Finite temperature density matrix elements

Junji SUZUKI (Shizuoka)

in collaboration with

H. Boos, J. Damerau, F. Göhmann, A. Klümper (Wuppertal)

and

A. Weiße (Greifswald) JSTAT 0604, JPA40 10699, arXiv.0806.3953 2th Oct. 2008 GGI, Florence

Many-body system I

• Free Fermion one body Green's function

$$\langle a^{\dagger}(x)a(0)\rangle \sim \int dk \frac{\mathrm{e}^{ikx}}{1+\mathrm{e}^{\beta\varepsilon_0(k)}}$$

ε₀(k) bare 1 body energy(- chemical potential)
Interacting theory (perturbation theory)

$$\langle a^{\dagger}(x)a(0)\rangle \sim \sum_{n} \int f(k_{1},\cdots,k_{n}) \mathrm{e}^{ik_{1}x} \prod_{i}^{n} dk_{i} \frac{1}{1+\mathrm{e}^{\beta\varepsilon_{0}(k_{i})}}$$

Wick theorem is vital.

Many-body system II

• Interacting theory (Form Factors)

1 pt function (Mussardo-LeClair, hep-th/9902075);

$$\langle O \rangle \sim \sum_{n} \int f_{2n}(\theta_1, \cdots, \theta_n) \prod_{i}^{n} d\theta_i \frac{1}{1 + e^{\beta \varepsilon(\theta_i)}}$$

- 1. ε is not bare but solves TBA.
- 2. *T* dependency comes from $\beta \varepsilon$, not from f_{2n} .

(See also Takacs, e.g., arXiv.0804.4096)

c.f. *g* factors (Dorey et al (hepth/0404014))

$$\ln g_{\alpha}(\ell) = \int \Theta(\theta) \ln(1 + e^{-\varepsilon_{\alpha}(\theta)}) d\theta + \sum_{n} \int \Phi(\theta_{1}, \cdots, \theta_{n}) \prod_{i}^{n} \frac{d\theta_{i}}{1 + e^{\beta \varepsilon(\theta_{i})}}$$

Motivation of the present study

- 1. Any insight from the recent progress on the study of correlation functions at T = 0?
 - Jimbo-Miwa (hep-th 9601135) qKZ equation T = h = 0
 - Lyon group (hep-th/0201045) T = 0, arbitrary h
 - Boos et al (hep-th/0104008) Factorization of multiple integral formula by , Takahashi group (cond-mat/0302564)
 - Boos et al (hep-th/0412191) reduced qKZ approach
- 2. Any physically interesting observations?

Outline of the talk

- 1. Density matrix elements T > 0 QTM, multiple integral representation.
- 2. some observation of factorization.
- 3. Adjoint action and Grassmanian variables
- 4. Quantum-Classical cross-over $-1 < \Delta < 0$
- 5. strange lumps $0 < \Delta < 1, h \neq 0$
- 6. summary and future problems

Definition of the density matrix

$$H = J \sum_{i} \left(\sigma_i^x \sigma_{i+1}^x + \sigma_i^y \sigma_{i+1}^y + \Delta(\sigma_i^z \sigma_{i+1}^z - 1) \right)$$

• density matrix of a finite segment *n*

$$D_n = \sum_{\{lpha\},\{eta\}} E_{lpha_1}^{eta_1} \otimes E_{lpha_2}^{eta_2} \otimes \cdots \otimes E_{lpha_n}^{eta_n} \left(D_n
ight)_{eta_1,\cdots,eta_n}^{lpha_1,\cdots,lpha_n} \ \left(D_n
ight)_{eta_1,\cdots,eta_n}^{lpha_1,\cdots,lpha_n} \coloneqq \left\langle E_{eta_1}^{lpha_1} E_{eta_2}^{lpha_2} \cdots E_{eta_n}^{lpha_n}
ight
angle$$

Quantum Transfer Matrix

• QTM (M. Suzuki, Inoue, Koma, JS-Akutsu-Wadati, Klümper etc) Map :

> 1D quantum system at $\beta = \frac{1}{k_B T}$ with size $L \to \infty$ \updownarrow 2D classical system, size $L \times N$ (both ∞) with (inhomogeneous) spectral parameter $u = \frac{J\beta}{N}$

$$\lim_{L} \ln Z_{1D}(\boldsymbol{\beta}) \sim \lim_{L} \ln \operatorname{tre}^{-\boldsymbol{\beta}H_{1D}} \sim \lim_{L,N} \ln Z_{2D}(\boldsymbol{u})$$

D_n picture 1

The density matrix is represented graphically,

 $\xi_i \rightarrow 0$: inhomogeneities in the spectral parameter or by wrapping around

D_n picture 1

The density matrix is represented graphically,

D_n picture II

If you rotate 90°, there is a gap in the spectrum of the eigenvalue of the (quantum) transfer matrix (M. Suzuki). Only needs the largest eigenvalue for the free energy: no summation needed. The limit $N \rightarrow \infty$ needs care as *u* depends on aritificial system size.

D_n picture II

If you rotate 90°, there is a gap in the spectrum of the eigenvalue of the (quantum) transfer matrix (M. Suzuki). Only needs the largest eigenvalue for the free energy: no summation needed. The limit $N \rightarrow \infty$ needs care as u depends on aritificial system size.

This representation is also useful for D_n .

D_n in terms of **QTM**

The Quantum Transfer Matrix formulation yields

$$\left(D\right)_{\beta_{1},\cdots,\beta_{n}}^{\alpha_{1},\cdots,\alpha_{n}}(\xi_{1},\cdots,\xi_{n})=\frac{\langle\{\mu\}|T_{\beta_{1}}^{\alpha_{1}}(\xi_{1})\cdots T_{\beta_{n}}^{\alpha_{n}}(\xi_{n})|\{\mu\}\rangle}{\langle\{\mu\}|t(\xi_{1})\cdots t(\xi_{n})|\{\mu\}\rangle}$$

where

- 1. $T^{\alpha}_{\beta}(\xi)$: the (α, β) element of QTM (ξ_j inhomogeneity)
- 2. $t(\xi) = \sum_{\alpha} T^{\alpha}_{\alpha}(\xi)$
- 3. $|\{\mu\}\rangle$ the largest eigenvalue state of QTM

D_n in terms of QTM II

 $|\{\mu\}\rangle = B(\mu_1) \cdots B(\mu_m) |vac\rangle$ { μ_i } Bethe ansatz roots example:

 $D_{+-}^{-+}(\lambda_1,\lambda_2) \sim \langle \operatorname{vac}|C(\mu_1)\cdots C(\mu_m)B(\xi_1)C(\xi_2)B(\mu_1)\cdots B(\mu_m)|\operatorname{vac}\rangle$

On the other hand, by Slavnov's formula

 $\langle \operatorname{vac}|C(\mu_1)\cdots C(\mu_m)B(\mu'_1)\cdots B(\mu'_m)|\operatorname{vac}\rangle = \operatorname{det} m \times m$

known explicitly. (μ'_i not necessary BAE roots)

The standard QISM (or Faddeev-Zamolodchikov) algebra \rightarrow algebraic formula for D_n .

Evaluation of D_n **I**

• How to evaluate algebraic representation with $\{\mu_i\}$

- 1. Solve BAE with fixed *N* and find $\{\mu_i\}$
- 2. Substitute roots into the algebraic expression with $\frac{N}{2} \times \frac{N}{2}$ determinant.
- 3. Take the limit $N \to \infty$ with fine tuning $u = \frac{J\beta}{N} \to \text{subtle}!$.
- Multiple integral representation for D_n
 Göhmann, Klümper and Seel (JPA 37(2004) 7625), Göhmann, Hasenclever and Seel (JSTAT (2005)
 - 1. No need to know $\{\mu_i\}$ explicitly
 - 2. The limit $N \rightarrow \infty$ is taken analytically.

Three fundamental parts:

1. auxiliary function $a(\lambda)$ (s.t. $a(\mu_j) = -1$) satisfying NLIE (Kluemper, Batchelor and Pearce (JPA 24 (1991) 3111), Destri-de Vega (NPB438 (1995) 413)

Multiple integral representation for *D_n*

Three fundamental parts:

1. auxiliary function $a(\lambda)$ (s.t. $a(\mu_j) = -1$) satisfying NLIE

$$\ln a(\lambda) = -\beta h - 2\frac{\beta J \operatorname{sh}^2 \eta}{\operatorname{sh} \lambda \operatorname{sh}(\lambda + \eta)} - \int_C \frac{dw}{2\pi i} \frac{\operatorname{sh} \eta \ln A}{\operatorname{sh}(\lambda - w + \eta) \operatorname{sh}(\lambda - w - \eta)}$$
$$q = e^{\eta} \quad A(\lambda) := 1 + a(\lambda) \qquad \bar{A}(\lambda) := 1 + \frac{1}{a(\lambda)}$$

Three fundamental parts:

- 1. auxiliary function $a(\lambda)$ (s.t. $a(\mu_j) = -1$) satisfying NLIE
- 2. $G(\lambda, \xi)$ satisfying linear integral equation: analogue of root density

Three fundamental parts:

- 1. auxiliary function $a(\lambda)$ (s.t. $a(\mu_j) = -1$) satisfying NLIE
- G(λ, ξ) satisfying linear integral equation: analogue of root density reduces the ratio of m(→∞) × m(→∞) determinant to n × n determinant.

$$G(\lambda,\xi) = -\frac{\operatorname{sh}\eta}{\operatorname{sh}(\lambda-\xi)\operatorname{sh}(\lambda-\xi-\eta)} + \int_C \frac{dw}{2\pi i A(w)} \frac{\operatorname{sh}2\eta G(w,\xi)}{\operatorname{sh}(\lambda-w+\eta)\operatorname{sh}(\lambda-w-\eta)}$$

Three fundamental parts:

- 1. auxiliary function $a(\lambda)$ (s.t. $a(\mu_j) = -1$) satisfying NLIE
- 2. $G(\lambda, \xi)$ satisfying linear integral equation: analogue of root density
- 3. ratios of elementary functions

D_n Explicit result

n- fold coupled integrals for D_n

$$D_{\beta_{1}\dots\beta_{n}}^{\alpha_{1}\dots\alpha_{n}}(\xi_{1},\dots,\xi_{n}) = \begin{bmatrix} \prod_{j=1}^{|\alpha^{+}|} \int_{C} \frac{d\omega_{j}}{2i\pi A(\omega_{j})} \prod_{k=1}^{\widetilde{\alpha_{j}}^{+}-1} \operatorname{sh}(\omega_{j}-\xi_{k}-\eta) \prod_{k=\widetilde{\alpha_{j}}^{+}+1}^{n} \operatorname{sh}(\omega_{j}-\xi_{k}) \end{bmatrix} \\ \begin{bmatrix} \prod_{j=|\alpha^{+}|+1}^{n} \int_{C} \frac{d\omega_{j}}{2i\pi A(\widetilde{\omega}_{j})} \prod_{k=1}^{\widetilde{\beta_{j}}^{-}-1} \operatorname{sh}(\omega_{j}-\xi_{k}+\eta) \prod_{k=\widetilde{\beta_{j}}^{-}+1}^{n} \operatorname{sh}(\omega_{j}-\xi_{k}) \end{bmatrix} \\ \frac{\det - G(\omega_{j},\xi_{k})}{\prod_{1\leq j< k\leq n} \operatorname{sh}(\xi_{k}-\xi_{j}) \operatorname{sh}(\omega_{j}-\omega_{k}-\eta)}$$

it reminds us of similar formulae in QF if *a*(*ω*) → *ε*(*θ*),
 (equivalently, *A*(*ω*) → 1 + *ε*(*θ*)) on upper half plane and so on.
 note *ε* and *a* both reduce to the dressed energy function in a limit *T* → 0, *h* → 0⁺.
 example (1pt function)

1. it reminds us of similar formulae in QF if $a(\omega) \rightarrow \varepsilon(\theta)$, (equivalently, $A(\omega) \rightarrow 1 + \varepsilon(\theta)$) on upper half plane and so on. note ε and a both reduce to the dressed energy function in a limit $T \rightarrow 0, h \rightarrow 0^+$.

example (1pt function)

$$\phi(z) - 1 = 2 \int_C \frac{d\omega_1}{2\pi i A(\omega_1)} G(\omega_1, z)$$

$$G(\omega_1, z) = G_0(\omega_1, z) + \int_C \frac{d\omega_2}{2\pi i A(\omega_2)} K(\omega_1 - \omega_2) G(\omega_2, z)$$

$$= \sum_{n=1}^{\infty} \prod_{j=2}^n \int_C \frac{d\omega_j}{2\pi i A(\omega_j)} K(\omega_{j-1} - \omega_j) G_0(\omega_n, z)$$

1. it reminds us of similar formulae in QF if $a(\omega) \rightarrow \varepsilon(\theta)$, (equivalently, $A(\omega) \rightarrow 1 + \varepsilon(\theta)$) on upper half plane and so on. note ε and a both reduce to the dressed energy function in a limit $T \rightarrow 0, h \rightarrow 0^+$.

example (1pt function)

$$\phi(0) - 1 = 2\sum_{n=1}^{\infty} \prod_{j=1}^{n} \int_{C} \frac{dx_{j}}{2\pi(1 + e^{\beta\varepsilon(x_{j})})} f(x_{1}, \dots, x_{n})$$

$$f(x_{1}, \dots, x_{n}) = \frac{\sin\gamma}{\operatorname{sh}(x_{n} + i\frac{\gamma}{2}) \operatorname{sh}(x_{n} + i\frac{\gamma}{2})}$$

$$\times \left(\prod_{k=1}^{n-1} \frac{-\sin\gamma}{\operatorname{sh}(x_{k} - x_{k+1} + i\gamma) \operatorname{sh}(x_{k} - x_{k+1} + i\gamma)}\right)$$

$$a(x + i\frac{\gamma}{2}) = \beta\varepsilon(x) \qquad a(x - i\frac{\gamma}{2}) \to \infty \qquad \eta = i\gamma$$

- 1. it reminds us of similar formulae in QF if $a(\omega) \rightarrow \varepsilon(\theta)$, (equivalently, $A(\omega) \rightarrow 1 + \varepsilon(\theta)$) on upper half plane and so on. note ε and a both reduce to the dressed energy function in a limit $T \rightarrow 0, h \rightarrow 0^+$.
- 2. As $T \rightarrow 0$

$$\begin{cases} a(\bar{a}) \sim 0 & \text{on } C_+(C_-) \\ |a|(|\bar{a}|) >> 1 & \text{on } C_-(C_+) \\ G(\omega, \xi) \sim -\frac{1}{\sinh \frac{\omega-\xi}{\eta}} \end{cases}$$

use them then Jimbo-Miwa formula (or Lyon, if $h \neq 0$) recovered.

difficulty with the formula

- The coupled integrals too difficult to treat in quantative study.
- However, Boos and Takahashi groups decoupled the integrals at T = 0. is this a hope?
- The basic technique, shifts in integration contours, can not be applied for *T* > 0 as measures are not constant now, $\frac{d\omega}{1+a(\omega)}$ etc.
- The case studies, unexpectedly, show that the factorization is possible even for $T > 0, h \neq 0$.
- Even-more strinking similarlity to T = 0!

Similarity to T = 0

T = h = 0, n = 2 (Boos et al.)

. .

$$h_{2}(\lambda_{1},\lambda_{2}) = \begin{pmatrix} D_{++}^{++} \\ -D_{+-}^{+-} \\ D_{++}^{+-} \\ -D_{-+}^{-+} \\ D_{--}^{--} \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \\ -1 \\ 1 \end{pmatrix} - \frac{\omega(\lambda_{12})}{(q-q^{-1})^{2}} ((\zeta+\zeta^{-1})A + (q+q^{-1})B) \\ - \frac{\tilde{\omega}(\lambda_{12})}{(q-q^{-1})^{2}} (\frac{q^{2}-q^{-2}}{\zeta-\zeta^{-1}}A + (q-q^{-1})\frac{\zeta+\zeta^{-1}}{\zeta-\zeta^{-1}}B) \\ A = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, B = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \zeta = q^{\lambda_{12}}$$

Similarity to T = 0

$$h_{2}(\lambda_{1},\lambda_{2}) = \begin{pmatrix} D_{++}^{++} \\ -D_{+-}^{+-} \\ D_{-+}^{+-} \\ -D_{-+}^{-+} \\ D_{--}^{--} \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \\ -1 \\ 1 \end{pmatrix} - \frac{\omega(\lambda_{12})}{(q-q^{-1})^{2}} \big((\zeta+\zeta^{-1})A + (q+q^{-1})B \big) \\ -\frac{\tilde{\omega}(\lambda_{12})}{(q-q^{-1})^{2}} \big(\frac{q^{2}-q^{-2}}{\zeta-\zeta^{-1}}A + (q-q^{-1})\frac{\zeta+\zeta^{-1}}{\zeta-\zeta^{-1}}B \big)$$

 ω : spinon-spinon *S* matrix etc at *T* = 0

Similarity to T = 0

$$h_{2}(\lambda_{1},\lambda_{2}) = \begin{pmatrix} D_{++}^{++} \\ -D_{+-}^{+-} \\ D_{-+}^{+-} \\ D_{--}^{-+} \\ D_{--}^{--} \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \\ -1 \\ 1 \end{pmatrix} - \frac{\omega(\lambda_{12})}{(q-q^{-1})^{2}} \big((\zeta+\zeta^{-1})A + (q+q^{-1})B \big) \\ - \frac{\tilde{\omega}(\lambda_{12})}{(q-q^{-1})^{2}} \big(\frac{q^{2}-q^{-2}}{\zeta-\zeta^{-1}}A + (q-q^{-1})\frac{\zeta+\zeta^{-1}}{\zeta-\zeta^{-1}}B \big)$$

 ω : spinon-spinon *S* matrix etc at T = 0The observation from the case studies at T > 0, algebraic parts remain the same: one only has to replace ω by its finite *T* analogue !

finite $T \omega$

$$\begin{split} \omega(\mu_1,\mu_2,\alpha) &\sim -\psi(\mu_1,\mu_2,\alpha) + \text{elementaryfunction} \\ \psi(\mu_1,\mu_2,\alpha) &= \int_C dw \frac{G(w,\mu_1)}{\pi i A(w)} \left(-\coth(w-\mu_2) + q^\alpha \coth(w-\mu_2-\eta) \right) \\ \phi(\mu) &= 1 + \int_C \frac{G(w,\mu)}{\pi i A(w)} \\ \omega(\mu_1,\mu_2) &= \omega(\mu_1,\mu_2,0) \\ \tilde{\omega}(\mu_1,\mu_2) &= \frac{d}{d\alpha} \omega(\mu_1,\mu_2,\alpha)|_{\alpha=0} \end{split}$$

at *T* > 0 they are no longer the function of $\zeta = q^{\lambda_{12}}$

Two representations

- multiple integral representation : proved but difficult to analyse
- The "exponential formula" (Boos at al. hep-th/0606280, 0702086, 0801.1176): solves "reduced" q KZ equation, valid only at T = 0, but gives us algebraic parts. It can explain the intrinsic reason of the factorization

No direct proof of the equivalence (mutiple integral = exponential formula) even at T = 0.

Our strategy: believe in the equivalence and obtain algebraic parts using the latter at T > 0. check by high T expansions.

Exponential formula: only result

- **9** 3 operators :"Grassmanian" b, c and \mathbb{H} to be defined later.

Conjecture: $D_n(O) = \operatorname{Tre}^{\Omega}(O)|_{\xi_i=0}$

where

$$\Omega = \Omega_1 + \Omega_2$$

$$\Omega_1 = -\lim_{\alpha = 0} \int \int \frac{d\mu_1}{2\pi i} \frac{d\mu_2}{2\pi i} \omega(\mu_1, \mu_2; \alpha) b(\zeta_1; \alpha - 1) c(\zeta_2; \alpha)$$

$$\Omega_2 = -\int \lim_{\alpha = 0} \frac{d\mu_1}{2\pi i} \phi(\mu_1) \mathbb{H}(\zeta_1; \alpha)$$

$$\zeta_i = e^{\mu_j}$$

Hidden Fermions

- Strandard Fermions in spin chains
 - Jordan-Wigner 's transformation.
 - Fermion operators act on vectors in the Hilbert space.

- Hidden fermions (Boos,Jimbo,Miwa, Smirnov and Takayama)
 - D_n : operators.
 - Introduce operators act on operators D_n .
 - Adjoint action is useful: $A(O) = A^{-1}OA$
 - Fermion operators act also adjointly

Hidden Fermions

Hidden fermions (Boos, Jimbo, Miwa, Smirnov and Takayama)

- D_n : operators.
- Introduce operators act on operators D_n .
- Adjoint action is useful: $A(O) = A^{-1}OA$
- Fermion operators act also adjointly

Transfer matrices

- 1. auxiliary space (2 dim), labelled by *a*
- 2. *j*-th site quantum space (2 dim) , labelled by j
- 3. *q*-oscillator space (a_A, a_A^*, D_A) labelled by *A*

Transfer matrices

- 1. auxiliary space (2 dim), labelled by *a*
- 2. *j*-th site quantum space (2 dim) , labelled by j
- 3. *q*-oscillator space (a_A, a_A^*, D_A) labelled by *A*

$$q^{D}a^{*}q^{-D} = qa^{*}$$

 $a^{*}a = 1 - q^{2D}$
 $aa^{*} = 1 - q^{2D+2}$

representations W^{\pm}

$$W^{+} = \bigoplus_{k \ge 0} \mathbb{C} |k\rangle \qquad a^{*} |k-1\rangle = |k\rangle \qquad a|0\rangle = 0 \qquad D|k\rangle = k|k\rangle$$
$$W^{-} = \bigoplus_{k \le -1} \mathbb{C} |k\rangle \qquad a|k+1\rangle = |k\rangle \qquad a^{*} |-1\rangle = 0 \qquad D|k\rangle = k|k\rangle$$

Transfer matrices

- 1. auxiliary space (2 dim), labelled by *a*
- 2. *j*-th site quantum space (2 dim) , labelled by j
- 3. *q*-oscillator space (a_A, a_A^*, D_A) labelled by *A*

Introduce *L* operators

- 1. $L_{a,j}$ usual 4×4 matrix.
- 2. $L^+_{A,j}(\zeta)$ acting on also q oscillator space.

$$L_{A,j}^{+}(\zeta) = \begin{pmatrix} 1 & -\zeta a_{A}^{*} \\ -\zeta a_{A} & 1 - \zeta^{2} q^{2D_{A}+2} \end{pmatrix}_{j} \begin{pmatrix} q^{D_{A}} & 0 \\ 0 & q^{-D_{A}} \end{pmatrix}_{j}$$

Fusion of transfer matrices

Introduce $L^+_{(A,a),j}$: Fusion of $L_{a,j}$ and $L_{A,j}$, triangular form

$$L^{+}_{(A,a),j}(\zeta) = \begin{pmatrix} (\zeta q - \zeta^{-1}q^{-1})L^{+}_{A,j}(\zeta q^{-1}) & 0 \\ * & (\zeta - \zeta^{-1})L^{+}_{A,j}(\zeta q^{)} \end{pmatrix}_{a}$$

and $L^{-}_{(A,a),j}(\zeta) = \sigma^1_a \sigma^1_j L^{+}_{(A,a),j}(\zeta) \sigma^1_a \sigma^1_j$

"Local" T - Q relation.

Adjoint fused transfer matrix

define fused transfer matrices

$$T^{\pm}_{(A,a)}(\zeta) = L^{\pm}_{(A,a),1}(\zeta) \cdots L^{\pm}_{(A,a),N}(\zeta)$$

● define adoint action \mathbb{T} on $X \in M_N$

$$\left(\mathbb{T}^{\pm}_{(A,a)}(\zeta)\right)^{-1}(X) = (T^{\pm}_{(A,a)}(\zeta))^{-1}(1_A \times X)T^{\pm}_{(A,a)}(\zeta)$$

Now triangular forms,

$$\left(\mathbb{T}^+_{(A,a)}(\zeta) \right)^{-1} = \begin{pmatrix} \mathbb{A}^+(\zeta) & 0\\ \mathbb{C}^+(\zeta) & \mathbb{D}^+(\zeta) \end{pmatrix}_a \quad \left(\mathbb{T}^-_{(A,a)}(\zeta) \right)^{-1} = \begin{pmatrix} \mathbb{A}^-(\zeta) & \mathbb{B}^-(\zeta)\\ 0 & \mathbb{D}^-(\zeta) \end{pmatrix}_a$$

Grassmannian objects

Hidden fermionic operators (Boos at al.)

$$\mathbf{c}(\zeta, \alpha) \sim \mathrm{tr}_{\mathrm{A}}^{+} q^{2\alpha D_{A}} \mathbb{C}_{A}^{+} \qquad \mathbf{b}(\zeta, \alpha) \sim \mathrm{tr}_{\mathrm{A}}^{-} q^{-2\alpha (D_{A}+1)} \mathbb{B}_{A}^{-}$$

satisfying

$$\{b(\zeta_1), b(\zeta_2)\} = \{c(\zeta_1), c(\zeta_2)\}$$

magnetic objects

$$\mathbb{H}(\zeta, \alpha) \sim \mathrm{tr}_A^+ q^{2\alpha D_A} a_A^* \mathbb{C}^+$$

also prepare residue operators,

$$b_{j}(\alpha) \sim \operatorname{res}_{\lambda = \xi_{j}} b(q^{\lambda}, \alpha) \quad c_{j}(\alpha) \sim \operatorname{res}_{\lambda = \xi_{j}} c(q^{\lambda}, \alpha)$$
$$h_{j}(\alpha) \sim \operatorname{res}_{\lambda = \xi_{j}} \mathbb{H}(q^{\lambda}, \alpha)$$

Exponential formula reminder

$$\begin{split} \langle O_{1,\dots,n} \rangle_{T,h} &= \operatorname{Tre}^{\Omega_{1}+\Omega_{2}} O_{1,\dots,n} \\ \Omega_{1} &= -\lim_{\alpha=0} \int \frac{d\zeta_{1}^{2}}{2\pi i \zeta_{1}^{2}} \frac{d\zeta_{2}^{2}}{2\pi i \zeta_{2}^{2}} \omega(\lambda_{1},\lambda_{2}) b(\zeta_{1},\alpha) c(\zeta_{2},\alpha-1) \\ \Omega_{2} &= -\lim_{\alpha=0} \int \frac{d\zeta_{1}^{2}}{2\pi i \zeta_{1}^{2}} \phi(\lambda_{1},\lambda_{2}) \mathbb{H}(\zeta_{1},\alpha) \end{split}$$

By residual calculation,

$$egin{aligned} \Omega_1 &= \sum_{1 \leq i < j \leq n} \left(\Omega^+_{ij} \omega_{ij} + \Omega^-_{ij} \widetilde{\omega}_{ij}
ight) & \Omega_2 \sim \sum_j \phi_j h_j \ \omega_{ij} &:= \omega(\xi_i, \xi_j) & \widetilde{\omega}_{ij} &:= \partial_{lpha} \omega(\xi_i, \xi_j) |_{lpha = 0} \end{aligned}$$

Algebraic relations

algebraic relations

- consequence
 - the expansion $e^{\Omega_1 + \Omega_2} = 1 + \Omega_1 + \Omega_2 + \cdots$ truncates at finite order (nilpotency)
 - explains factorization.

Classical-Quantum Crossover

Fabricius-McCoy (cond-mat/98053379), F-Klümper-M (cond-mat/9812012) $S_{zz}(n, T, \Delta) = \langle \sigma_0^z \sigma_n^z \rangle$

• quantum(
$$T \ll 1$$
)
CFT predicts: ($\theta := 1/2 + \frac{1}{\pi} \sin^{-1} \Delta$)

$$S_{zz}(n,T,\Delta) = -\frac{1}{\pi^2 \theta n^2} + (-1)^n \frac{C(\Delta)}{n^{1/\theta}}$$

• $0 < \Delta < 1 \rightarrow \theta > 1/2$: oscillatory

•
$$-1 < \Delta < 0 \rightarrow \theta < 1/2$$
 :negative for \forall n

• classical $(T \sim 1)$

 $-1 < \Delta < 0$ classically alignment of spins is favored: $S_{zz} > 0$ for \forall n . numerical diagonalization(up to L = 18 sites, $n \le 9$) \rightarrow existence of finite T cross-over from classical to quantum

Numerics QC crossover

The cross-over temperature

 $T_0(n;\Delta)$ for $L = \infty$ and for L = 18 (FM)

Δ	$n = 2L = \infty$	L = 18	$n = 3 L = \infty$	L = 18	$n = 4 L = \infty$	L = 18
-0.1	4.96645	4.966	3.32288	3.323	2.56077	2.561
-0.2	2.43157	2.432	1.64332	1.643	1.27520	1.275
-0.3	1.56079	1.561	1.07081	1.071	0.839169	0.839
-0.4	1.10294	1.103	0.771287	0.771	0.611558	0.612
-0.5	0.806967	0.807	0.577718	0.578	0.4641	-
-0.6	0.588818	0.589	0.434179	0.434	0.354030	0.355
-0.7	0.412795	0.413	0.316321	0.318	0.262606	0.264
-0.8	0.262355	0.265	0.211402	0.215	0.179803	0.184
-0.9	0.129195	0.137	0.111127	0.118	0.098055	0.104

Strange lumps for $\Delta > 0, h \neq 0$

competition of 1. paramagnetic order, 2. quantum fluctuation, 3.thermal disorder?

brute force calculation

Summary and future problems

- 1. Efficient formula for exact evaluation of density matrix element of finite segment
- 2. Factorization is a consequence of a hidden fermionic nature
- 3. Valid even $T > 0, h \neq 0$
- higher spins? (in progress)
- $\mathfrak{su}(n)$ generalization (in progress?)
- Asymptotics?