

Reinhold Egger Michael Thorwart, Stephan Weiss, Jens Eckel

Overview

- Nonequilibrium quantum transport for strongly correlated dots/molecules: no numerically exact methods available until very recently !!
- > Of interest: steady-state transport properties under applied bias voltage V
- Numerical path-integral approach: ISPI
- > Anderson dot implementation
 - Perturbative (in U) regime
 - High temperature regime: master equation
 - Kondo effect (linear transport & nonequilibrium regime)

> Outlook

PRB 77, 195316 (2008)

Nonequilibrium theories for quantum transport through molecules /dots / quantum impurities

- Analytical methods
 - Perturbation theory in various limits

Fujii & Ueda, PRB 2003; Egger & Gogolin, PRB 2008

- Exact approaches (interacting resonant level model) Doyon, PRL 2007; Mehta & Andrei, PRL 2006; Boulat & Saleur, PRB 2008
- > Approximate interpolation schemes Aligia, PRB 2006
- Perturbative RG Rosch, Paaske, Kroha & Wölfle, PRL 2003
- Numerically exact methods ?
 - Real-time QMC simulations (but: sign problem) Egger et al., PRE 2000; Mühlbacher & Rabani, PRL 2008
 - Renormalization group based approaches: Wegner's flow equation approach, functional RG, numerical RG, DMRG *RL 2005; Jakobs, Meden & Schoeller, PRL 2007; Anders, PRL 2008*
 - > This talk: ISPI

ISPI scheme: Anderson dot

 Consider Anderson model as prototype example (scheme is completely general!)

$$H = H_{dot} + H_{tunnel} + H_{leads}$$
$$H_{dot} = \sum_{\sigma=\pm} \underbrace{\left(\varepsilon_0 + \sigma B\right)}_{=\varepsilon_{0,\sigma}} n_{\sigma} - \frac{U}{2} \left(n_{\uparrow} - n_{\downarrow}\right)^2$$

- Free parameters (for simplicity: symmetric case)
 - > Charging energy U>0, magnetic field scale B, dot level \mathcal{E}_0
 - > Hybridization $\Gamma_L = \Gamma_R = \Gamma/2$ between dot and leads
 - > Applied voltage V, temperature T
- Observable of main interest: current I(V)
 - Current conservation is explicitly verified in our scheme

- Obtain current from generating functional with suitable source term $I(t_m) = -i \frac{\partial}{\partial n} \ln Z(\eta = 0)$
- Directly computed via path integral on the (discretized) Keldysh contour, follows as function of measurement time t_m
- Stationary steady-state current is long time limit

Hubbard Stratonovich transformation

> Time-discretized representation of partition function with 2N time slices, $t = N\delta_t$

Trotter breakup of short-time propagator

$$e^{\mp i\delta_t(H_{dot}+H_{tunnel})} = e^{\mp i\delta_t H_{tunnel}/2} e^{\mp i\delta_t H_{dot}} e^{\mp i\delta_t H_{tunnel}/2} + O(\delta_t^2)$$

> Decouple the interaction: discrete HS transformation on each time slice $e^{\pm i\delta_t \frac{U}{2}(n_{\uparrow}-n_{\downarrow})^2} = \frac{1}{2}\sum_{s=\pm}e^{-s\delta_t\lambda_{\pm}(n_{\uparrow}-n_{\downarrow})}$

$$\lambda_{\pm} = \delta_t^{-1} \cosh^{-1} e^{\pm i \delta_t U/2}$$

introduces 2N auxiliary Ising spins $s_i^{\alpha}=\pm$, living on the upper/lower Keldysh branch $\alpha=\pm$

(NB: other choices for HS decomposition are possible)

Exact path-integral representation

Generating functional after the integration over noninteracting fermions: Path integral over all 2^{2N} Ising spin configurations

Ingredients

Noninteracting Keldysh Green's function of dot:

$$g_{\sigma,mn} = \int \frac{d\omega}{2\pi} e^{i\delta_{i}(m-n)\omega} g_{\sigma}(\omega)$$

$$g_{\sigma}(\omega) = \frac{1}{\Gamma^{2} + (\omega - \varepsilon_{0,\sigma})^{2}} \begin{pmatrix} \omega - \varepsilon_{0,\sigma} + i\Gamma(F_{\omega} - 1) & i\Gamma F_{\omega} \\ i\Gamma(F_{\omega} - 2) & -\omega + \varepsilon_{0,\sigma} + i\Gamma(F_{\omega} - 1) \end{pmatrix}$$

$$F_{\omega} = f(\omega - eV/2) + f(\omega + eV/2)$$

... self energy Σ^{J} (from source term) can be given in similar fashion ...

Keldysh approach: initial state

Our formulation assumes factorizing initial conditions for the total density matrix

$$\rho(t=0) = \rho_{dot} \otimes \rho_L \otimes \rho_R$$

- For simplicity: assume initially empty dot
- After t=0, tunneling between dot and leads is switched on (Γ)
- If transient currents are of interest, those assumptions could be lifted
- Here: steady state value at long times!

Iterative scheme

- Computational cost for brute-force exact path summation grows as 2^{2N}, i.e. exponentially with real time t impossible in practice
 - Stochastic Monte Carlo evaluation for this path integral suffers from severe sign problem...
- Here: deterministic iterative ISPI scheme
 - ✓ Time correlations in noninteracting Keldysh GF decay exponentially at finite T or V: Truncate after memory time
 - ✓ Full GF is then band matrix, allows for iterative scheme
 - ✓ Numerically exact after Trotter & memory time extrapolation

Decay of the noninteracting GF

Each component of noninteracting GF decays exponentially with time difference, on memory time scale of order

$$\tau_{mem} \equiv K\delta_t \approx \min\left(\frac{\hbar}{k_B T}, \frac{\hbar}{|eV|}\right)$$

Scheme exact (but useless) for

$$K = N, N \to \infty, \delta_t = t / N \to 0$$

Finite K truncation

- For finite memory time (i.e. K): approximate GF matrix elements (g_σ⁻¹)_{mn} = 0 for |m-n| ≥ K
 Then D = Π g_σG_σ⁻¹ is a band matrix in time space, and ^σ Z(η) = Ñ ∑_{s} det D[{s},η]
- Choose Trotter number $N = KN_{K}$
- Allows for iterative evaluation...
- Set irrelevant normalization to one

Band matrix structure 0 With "elementary" . . . $K \times K$ blocks $D^{ll'}$ 0 (all entries D_{mn} still carry 0 Keldysh and spin structure): 0 D^{23} \overline{D}^{33} $\mathbf{D}^{N_K N_K}$

Spin blocks

Introduce "spin blocks" for $l=1, \ldots, N_K$, containing 2K Ising spins: $S_{i} = \begin{cases} s_{i}^{+} & s_{i}^{-} \\ s_{i}^{-} & s_{i}^{-} \end{cases}$

$$S_{l} = \{s_{(l-1)K+1}^{+}, \bar{s}_{(l-1)K+1}^{-}, \dots, \bar{s}_{lK}^{+}, \bar{s}_{lK}^{-}\}$$

Dependence of block matrices on spins:

$$\underline{D^{ll'}} = \underline{D^{ll'}(S_l)}$$

Iterative solution

- We need determinant of full D
- Use determinant identity (*a,d* are quadratic, *b,c* rectangular block matrices; *a* invertible)

$$det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = det(a)det(d - ca^{-1}b)$$
Schur complement

First step: identify $a = D^{11}(S_1)$ and perform S_1 summation (for 2K spins, this is still manageable computational problem!)

Iterative solution

- Now iterate...
- For consistency, we must neglect higher-order terms in the Schur complement, reflecting generated effective couplings with time separations $|m - n| \ge K$

$$\underline{D^{l+2,l+1}}\underline{D^{l+1,l}}(\underline{D^{l,l}})^{-1}\underline{D^{l,l+1}}\underline{D^{l+1,l+2}} \to 0$$

We then arrive at

$$Z(\eta) = \sum_{\{S\}} \det(\underline{D^{11}(S_1)}) \times \\ \times \prod_{l=1}^{N_K - 1} \det\{\underline{D^{l+1,l+1}(S_{l+1})} - \underline{D^{l+1,l}(S_{l+1})}[\underline{D^{ll}(S_l)}]^{-1}\underline{D^{l,l+1}(S_l)}\}$$

Iterative simulation scheme

Reordering implies ISPI, get generating function as last element of iteration:

$$Z(\eta) = \sum_{S_{N_{K}}} Z_{N_{K}} \left(S_{N_{K}}\right)$$
$$Z_{l+1} \left(S_{l+1}\right) = \sum_{S_{l}} \Lambda_{l} \left[S_{l+1}, S_{l}\right] Z_{l} \left(S_{l}\right)$$

> Propagating "tensor"

$$\Lambda_{l}(S_{l+1}, S_{l}) = \det\left(\underline{D^{l+1,l+1}(S_{l+1})} - \underline{D^{l+1,l}(S_{l+1})}\left(\underline{D^{ll}(S_{l})}\right)^{-1}\underline{D^{l,l+1}(S_{l})}\right)$$

> Initial condition: $Z_{1}(S_{1}) = \det \underline{D^{11}(S_{1})}$

ISPI: convergence and extrapolation

Eliminate the two remaining errors by extrapolation

- 1. Trotter error due to finite N is quadratic in $\delta_t \rightarrow 0$
- 2. Memory time due to finite K

If convergent, numerically exact scheme!

Results: time dependence of current

Current saturates after initial transient: steady state value. Upper curve: value agrees with nonequilibrium Kondo theory value (*Rosch et al., PRL 2003*) for $eV >> T_K$ (= 0.29 Γ)

Warm up check: Noninteracting case

Now: checks for interacting case...

Interaction corrections to the current compared to second-order perturbation theory in U

Master equation results vs ISPI

Master equation in sequential tunneling approximation leads to quantitative agreement for $T>4\Gamma$, otherwise quantum coherence important!

Linear conductance: Zeeman effects

Zeeman field splitting of peaks, interaction corrections are largest near peaks

Towards the deep Kondo regime

Linear conductance for T>T_K compared to Hamann's result (PR 1967), which agrees with NRG (Costi, 1994) in this regime...

Temperatures below T_{K} : difficult to reach convergence !

Fourfold peak splitting with bias and Zeeman field

Nonlinear differential conductance

Conclusions & outlook

- ISPI = Iterative Simulation of Path Integrals
- Useful numerical scheme for nonequilibrium quantum transport through correlated dots/molecules (except near T=V=0)
- Future applications
 - Systematic study of nonequilibrium Kondo regime
 - Other models (spin-fermion models, interacting resonant level, dot coupled to vibration mode...)
 - Other quantities (e.g. shot noise: two source fields)

Ref.: PRB 77, 195316 (2008)