fi 1)
» Integrating over i/ and ;' yields ~ (fi )"
» Integration over jz and p is non-vanishing iff
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Setting N, = N; + 1, the remaining integrations over the bosonic
moduli lead to
/\2Nc+1

det(Q Q)
which is the VTY-ADS superpotential !



Setting N, = N; + 1, the remaining integrations over the bosonic
moduli lead to

/\2Nc+1
 det(QQ)
which is the VTY-ADS superpotential !
» This result can be generalized to other classical gauge groups

(SO(N;) and Usp(N,)) by adding an orientifold projection to the
orbifold

» This result has been recently obtained also using intersecting

brane models
[Akerblom, Blumenhagen et al. 2006,...]
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New applications

v
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Gauge theories in closed string background

Gauge theories in closed string backgrounds are very interesting
because, in general, they are characterized by

» new geometry in (super)space-time
» new mathematical structures
» new types of interactions and couplings

Closed string backgrounds produce deformations in the gauge
theories. For instance:

» non-commutative theories arise from NSNS background 5B,,,,

» non-anticommutative theories from specific RR backgrounds
> ..



» The instanton calculus through mixed disks can be easily
generalized in the presence of a non-trivial closed string
background

» One simply computes mixed disks with one or more insertions of
closed string vertex operators

Vc losed

» These new disks produce new terms in the ADHM moduli action
and suitably “deform” the instanton calculus.
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A very interesting example:

Instanton calculus in a graviphoton background of A/ = 2 SUGRA

[Billo et al. 2004]

This RR background allows:

» to find the gravitational corrections to the prepotential of the
N =2 SYM theory

» to deform the ADHM measure in such a way that the instanton
contributions can be computed via localization techniques

» to clarify a recent conjecture by N. Nekrasov on the so-called
Q-background

» to establish a nice correspondence with the topological string
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Another interesting application:

Stringy instantons

[Blumenhagen et al. 2006, Ibanez-Uranga 2006, Argurio et al. 2007, ...]
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Another interesting application:

Stringy instantons
color D3 branes

[Blumenhagen et al. 2006, Ibanez-Uranga 2006, Argurio et al. 2007, ...]

» They are (fractional) D-instantons that are different from the gauge
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Another interesting application:

Stringy instantons
color D3 branes

Q

Q

Ny

[Blumenhagen et al. 2006, Ibanez-Uranga 2006, Argurio et al. 2007, ...]
Ne

» They are (fractional) D-instantons that are different from the gauge
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Another interesting application:

Stringy instantons

[Blumenhagen et al. 2006, Ibanez-Uranga 2006, Argurio et al. 2007, ...]

» They are (fractional) D-instantons that are different from the gauge
color D3 branes

Ne Q Q@
o <— 9
|

PR

» As a consequence, there are more than 4 mixed ND directions.
These stringy instantons are a generalization of the usual
D(—1)/D3 systems.



The distinctive features of these exotic D-instantons are:

» there are no bosonic moduli from the mixed sectors (— no w’s
and w’s)

» there are no ADHM-like constraints

» they may give rise to new interesting superpotential terms in
orientifold models



The distinctive features of these exotic D-instantons are:

» there are no bosonic moduli from the mixed sectors (— no w’s
and w’s)

» there are no ADHM-like constraints

» they may give rise to new interesting superpotential terms in
orientifold models

» many possible applications...



Example: N' =1 Usp(N) SYM with N flavors

» Introduce the orientifold projection in the R8/(Z, x Z5) orbifold so
that the gauge group on the color D3 branes becomes Usp(N;).

Q

Nc Nf 0
For N, = N this
o <o configuration leads to
+ W Qu
Wexotic = /d,u € i !
= cdet(Q

» The full non-perturbative superpotential is

/\2N+3
Whon—pert = Wyty —aDS + Wexotic = det(Q) + ¢ det(Q)

» The run-away behavior is stabilized!!
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Conclusions and perspectives

» The D3/D(—1) system provides a very efficient string set-up to
perform instanton calculations in gauge theories

» The instanton corrections to the prepotential in /' = 2 SYM
theories and to the superpotential in ' =1 SYM can be
computed from (mixed) disk diagrams

» Non-trivial closed string backgrounds can be easily incorporated

» Generalizations of the gauge instantons to truly stringy
configurations are possible and lead to very interesting effects



Conclusions and perspectives

» The D3/D(—1) system provides a very efficient string set-up to
perform instanton calculations in gauge theories

» The instanton corrections to the prepotential in /' = 2 SYM
theories and to the superpotential in ' =1 SYM can be
computed from (mixed) disk diagrams

» Non-trivial closed string backgrounds can be easily incorporated

» Generalizations of the gauge instantons to truly stringy
configurations are possible and lead to very interesting effects

» Further developments are under considerations:
» role of stringy instantons in Dynamical Susy Breaking
» role of stringy instantons in magnetized brane models

[Billé, Di Vecchia, Frau, A.L., Marotta, Pesando in progress]
> ...
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