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Ultracold atoms in disordered potentials

v’ Why disorder?

- Disorder is a key ingredient of the microscopic (and macroscopic) world
- Fundamental element for the physics of conduction
- Superfluid-insulator transition in condensed-matter systems

v’ Why cold atoms?

- Ultracold atoms are a versatile tool to study disorder-related phenomena
- Precise control on the kind and amount of disorder in the system
- Quantum simulation

v’ Localization effects

- Bose glasses, spin glasses (strongly interacting systems)

- Anderson localization (weakly interacting systems)



Optical trapping

Far off resonance light induces
an electric dipole

p=ak

The atomic induced electric
dipole then interacts with the e.m.
wave

U(r) =-¢ E(r)

!

Optical trapping




Optical traps

Red detuning m
Blue detuning ~



Optical trapping

a) trappola a singolo fascio b) trappola a fasci incrociati c) reticolo ottico
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Speckle potential J. Lye et al., PRL 95, 070401 (2005)

The random potential is produced by shining an off-resonant laser beam onto a diffusive plate
and imaging the resulting speckle pattern on the BEC.

LENS, Orsay, Hannover, Rice, lllinois...

Viz,y) = Gl El(a: ) optical dipole potential stationary in time
" 2ws A Y P Pole p randomly varying in space



Expansion from the speckle potential Lye et al. PRL 95, 070401 (2005)

We adiabatically ramp the intensity of the speckle pattern on the
trapped BEC, then we suddenly switch off both the magnetic trap
and the speckle field and image the atomic cloud after expansion:
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Releasing the BEC from the weak speckle potential we observe
some irregular stripes in the expanded cloud.

Releasing the BEC from the strong speckle potential we observe
the disappearance of the fringes and the appareance of a broader
gaussian unstructured distribution.

Vg = 2000 Hz \ 4



Expansion from the speckle potential
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Dynamical instability of a BEC in a moving lattice
L. Fallani et al., Phys. Rev. Lett. 93, 140406 (2004)
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Collective excitations in the weak speckle potential
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PRL 95, 070401 (2005) PHYSICAL REVIEW LETTERS 12 AUGUST 2005

Bose-Einstein Condensate in a Random Potential
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Problems for observing Anderson localization:

® too large speckles!

2005

in order to observe multiple scattering in 1D it AR ate
is necessary to have quantum scattering from
the speckle potential barriers

.....

® too strong interactions!

repulsive interactions plays against
localization pushing to delocalize the state

sl ® 7, - M
o -0
A - 1760 Hz 1] D 200 33 0 100 200 201 )

cantar-of-mass [

=]




For ultracold atoms in optical lattices one can add optical disorder in two ways:

speckle patterns multichromatic lattices







The bichromatic lattice

V(x) = s1ER1 cos®(k1x) + s2FE Ry cos®(kax) bichromatic lattice
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The bichromatic lattice
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Strongly interacting bosons



Interacting bosons in a lattice

Bose-Hubbard model for interacting bosons in a lattice:

SUPERFLUID J>U MOTT INSULATOR J < U

Long-range phase coherence No phase coherence
High number fluctuation Zero number fluctuation (Fock states)

Gapless excitation spectrum Gap in the excitation spectrum
Compressible ) Not compressible

hopping energy interaction energy

J U




strongly interacting regime: 7

}

3D optical lattice

Mott insulator phase first realized in
M. Greiner et al., Nature 415, 39 (2002).




momentum distribution of the atomic sample after expansion
test of phase coherence
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Richard P. Feynman Int.J.Theor. Phys 21, 467 (1982)
... Can physics be simulated by a universal computer?
R.P.F. realized that certain phenomena in Quantum Field Theory are well imitated

By certain Condensed Matter systems ... he thought that there should be a certain

Class of quantum mechanical systems which would symulate any other system, a

Could serve as a quantum laboratory where the validity of several theoretical
models may be tested.



Quantum simulators

NEWSFOCUS science 320, 312 (2008)
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Adding disorder

Bose-Hubbard model with bounded disorder in the external potential €; € —A/2, A/2]

H = —JZ&I&jﬂL %Zﬁz (ﬁi—1)+z€jﬁj
(i,9) i !
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In the presence of disorder an additional energy scale A enters the description of the system.
The interplay between these energy terms may induce new quantum phase transitions

hopping energy interaction energy disorder

J U A




Phase diagrams

BOSE-GLASS (T. Giamarchi and H. J. Schulz, PRB 37, 325 (1988)) ns in a disordered lattice

v No long-range phase coherence

v Gapless excitation spectrum disorder
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for ultracold atoms see B. Damski et al., PRL 91, 080403 (2003); R. Roth et al., PRA 68, 023604 (2003).



Measuring the excitation spectrum
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Broadening the M| spectrum

Starting from a Mott Insulator and adding disorder, the energy required for the
hopping of a boson from a site to a neighboring one becomes a function of position
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When A, = U the excitation energy goes to zero and the gap disappears



1D atomic systems + 1D disorder

A, =830nm s, =40

A, =830nm s, <20
A, =1076 nm s, <3



Excitation spectra

L. Fallani et al., PRL 98, 130404 (2007)

Excitation spectrum for s,=16 and increasing disorder strength from s,=0 to s,=2.5:
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MI spectral brodening

L. Fallani et al., PRL 98, 130404 (2007)

excitation signal (um)
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Phase coherence L. Fallani et al., PRL 98, 130404 (2007)

Insulating state (no long-range phase coherence)
with broad excitation spectrum
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Noise interferometry



Quantum interpretation of HB&T effect

correlations between joint probability at detector positions

interference between quantum-mechanical paths of identical particles

Fano-Glauber



HB&T noise interferometry in quantum gases

absorption image of a Mott Insulator state
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in a single image we have approx. 30000 detectors!




noise correlations

PHYSICAL REVIEW A 70, 013603 (2004)

Probing many-body states of ultracold atoms via noise correlations

Ehud Altman, Eugene Demler, and Mikhail D. Lukin
Physics Departinent, Harvard University, Cambridge, Massachusetts 02138, USA
(Received 10 June 2003; published 6 July 2004)
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Experiments: Mainz (Nature 2005)
JILA (PRL 2005) — pairs from molecules
NIST- Maryland (PRL 2007)
LENS (2007) — Breaking of Mott order



i : V. Guarrera, N. Fabbri, L. Fallani,
Noise correlations (MOtt phase) C. Fort, KM.R. van der Stam, M. I. Phys Rev Lett(2008)




Breaking the MI order

2 optical lattices
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inhomogeneous filling of (almost) regularly-spaced lattice



Breaking the Ml order

one-color lattice
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1stand 2" order correlations

two-color lattice
= =

noise correlations reveal the inhomogeneous filling of the lattice
when first-order coherence does not provide any spatial information




Calculating noise correlations

PHYSICAL REVIEW A 70, 013603 (2004)

Probing many-body states of ultracold atoms via noise correlations

Ehud Altman, Eugene Demler, and Mikhail D. Lukin
Physics Departinent, Harvard University, Cambridge, Massachusetts 02138, USA
(Received 10 June 2003; published 6 July 2004)
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calculation of the ground state for J=0

|

the ground state is a disordered Mott insulator with
the site filling minimizing the total energy

V) = [n1) ® [n2) @ |n3z) @ ...




Controlled breaking of Mott insulator V. Guarrera, N. Fabbri, L. Fallan,
C. Fort, KM.R. van der Stam, M. I. Phys Rev Lett (2008)

experiment theory (disordered MlI)




Noise correlations in the bichromatic lattice

Observable:

the ratio between the heights of the
k, peak and the k, peak along the

horizontal median line




Quantitative analysis of the k, peak growth
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Anderson Bose-Glass Mott
insulator insulator insulator

B T
noninteracting weakly interacting (U<J) strongly interacting (U>J) interactions




Localization transition in a 1D quasiperiodic potential

Incommensurate bichromatic lattices can be used to study quantum localization!

Localization transition in 1D: see S. Aubry and G. André, Ann. Israel Phys. Soc. 3, 133 (1980).
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Localization in a quasi-periodic lattice + harmonic trap

quasi-periodic random
potential site to site energy
s,=0.1
A
s,=0.25
S,=1
A

s,=10




Oscillations in the bichromatic potential

J. Lye et al., PRA 75, 061603R (2007)

Localized states can be revealed by setting the system out of equilibrium and
observing the following dynamics under the action of a harmonic driving force.

Undamped oscillation of a Bose-Einstein ol T T ]
condensate in a periodic optical lattice + [ °
harmonic potential (magnetic trap) [ -
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Oscillations in the bichromatic potential

Decreasing the number of atoms the “localization” effect increases
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But disorder alone is not the only effect that can lead to localization...
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L.Fallani, G.Modugno, C.D’Errico C.Fort G.Roati, M.l., M.Fattori, M.Modugno M.Zaccanti




PHYSICAL REVIEW

VOLUME 109,

NUMBER 5 MARCH 1, 1958

Absence of Diffusion in Certain Random Lattices

P. W. ANDERSON
Bell Telephone Laboratories, Murray Hill, New Jersey

(Received October 10, 1957)

This paper presents a simple model for such processes as spin diffusion or conduction in the “impurity

band.” These processes involve transport in (diffusion)
In this simple model the essential
randomness 1s introduced by requiring the It is shown that at low

enough densities no diffusion at all can take place, and the criteria for transport to occur are given.

We assume that we
have sites j distributed in some way, regularly or
randomly, in three-dimensional space; the array of
sites we call the “lattice.” We then assume we have
entities occupying these sites. They may be spins or
electrons or perhaps other particles, but let us call them
spins here for brevity. If a spin occupies site j it has
energy F; which (and this is vital) is a stochastic
variable distributed over a band of energies completely
randomly, with a probability distribution P(E)dE
which can be characterized by a width W. Finally, we
assume that between the sites we have al\interaction
matrix element V,(r;i), which transfers the N
one site to the next.

d in them

Our basic technique is to place a single ‘“spin” on
site »# at an initial time =0, and to study the behavior
of the wave function thereafter as a function of time.

amplitude of the wave function around site # falls off

One can understand this as being caused by the
failure of the energies of neighboring sites to match

sufficiently well for V;; to cause real transport. Instead,
it M
initially localized at site #, over a larger region of the

lattice, without destroying its localized character.




Anderson localization

one electron in a periodic lattice
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Anderson localization

introducing disorder in the lattice
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Anderson localization

one electron in a disordered lattice




A deep optical lattice realizes a tight binding lattice model...

H=-J blb
(i.d)

. . . . Vo
Atoms trapped in the sites with a hopping probability J =~ exp | —2 E—
R



quantum particles hopping in a disordered lattice

= —JZbTb + Zejnj

(1,7)




Aubry-Andrée model with cold atoms!

main lattice — A =1032 nm

secondary lattice — A A = 862 nm
\VANANNANANANNANANANNANANANNANANNNNANANS

bichromatic lattice

~ 5.1 sites




Localization depends on the kind of disorder and dimensionality!

1D Anderson model 1D Aubry-André model
e; = A Rand(1) e; = Acos (2m37)
000090200 | | 000904,020,020,02%,
—_— T — _—!!!QQ——_—__— - T QQ!!!—_ —_
- et | T - T e T_ - —_
pure random quasiperiodic

localization for any A localization transition at finite A =2J



Extended and localized states

Localization transition in 1D incommensurate bichromatic lattice

S. Aubry and G. André, Ann. Israel Phys. Soc. 3, 133 (1980).

site index

localized states:

extended states:




Anderson localization of a non-interacting Bose-Einstein Condensate
Roati et al., Nature 453, 895-898 (2008)

EXPERIMENTAL SCHEME
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The noninteracting BEC is initially confined in a harmonic trap and then left
free to expand in the bichromatic lattice







Expansion in the bichromatic lattice G. Roati et al., Nature 453, 895-898 (2008)
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Expansion in the bichromatic lattice

Size of the condensate after 750 ms expansion in the bichromatic lattice:

® J/h=325Hz
® Jh=153Hz
® J/h=96Hz
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Scaling law: onset of localization
only depends on A/J!




Diffusion stops because the eigenstates are localized!

Periodic: wavefunction is delocalized on the whole system size

Disordered: eigenstates are localized in a finite region of space

exponentially decaying amplitude of wavefunction



localization Roati et al, Nature, 453, 895-898 (2008)
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extended state
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distribution G. Roati et al., Nature, 453, 895-898 (2008)

experiment

Density distribution after
time-of-flight of the initial
stationary state

J/\\/nf

( Universal behavior with A/J!
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Interference between multiple localized states

Interference between two independent localized states
one of which contains a thermally-activated vortex

., Phys. Rev. Lett. 95, 190403 (2005)




T#0 -> the 2D is no more superfluid: BKT transition

* Proliferation of vortices no superfluidity
* Phase-correlation function decays exponentially

Thermal fluctuations -> creation of vortices




BEC in 2D

In 2D BEC possible for ideal gases + harmonic confinement
Semiclassical results:

TR kT T T s
vi-(7) =% () T

kB c — ﬂﬁw

T

For large atom numbers in the condensate Ny ~ N[1 — (T /T.)?]
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Experimental realization with atomic gases, ENS

Elongated Rb condensate split like a sandwich, by blue-detuned optical lattice
— two independent 2D-condensates

DlﬂiGE‘ll lattice hal Caeriesia (h] Fraid
‘ ‘. [ e .?I-IH.]'I'I Imaging
|I.lI — ”? Ti.]_{_‘l. § bE\-Fn
Lattice
beams

Upon expansion the two condensates overlap and interfere

Atomic heterodyne technique: a vortex in condensate 1 detected by

interference pattern with "phase reference” condensate 2
Wog =T Apn =0

Simulated (B. Battelier, 200?}

Experimental



Decay of interference

BKT crossover detected by analysis of decay of interference contrast
(Polkonvikov et al. 2006)

For each position x, fit fringes along vertical direction, extract contrast c(x)
and phase ¢(x), integrate and average over multiple images
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The Anderson transition in solid state physics

see: Kramer & MacKinnon, Localization: theory and experiment, Rep. Prog. Phys. 56, 1469-1564 (1993).
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Direct observation of a localization transition in quasi-

periodic photonic lattices
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h inhind...

also Institute d’Optique

Hannover, Rice, lllinois ...




E Before expansion
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J. Billy et al., Nature, 891 — 894 (2008)




P.W.Anderson, Nobel lecture (1977)

... about the role of interactions.

A second reason why | felt discouraged in the early days was that | couldn’t fathom
how to reinsert interactions, and | was afraid they, too, would delocalize.

The realization that, of course, the Mott insulator localizes without randomness,
because of interactions, was my liberation on this: one can see easily that Mott and
Anderson effects supplement, not destroy, each other ...

The present excitement of the field for me is that a theory of localization with
interactions is beginning to appear, ...It is remarkable that in almost all cases
interactions play a vital role , yet many results are not changed too seriously by
them.



atoms in a disordered optical lattice

production of different localized states

one localized state

’;?\ two localized states
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No interaction: few independent localized states

With interaction: localized states get more extendend and lock in phase




Adding interactions — several shots

Interferogram of multiple localized states:
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Preliminary results

First effects of the interactions on the interference pattern of multiple localized states:

a=1.7a, a=94a, a=23a,

fluctuating phase fixed phase

Occurrences

-1 0 1
Phase / =

Non interacting regime: independent localized states (large separation with respect to their axial extent)
— the phase of the interference pattern varies randomly in the range [0, 211], from shot to shot.

Weakly interacting regime: the eigenstates of the system become a superposition of an increasing number of
noninteracting eigenstates, and the effective tunneling between them increases— the phase is locked.



Momentum distribution and interference

Vaa A AN o At R , a A A M a A hANan]
"H\""‘H“\,l“l“‘u"l’lu‘”'\|‘ ‘|II‘“HI\I"H“‘H"ll“\\“ul‘l“
A HHEY VTV HEHUHEY OV EY TV
(I TR AW
N I
[/ L |

I A\

M|
I I
| HVU N WA
\‘."wlU\bl'.‘\ [IRARNA evy

IIH‘IHHH
[LRARN

| ¢ Il U1
NRAAREEF 440 L8

tight trapping (~100Hz) weak trapping (< 10Hz)
[previous preliminary measurements]
a=0: interference between few localized states: a=0: interference between many localized states:
random phase (from shot to shot) no interference pattern

\ 4 \ 4

a>0: interacting groundstate a>0: interference peaks
interference peaks but locked phase

®critica| threshold affected by the harmonic potential critical threshold weakly perturbed
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PRL 100, 094101 (2008) PHYSICAL REVIEW LETTERS 7 MARCH 2008

Destruction of Anderson Localization by a Weak Nonlinearity

A.S. Pils:u:wsls'.y1 and D. L. Sh»f:pelyanskyz’l

'Department of Physics, University of Potsdam, Am Neuen Palais 10, D-14469, Potsdam, Germany
Laboratoire de Physique Théorique, UMR 5152 du CNRS, Université Toulouse III, 31062 Toulouse, France
(Received 24 August 2007; published 4 March 2008)

We study numerically the spreading of an initially localized wave packet in a one-dimensional discrete
nonlinear Schrodinger lattice with disorder. We demonstrate that above a certain critical strength of
nonlinearity the Anderson localization 1s destroyed and an unlimited subdiffusive spreading of the field
along the lattice occurs. The second moment grows with time o ¢, with the exponent & being in the range
0.3—-04. For small nonlinearities the distribution remains localized in a way similar to the linear case.
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PRL 100, 084103 (2008) 29 FEBRUARY 2008

Absence of Wave Packet Diffusion in Disordered Nonlinear Systems

G. Kopidakis,"* S. Komineas,' S. Flach," and S. Aubry'~

'Max Planck Institute for the Physics of Complex Systems, Nothnitzer Strasse 38, D-01187 Dresden, Germany
*Department of Materials Science and Technology, University of Crete, 71003 Heraklion, Greece

3Laboratoire Léon Brillouin (CEA-CNRS), CEA Saclay, 91191-Gif-sur-Yvette, France
(Received 11 October 2007: published 27 February 2008)

We study the spreading of an initially localized wave packet in two nonlinear chains (discrete nonlinear
Schrédinger and quartic Klein-Gordon) with disorder. Previous studies suggest that there are many initial
conditions such that the second moment of the norm and energy density distributions diverges with time.
We find that the participation number of a wave packet does not diverge simultaneously. We prove this
result analytically for norm-conserving models and strong enough nonlinearity. After long times we find a
distribution of nondecaying yet interacting normal modes. The Fourier spectrum shows quasiperiodic
dynamics. Assuming this result holds for any initially localized wave packet, we rule out the possibility of
slow energy diffusion. The dynamical state could approach a quasiperiodic solution (Kolmogorov-Arnold-
Moser torus) in the long time limit.

+ role of initial conditions (width of the wavepacket)



Quantum diffusion

Diffusion at fixed s for different values of the interaction?

$ )
b [}
2 ° % o % E ] & g3 4o
§ .
I %‘ o f ¢ :
é ] ] I
1 L4 # © T ' ‘ mS_] o:o
o,
1aaal i1 a1l g
1 10 100 L ] -
M @ ! i




From diffusive to localized behaviour
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Changing the lattice wavelenghts
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Shift of the “Mott-insulator”

transition.

...different strategy
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Degenerate Bose-Bose mixture in a 3D optical lattice

J. Catani, L. De Sarlo, G. Barontini, F. Minardi and M.I. PRA77, 011603R (2008)
Hamburg and Zurich with Fermions
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Feshbach resonances

Thalhammer et al. PRL 100, 210402 (2008)

RF-association

associate molecules by modulating
magnetic field near strong Feshbach
resonance

inelastic molecule-atom collisions



Feshbach molecules, rf association
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EFFECTIVE SPIN formalism can map a mixture of different species in OL on a Spin-like
system , thus allowing the employment of Bosonic Mixtures for investigation on QUANTUM

MAGNETISM.

Depending on relative (equivalent to magnetization), and
relative , different magnetic phases in the deep lattice are
expected, ranging from FERROMAGNETIC to Néel (or
ANTIFERROMAGNETIC) ordered states.

Strongly correlated systems in a highly controllable
environment
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Three-body losses have a
peak that depends on the
sample temperature,
complicated dynamics of
trapped atoms and dimers
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