
Hydrodynamic instabilities in quantum liquids

Non-linear quantum hydrodynamics of electronic liquids



● Degenerate Fermi gas in one spatial dimension,

● Edge state in the Fractional Quantum Hall Effect,

● Luttinger Liquid.



● Why Fermi statistics causes non-equilibrium
quantum liquids to be essentially nonlinear,

● Instabilities and singularities arising as a result of 
nonlinear nature of quantum liquids,

● Mathematical methods for analysis of singularities 
in dynamics of quantum liquids - Whitham theory,

● Relation to random matrix theory and to perturbed 
conformal field theory.



Electronic systems in 1D

A smooth bump in density or  momenta:
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Wave packet in quantum mechanics  diffuses
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Does  a quantum coherence 

(Fermi sea,     statistics,     interaction) 

make an impact?



Quantum hydrodynamics (Landau 1941):

N →∞
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density ρ(x) = 1
N

P
i δ(x− xi),

current j(x) = 1
N

P
i ẋiδ(x− xi),

velocity j(x) = ρv,

[v(x), ρ(y)] = −i  ∇δ(x− y).



Interaction and/or Fermi statistics

cause the hydrodynamics to be non-linear

and to be a subject of hydrodynamics 

instabilities, and singularities, in particular, 

shock fronts,  and stabilities - solitons; 



Free Fermions: 

Wigner Function

W (x, p, t) = nF

°
p− p(x)

¢

(∂t + p∂x)W (x, p, t) = 0



Fermi profile:     Riemann Equation

Shock wave:           



Dispersion - asymmetry between particles and holes
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V (x) = ℘(x)→ 1
x2

,
1

sinh2 x
,

Interpolates between Lattinger liquid and Calogero model 
- quantum wires, edge states of FQHE

Model Hamiltonian:  Calogero model
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Soliton - collective excitation of particles
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Free Fermions:



Quantum Riemann Equation

H =
Z µ

ρv2

2
+
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ρ3

∂
dx.

ρ̇ +∇(ρv) = 0 Continuity equation

v̇ +
1
2
∇(v2 + π2ρ2) = 0 Euler’s equation

∇ϕR,L ≡ ±JR,L(x, t) = v ± πρ

ϕ̇ +
1
2
(∇ϕ)2 = 0 J̇ + J∇J = 0



Current Algebra

JR,L(x) =
X

k

eikxJR,L
k , JR,L
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±p>0
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[ρ(x), v(y)] = −i∇δ(x− y)

F. Bloch 1934, Tomonaga 1950



Equation of motion

J̇ = i[H, J ] = −J∇J ϕ̇ +
1
2
(∇ϕ)2 = 0

H =
Z µ

ρv2
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pψp

Schick 1968,  Haldane 1978,  Sakita 1974,  Jevicki 1991



 Non-linear hydrodynamics  

Free fermions (exact): Non-linear bosons

Quantum Riemann equationϕ̇ + (∂xϕ)2 = 0

ϕ̇ + vF ∂xϕ = 0

Linearized  equation - sound modulation of density

Non-linear effects reflect Fermi-statistics and dispersion

p2

2m
− EF ∼ ±vF (p± kF )

ϕ(x, t) = ϕ(x− vF t, 0)

Shape does not change!?



Non-linear hydrodynamics for Free Fermions are essentially quantum;

Different matrix elements have different behavior;

ϕ̇ + (∂xϕ)2 = 0 hϕ2i = hϕi2 + hhϕ2ii

Free fermions:  Shock waves are stabilized by quantum corrections

After-shock oscillations with a period ∼ 1/kF



Vertex Operators

(i∂t −
1
2
∇2)eiaϕ =

1
2
a(a + 1)eiaϕT,

(i∂t +
1
2
∇2)ei(a+1)ϕ = −1

2
a(a + 1)ei(a+1)ϕT̄

T = (∇ϕ)2 − i∇2ϕ

holomorphic  components of the stress-energy tensor of a chiral 
Bose field (with the central charge 1/2)

Va(x) =: eiaϕ : a = 1− fermion
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∂
eiaφ · ei(a+1)φ = 0

Df · g = ∂fg − f∂g,

D2f · g = ∂2fg − 2∂f∂g + ∂2gf

Hirota derivatives

Hirota’s bilinear form
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. Density matrix - 
coherent state gl(∞)
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Higher derivative stabilizes
 the overhang

modified KP equation



τa = e
i
h̄ aθF det

i,j
(δij + Ka(pi, qj))

Ka(pi, qj) =
sin(πa)

π
Apiqi

µ
pi − pF

pF − qi
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h̄ θi(x,t)
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General Periodic Solution

θ(pi, qi) = (pi − qi)x−
1

2m
(p2

i − q2
i )t

θF = pF x− EF t

Moduli pi > pF > qi, EF



Whitham Theory:

1) Before and after the shock use dispersionless equation

ϕ̇ +
1
2
(∇ϕ)2 = 0x < X−(t), x > X+(t)

It is solvable explicitly 

ϕ(x, t) = f(x− ϕ(x, t) · t), ϕ(x, t = 0) = f(x).

2) Insert a simple periodic solution at X−(t) < x < X+(t)

3) Give slow space time dependence to moduli to glue the solution



2)   Moduli obey Whitham modulation equations

1) Simplest periodic solution (genus 1)

τa = e
i
h̄ aΘF

"

1 + Apq
sin(πa)

π

µ
P − PF

PF −Q

∂a e
i
h̄ Θ(P,Q)
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Hamilton Jacobi Equations

Θ̇=E(P )−E(Q), ∂xΘ=P−Q,

Θ̇F = E(PF ) ∂xΘF = PF

Ṗ + ∂xE(P ) = 0.

ṖF + ∂xE(PF ) = 0

Q̇ + ∂xE(Q) = 0

E(P ) =
P 2

2
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Q
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FIG. 1: [Color Online] A: A shock-wave solution of the Rie-
mann equation (9). The dashed arrows indicate the velocity
of the front. The vertical dashed lines are trailing and leading
edges. The solid arrows show the relations between branches
of the multi-valued solution of the Riemann equation and
Whitham modulated particle P , hole Q and Fermi PF mo-
menta. B: Oscillations obtained by the Whitham method,
the dashed red line shows the unphysical part of the Riemann
solution.

phe. We denote logarithmic derivatives as

u = −i
 
m

∂x log
τa

τa+1
, ũ =

 
m

∂x log τaτa+1. (4)

We will see that the rates (3) undergo complicated dy-
namics, experiencing a shock-wave and a subsequent set
of oscillations filling a growing spatial region. In fact, the
shock wave occurs even at a = 0 (or integer), without the
Orthogonality Catastrophe. However, its physics and the
scale of oscillations are essentially different [8].

3. Semiclassical and coherent states. We will
especially be interested in semiclassical wave-
packets, i.e., states whose Wigner function
W (x, p) = hg|e i

 (Px+Xp)|gi, where P and X are
momentum and coordinate operators, initially local-
ized in the area of the phase space ∆x ¿  p−1

F and
∆p = |p− pF | ø pF . This packet carries a large number
of particles N = ∆x∆p/2π  ¿ 1. We may choose such a
state to be coherent, i.e., given by hg| = h0|e

P
pq Apqψ†

pψq .
This state corresponds to a smooth localized bump of
electronic density as on Fig.1 and can be created by the
action of a classical instrument. We also assume that the
distance x between the initial origin of the wave-packet
and a point of the measurement is large x ¿ ∆x.

4. Hydrodynamic interpretation and the role of Orthog-
onality Catastrophe. In the semiclassical approximation
the amplitudes (3) acquire a useful hydrodynamic inter-
pretation. Let us assume that Ap,p+k = Ak depends only
on the momentum change, k, and write the initial state
as hg| = h0|e

R
V+(x)ϕ(x)dx, where V+(x) =

P
k>0 Ak

eikx

2πk ,
where V+(x) is an analytic function in the upper half-
plane of x. In this case the density of the classical wave
packet hg|ρ(x)|gi = − 1

2π ImV 0
+. On the other hand the

initial values of the amplitudes are τa(x) = eaV+(x), and,
therefore, initially 2π  

m hg|ρ(x)|gi = Re u(x).
In the course of the evolution the above relation be-

tween the density and the amplitudes is destroyed. How-
ever, in the semiclassical limit and if a 6= integer the rates
(3) still contain all the hydrodynamic information.

5. Dispersion of the electronic spectrum and non-
linearity of the waves. It is commonly assumed that the
linearization of the electronic spectrum at the Fermi sur-
face H −EF ≈

P
p vF (p− pF )ψ†

pψp captures the physics
of the Orthogonality Catastrophe. If this were so, the
time dependence of transition rates would be no different
than its space dependence. The state hg(t)| = hg|e− i

 vF Pt

simply translates the point of measurement: τ(x, t) =
τ(x − vF t) without any interesting dynamics.

However, the approximation of linear spectrum is valid
only for some time t ø tc. It inevitably breaks down
at larger time. The physics is simple: electrons in the
denser part of the packet at the top of the bright side
of the bump have higher momenta δp = p − pF =  δρ
and, therefore, move with higher velocities v − vF =
1
2  E00(pF )δp than particles in front of them. Here
1
2  E00(pF ) =  

2m is a curvature of the spectrum at the
Fermi point [9]. As a result, the wavefront steepens and
eventually overturns (Fig. 1). This is the shock wave we
study using amplitudes (3) as a “measurement”. The
results of the “measurement” depend on a and are espe-
cially sensitive to whether a is an integer or not.

The critical time of entering into the shock wave regime
is about the time wave packet crosses the distance equal
to the size of its front tc ∼ m∆x

∆p . We assume that tc is
smaller than the ballistic time, so that dissipative effects
in real systems do not have time to dissipate the shock.

6. MKP equation of the soliton theory. Non-linear
aspects of electron dynamics, can not be analyzed by el-
ementary means. We have derived a fundamental equa-
tion which determines both rates (3). It is the modified
Kadomtsev-Petviashvili equation (or MKP) - a known
equation in soliton theory [11]. Its bilinear form reads

(iDt −
 

2m
D2

x)τa · τa+1 = 0, (5)

where Dxf · g = f 0g − fg0 is the Hirota derivative. In
fact, this equation holds for a more general class of matrix
elements hg|eaϕ(t)|hi, where |hi is any coherent state. We
sketch the proof of the MKP at the end of this letter.

Solutions of the MKP must be sought in the class of
functions analytical in the upper half of the complex
plane x. These are the properties of the matrix elements
with respect to the Fermi vacuum - momenta of all ex-
citations exceed the Fermi momentum. Analytical con-
ditions are important. In particular they exclude soliton
solutions of the MKP equation.

In terms of (4) we have another form of the MKP:

u̇ = u∂xu +
 

2m
∂2

xũ. (6)

At a = 0, τ0 = 1, and u = ũ. In this case a non-linear
MKP equation becomes a linear Schrödinger equation
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