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Ultracold atoms in disordered potentials

Localization effects

-  Bose glasses, spin glasses (strongly interacting systems)

-  Anderson localization (weakly interacting systems)

Why disorder?

-  Disorder is a key ingredient of the microscopic (and macroscopic) world
-  Fundamental element for the physics of conduction
-  Superfluid-insulator transition in condensed-matter systems

  

  

-  Ultracold atoms are a versatile tool to study disorder-related phenomena
-  Precise control on the kind and amount of disorder in the system
-  Quantum simulation

Why cold atoms?  



Optical trapping

The atomic induced electric 
dipole then interacts with the e.m. 

wave

Optical trapping

↓

U(r) E(r)p= −d
rr rr

Far off resonance light induces 
an electric dipole

p Eα=
rr



Red detuning

Blue detuning

Optical traps



Optical trapping

                                 L.Fallani, C.Fort, M.Inguscio
                                                                   Bose Einstein Condensates in Optical Potentials
                                                                                 Riv.Nuovo Cimento 28, serie 4 n.2 (2005)



Speckle potential

The random potential is produced by shining an off-resonant laser beam onto a diffusive plate 
and imaging the resulting speckle pattern on the BEC.

optical dipole potential
stationary in time
randomly varying in space

J. Lye et al., PRL 95, 070401 (2005)

LENS,  Orsay, Hannover, Rice, Illinois...



Expansion from the speckle potential

We adiabatically ramp the intensity of the speckle pattern on the 
trapped BEC, then we suddenly switch off both the magnetic trap 
and the speckle field and image the atomic cloud after expansion:
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Releasing the BEC from the weak speckle potential we observe 
some irregular stripes in the expanded cloud.

Releasing the BEC from the strong speckle potential we observe 
the disappearance of the fringes and the appareance of a broader 
gaussian unstructured distribution.

VSP = 10 Hz

VSP = 30 Hz

VSP = 100 Hz

VSP = 200 Hz

VSP = 2000 Hz

Lye et al. PRL 95, 070401 (2005)



Expansion from the speckle potential

Moderate disorder (VSP < µ):

•  long wavelength modulations
•  breaking phase uniformity?

Strong disorder (VSP > µ):

•  broad unstructured density profile
•  localization in the speckles sites
•  vanishing interference from not equispaced array

No disorder

Dynamical instability of a BEC in a moving lattice
L. Fallani et al., Phys. Rev. Lett. 93, 140406 (2004)
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VSP = 0

VSP = 1700 Hz

VSP = 200 Hz



Collective excitations in the weak speckle potential

dipole (0 mW)

dipole (3 mW) – VSP = 60 Hz

quadrupole (0 mW)

quadrupole (2 mW) – VSP = 40 Hz

no speckles

speckles



BEC expansion in a disordered waveguide

We transfer the BEC from the magnetic trap to a crossed dipole trap + speckle potential. After 
switching off the vertical beam we study the expansion of the BEC in the horizontal waveguide 
in the presence of disorder.

chemical potential

Fort et al. P R L 95, 170410 (2005)

100 µm



Speckles are cool!

Problems for observing Anderson localization:

too large speckles!

too strong interactions!


in order to observe multiple scattering in 1D it 
is necessary to have quantum scattering from 
the speckle potential barriers

repulsive interactions plays against 
localization pushing to delocalize the state



Adding disorder

For ultracold atoms in optical lattices one can add optical disorder in two ways:

multichromatic latticesspeckle patterns

random potential
(with small-wavelength cut-off)

quasiperiodic potential
(discrete frequencies)



producing “dense” disorder

bichromatic latticespeckle pattern

L.Fallani, C.Fort, M.Inguscio “Bose-Einstein condensates in disordered potentials”
arXiv 2888v2 Advances Atomic, Molecular and Optical Physics (2008)



The bichromatic lattice

bichromatic lattice



The bichromatic lattice

Energy minima of the lattice 
potential along y direction

Non-periodic modulation of the energy minima 
with length scale

                                                            sites



Strongly interacting bosons



hopping energy interaction energy

J U

At zero temperature the state of the system is determined by the competition between two 
energy scales: the hopping energy J and the on-site interaction energy U

Bose-Hubbard model for interacting bosons in a lattice:

SUPERFLUID

 Long-range phase coherence
 High number fluctuation
 Gapless excitation spectrum
 Compressible

MOTT INSULATOR

 No phase coherence
 Zero number fluctuation (Fock states)
 Gap in the excitation spectrum
 Not compressible

Interacting bosons in a lattice



Experimental scheme

3D optical lattice

strongly interacting regime:

Mott insulator phase first realized in
M. Greiner et al., Nature 415, 39 (2002).



Superfluid to Mott Insulator transition at LENS

increasing the lattice height U/J increases

momentum distribution of the atomic sample after expansion
test of phase coherence

Fallani, Fort, Guarrera, Lye, M.I. (2005)



Richard P. Feynman Int.J.Theor. Phys 21, 467 (1982)

            … Can physics be simulated by a universal computer?

R.P.F. realized that certain phenomena in Quantum Field Theory are well imitated

By certain Condensed Matter systems … he thought  that there should be a certain

Class of quantum mechanical systems which would symulate any other system, a 

                            UNIVERSAL QUANTUM SIMULATOR: 

Could serve as a quantum laboratory where the validity of several theoretical 
models may be tested.



Quantum simulators

Science 320, 312 (2008)



hopping energy interaction energy

J U

disorder

∆

In the presence of disorder an additional energy scale ∆ enters the description of the system. 
The interplay between these energy terms may induce new quantum phase transitions

Bose-Hubbard model with bounded disorder in the external potential

Adding disorder



Phase diagrams

Qualitative phase-diagram for a system of interacting bosons in a disordered lattice

for ultracold atoms see B. Damski et al., PRL 91, 080403 (2003); R. Roth et al., PRA 68, 023604 (2003).

from M. P. A. Fisher et al., PRB 40, 546 (1989)

BOSE-GLASS

 No long-range phase coherence
 Gapless excitation spectrum
 Finite compressibility

(T. Giamarchi and H. J. Schulz, PRB 37, 325 (1988))



Measuring the excitation spectrum

U 2U

Mott Insulator spectrum



Broadening the MI spectrum

Starting from a Mott Insulator and adding disorder, the energy required for the 
hopping of a boson from a site to a neighboring one becomes a function of position

When ∆j = U the excitation energy goes to zero and the gap disappears

---



Experimental geometry

λ1 = 830 nm  s1 = 40

λ1 = 830 nm  s1 < 20

λ2 = 1076 nm  s2 < 3

x

z

y

1D atomic systems + 1D disorder



Excitation spectra
L. Fallani et al., PRL 98, 130404 (2007)

Excitation spectrum for s1=16 and increasing disorder strength from s2=0 to s2=2.5:



MI spectral brodening

Excitation maximum at U 
as a function of disorder strength:

∆ = U

No agreement for strong 
disorder ∆>U when the 
gap goes to zero

Good agreement with the 
MI broadening for weak 
disorder ∆<U

L. Fallani et al., PRL 98, 130404 (2007)



Phase coherence

Visibility of the interference pattern after time-of-flight:

L. Fallani et al., PRL 98, 130404 (2007)

Insulating state (no long-range phase coherence)
with broad excitation spectrum

Bose-Glass



Noise interferometry



interference between quantum-mechanical paths of identical particles

correlations between joint probability at detector positions

Fano-Glauber

Quantum interpretation of HB&T effect



HB&T noise interferometry in quantum gases

in a single image we have approx. 30000 detectors!

absorption image of a Mott Insulator state

noise correlations



noise correlations

Experiments:  Mainz  (Nature 2005)  

                       JILA   (PRL 2005) – pairs from molecules

                       NIST- Maryland (PRL 2007)

                       LENS (2007) – Breaking of Mott order



Noise correlations (Mott phase)

k1

V. Guarrera, N. Fabbri, L. Fallani,
C. Fort, K.M.R. van der Stam, M. I. Phys Rev Lett(2008)



uniform filling of regularly-spaced lattice

Breaking the MI order

1 optical lattice2 optical lattices

controlled creation of particle / holesinhomogeneous filling of (almost) regularly-spaced lattice



Breaking the MI order



1st and 2nd order correlations

noise correlations reveal the inhomogeneous filling of the lattice
when first-order coherence does not provide any spatial information



Calculating noise correlations

calculation of the ground state for J=0

the ground state is a disordered Mott insulator with
the site filling minimizing the total energy



Controlled breaking of Mott insulator

theory (disordered MI)experiment

V. Guarrera, N. Fabbri, L. Fallani,
C. Fort, K.M.R. van der Stam, M. I. Phys Rev Lett (2008)



k1k2

k1 - k2

Noise correlations in the bichromatic lattice

Observable:

the ratio between the heights of the 
k2 peak and the k1 peak along the 
horizontal median line



Quantitative analysis of the k2 peak growth



Disordered systems: Role of interactions

Effects of interaction in the Anderson localization



Localization transition in a 1D quasiperiodic potential

extended states

Incommensurate bichromatic lattices can be used to study quantum localization! 

Localization transition in 1D: see S. Aubry and G. André, Ann. Israel Phys. Soc. 3, 133 (1980).

localized states

CONDUCTOR    

INSULATOR    



s2=1

quasi-periodic 
potential

s1=10

s2=0.1

s2=0.25

random 
site to site energy

Localization in a quasi-periodic lattice + harmonic trap



Center-of-mass as a function of 
time for s1=10 and different heights 
of the disordering lattice.

Localization effect increasing with 
increasing disorder

Oscillations in the bichromatic potential

Localized states can be revealed by setting the system out of equilibrium and 
observing the following dynamics under the action of a harmonic driving force.

J. Lye et al., PRA 75, 061603R (2007)

Undamped oscillation of a Bose-Einstein 
condensate in a periodic optical lattice + 
harmonic potential (magnetic trap)

Oscillation frequency:

F. S. Cataliotti et al., Science 293, 843 (2001)



Oscillations in the bichromatic potential

Decreasing the number of atoms the “localization” effect increases

N = 300k N = 15k

But disorder alone is not the only effect that can lead to localization...





     

      L.Fallani, G.Modugno, C.D’Errico   C.Fort G.Roati, M.I., M.Fattori, M.Modugno M.Zaccanti



J ∆



Anderson localization

one electron in a periodic lattice DIFFUSION



Anderson localization

introducing disorder in the lattice



Anderson localization

one electron in a disordered lattice LOCALIZATION



How to realize the Anderson model with cold atoms!

A deep optical lattice realizes a tight binding lattice model...

Atoms trapped in the sites with a hopping probability



Anderson model

quantum particles hopping in a disordered lattice



Aubry-André model with cold atoms!

Adding a weak incommensurate optical lattice...

The second lattice controls the site energies



Localization models

Localization depends on the kind of disorder and dimensionality!

1D Anderson model

pure random

localization for any ∆

1D Aubry-André model

quasiperiodic

localization transition at finite ∆ = 2J



Extended and localized states

Localization transition in 1D incommensurate bichromatic lattice

S. Aubry and G. André, Ann. Israel Phys. Soc. 3, 133 (1980).

localized states:

extended states:



Anderson localization of a non-interacting Bose-Einstein Condensate
Roati et al., Nature 453, 895-898 (2008)

EXPERIMENTAL SCHEME



Probing the transport properties

The noninteracting BEC is initially confined in a harmonic trap and then left 
free to expand in the bichromatic lattice



∆=0

∆/J=1

∆/J=7

Ballistic expansion with reduced
velocity

Ballistic expansion:

ár 2 〉  t  µt2

Absence of diffusion: 

ár 2 〉  t µá r 2 〉 0 



Expansion in the bichromatic lattice

∆/J = 0 ∆/J = 1.8 ∆/J = 4.2 ∆/J = 7

0 ms

750 ms

tim
e

G. Roati et al., Nature 453, 895-898 (2008)

ballistic expansion

ballistic expansion
at reduced speed

localization



Expansion in the bichromatic lattice

Size of the condensate after 750 ms expansion in the bichromatic lattice:

Scaling law: onset of localization
only depends on ∆/J!



Localized states

Diffusion stops because the eigenstates are localized!

Periodic: wavefunction is delocalized on the whole system size

Disordered: eigenstates are localized in a finite region of space

exponentially decaying amplitude of wavefunction



Exponential localization                                   Roati et al, Nature, 453, 895-898 (2008)

Fit of the density distribution with a generalized exponential function:

exponential

gaussian



Bloch waves 

              with energy
        
                         E
              larger than

                         ∆ } 2∆

} 4J



from Momentum distribution

momentum distribution with
narrow peaks

broad momentum
distribution



from momentum distribution

experiment theory

Width of the central peak

Visibility

G. Roati et al., Nature, 453, 895-898 (2008)

Universal behavior with ∆/J!

Density distribution after 
time-of-flight of the initial 
stationary state



Interference between multiple localized states

1 localized state

2 localized states

3 localized states

No fixed phase of the interferogram Localized states are independent!

S. Stock et al., Phys. Rev. Lett. 95, 190403 (2005) 

Interference between two independent localized states
one of which contains a thermally-activated vortex

Quasi-2D physics!

Lens, ENS, NIST, Stanford…

Changing the harmonic confinement allows to load multiple localized states



D= 2.9 um

T≠0 -> the 2D is no more superfluid: BKT transition

• Proliferation of vortices no superfluidity 
• Phase-correlation function decays exponentially 

Thermal fluctuations -> creation of vortices 

22ππ









              AUBRY- ANDRE Hamiltonian



The Anderson transition in solid state physics

Metal-insulator transition in doped  silicon 
(Si:P): conductivity (right) and inverse of 
dielectric susceptibility (left) vs
concentration of the dopant atoms (P).

DC conductivity vs  concentration of dopant 
atoms for different degrees of compensation in 
Ge:Sb

[Paalanen and Thomas, 1983]

see: Kramer & MacKinnon, Localization: theory and experiment, Rep. Prog. Phys. 56, 1469–1564 (1993).



LIGHT in PHOTONIC 
LATTICES



Only the beginning...Only the beginning...

also Institute d’Optiquealso Institute d’Optique

Hannover, Rice, Illinois …Hannover, Rice, Illinois …



After expansion

Signature of Anderson Localization

Complementary experiment at
         INSTITUTE D’OPTIQUE

Aspect

Before expansion

J. Billy et al., Nature, 891 – 894 (2008)

Semilog plot

BEC (t=0)



P.W.Anderson,  Nobel lecture (1977)

                                  … about the role of interactions.

A second reason why I felt discouraged in the early days  was that I couldn’t fathom 
how to reinsert interactions, and I was afraid they, too, would delocalize. 

The realization that, of course, the Mott insulator localizes without randomness, 
because of interactions, was my liberation on this: one can see easily that Mott and 
Anderson effects supplement, not destroy, each other …

The present excitement of the field for me is that a theory of localization with 
interactions is beginning to appear, …It is remarkable that in almost all cases 
interactions play a vital role , yet many results are not changed too seriously by 
them.



 non interacting atoms in a disordered optical lattice 

production of different localized states

one localized state

two localized states

three localized states

many localized states

also 2D physics!

see Michele Modugno

Tuesday Poster session



Disorder and interaction

No interaction: few independent localized states

With interaction: localized states get more extendend and lock in phase

H≈H 0U ∣w j 〉 〈w j∣ U=
4π ℏ2

m
a n



a = 1.7a0

Adding interactions – several shots

a = 9.4a0 a = 23a0

Interferogram of multiple localized states:



Preliminary results
First effects of the interactions on the interference pattern of multiple localized states: 

a = 1.7a0 a = 9.4a0 a = 23a0

fluctuating phase fixed phase

Non interacting regime: independent localized states (large separation with respect to their axial extent) 
→ the phase of the interference pattern varies randomly in the range [0, 2π], from shot to shot. 

Weakly interacting regime: the eigenstates of the system become a superposition of an increasing number of 
noninteracting eigenstates, and the effective tunneling between them increases→ the phase is locked.



Momentum distribution and interference

tight trapping (~100Hz)
[previous preliminary measurements]

a=0: interference between few localized states:

random phase (from shot to shot)

a>0: interacting groundstate
interference peaks but locked phase

weak trapping (< 10Hz)

a=0: interference between many localized states:

no interference pattern

a>0: interference peaks

☺critical threshold weakly perturbed☹critical threshold affected by the harmonic potential



Quantum diffusion



Quantum diffusion

+ role of initial conditions (width of the wavepacket)



Quantum diffusion

Diffusion at fixed s1 for different values of the interaction?



From diffusive to localized behaviour

Δ/J=0

Δ/J=7



Changing the lattice wavelenghts

1032:862 nm

1064:866 nm



 

87Rb
41K/87Rb mixture

Shift of the “Mott-insulator” 
transition. 

Degenerate Bose-Bose mixture in a 3D optical lattice
J. Catani, L. De Sarlo, G. Barontini, F. Minardi and M.I.  PRA77, 011603R (2008)
Hamburg and Zurich with Fermions

…different strategy



RF-association

avg+Bmodc!mod

magnetic field
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associate molecules by modulating 
magnetic field near strong Feshbach 
resonance
inelastic molecule-atom collisions

Feshbach resonances 
Thalhammer et al. PRL 100, 210402 (2008)



Feshbach molecules, rf association 

Molecules associated 
by resonant 
modulation of the 
Feshbach magnetic 
field

Weber et al cond mat 0808.4077



EFFECTIVE SPIN formalism can map a mixture of different species in OL on a Spin-like 
system , thus allowing the employment of Bosonic Mixtures for investigation  on QUANTUM 
MAGNETISM.

Depending on relative filling factor (equivalent to magnetization),  and 
relative interaction, different magnetic phases in the deep lattice are 
expected, ranging from FERROMAGNETIC to Néel (or 
ANTIFERROMAGNETIC) ordered states.

Quantum Phases in Optical Lattices

Strongly correlated systems in a highly controllable 
environment



KRb rf spectroscopy 

Feshbach position 
precisely determined by 
measuring the molecular 
binding energy vs magnetic 
field

Three-body losses have a 
peak that depends on the 
sample temperature,
complicated dynamics of 
trapped atoms and dimers





1D atomic systems + 1D disorder
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Magnetic field (G)

EFIMOV

BRAGG

Bloch oscillations
Dipolar effects

Microtraps. Photonic 
crystals…




