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A unique non-Fermi liquid model of high Tc superconductivity with d-wave pairing
and a pseudogap

Eliot Kapit and André LeClair
Newman Laboratory, Cornell University, Ithaca, NY

(Dated: May 2008)

We present a simple model of fermions with repulsive quartic interactions in two dimensions
that has non-Fermi liquid behavior due to a low energy fixed point. Incorporating momentum
dependent scattering of Cooper pairs we derive a new gap equation, and show that an attractive
d-wave channel opens up at 1-loop. The main features of the phase diagram can be calculated as
a function of doping by solving 2 gap equations. The d-wave pairing falls under a superconducting
dome, which terminates at the renormalization group fixed point. The pseudogap energy scale is
identified with the scale of the coupling strength of the interaction.

Many fundamental questions remain unanswered in
the theory of high Tc superconductivity. How can one
theory interpolate between anti-ferromagnetic (AF) and
superconducting (SC) order, since AF requires repulsive
interactions and SC attractive? Why is the pairing d-
wave? What is the nature of the pseudogap? In this
paper we present a novel quantum field theory model
wherein these basic questions can be addressed. The
most important guide in formulating our model is the
non-Fermi liquid behavior, as emphasized early on by
Anderson[? ]. The reason is that if one insists on a
local field theory description in a rotationally invariant
long wavelength limit, relevant interactions which lead
to a low energy fixed point are exceedingly constrained
and in fact rare. We describe an essentially unique non-
Fermi liquid theory in 2d based on 4-fermion interactions
which automatically has SO(5) symmetry. It thus gives
a microscopic model where the ideas of Zhang may be
explored[? ]. This model was proposed earlier in some
preliminary work by one of us[? ? ] which focused on
AF order; at the time the d-wave SC properties were not
understood; many other properties are analyzed here for
the first time. The model is in line with ideas that em-
phasize the rôle of the Hubbard model[? ? ], however our
model cannot be simply derived by a naive scaling limit
since the latter only has at most SO(4) symmetry[? ];
nevertheless we can relate the model to lattice fermions
in the AF phase. Once the theory is formulated, the
main properties of high Tc follow naturally in an analysis
involving only simple 1-loop calculations, which are ac-
curate since at the fixed point the coupling is small ≈ 1

8 .
Our model thus reveals that high Tc SC may be a re-
markably universal phenomenon that manages to realize
some subtle theoretical loopholes. Such quantum criti-
cal points were emphasized by Vojta and Sachdev[? ].
We begin by motivating our model with RG arguments
and derivations of it in two limits. The rest of the paper
explains how we calculated the phase diagram shown in
Figure ??.
Expansion around the Fermi surface. Consider free non-
relativistic particles with energy ε(k) that is rotationally
invariant, e.g. ε(k) = k2/2m∗. The Fermi surface is
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FIG. 1: Calculated phase diagram as a function of hole doping
based on a single parameter 0 < γ < 1, set equal to 1 (in-
finitely strong coupling at short distances). What is shown
are solutions δ′s, δ

′

q of the AF and d-wave gap equations be-
low, which are proportional to the critical temperature. Tpg

is simply the RG scale of the coupling g. The AF transi-
tion point at hAF = 3

4π2 is first order. The SC transition at
h∗ = 3

2π2 is second-order and corresponds to the fixed point
of the renormalization group. h1 =≈ 0.13 is not universal.

a circle in 2d as shown in Figure ??. For a band of
energies near the Fermi surface, k = kF (k) + p(k) as
shown and the particles have a linear dispersion relation
ε(k) ≈ εF ±vF |p|. Let ap correspond to particles and bp
to holes. Then the effective hamiltonian is

H =

∫

|p|<Λc

(d2p)
[
(vF |p|− µ̂)a†

p
ap + (vF |p| + µ̂)b†

p
bp

]

(1)
where µ̂ = µ − εF is zero at zero temperature. This is
an approximation to the density of states that correctly
reproduces the high-energy physics[? ]. Our expansion
around the Fermi surface is thus in the same spirit as
in[? ], but differs in the latter fact. We demand a con-
sistent local effective quantum field theory that gives the
above H . Since the energy corresponds to massless par-
ticles with a linear dispersion relation, we identify an
emergent Lorentz symmetry and describe H using a rel-
ativistic field theory. There are only 2 known candidates
which differ in whether the lagrangian is first or second
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Basic requirements of any theory

• non-Fermi liquid in 2 spatial dimensions

• strong coulomb repulsion  with AF phase

• d-wave pairing instability

• pseudogap

• an estimate of Tc  



Where to begin?
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Here......

* non-Fermi liquids are rare 
* assume a rotationally invariant continuum description
*  intrinsically 2d theory  with only quartic interactions
*  starting from most entropic states



Expansion around Fermi 
Surface

2

order in derivatives. The first order case requires a multi-
component Dirac field, and since here a 4-fermion interac-
tion is an irrelevant dimension 4 operator in 2d, it cannot
lead to a non-Fermi liquid.
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FIG. 2: Expansion around a circular Fermi Surface. The
diamond corresponds to a half-filled lattice.

The other possibility is second-order in both space and
time derivatives with action

S =

∫
dt d2x

(
∂tχ

−∂tχ
+ − v2

F
#∇χ− · #∇χ+

)
(2)

The Fermi velocity plays the role of the speed of light
which just serves to convert units of space and time so
it can be set equal to 1. This form for a fermionic field
is very unconventional, and to a particle physicist it ap-
pears to violate the spin-statistics theorem. Since the
above kinetic term is crucial to all that follows, we give
the following compelling arguments in favor of it: (i)
It correctly reproduces the desired effective hamiltonian
(??) for particles and holes near the Fermi surface. Thus
the free theory is perfectly hermitian and unitary in mo-
mentum space. (ii) In the condensed matter context, spin
is a flavor and for spin 1

2
particles we simply double the

number of components χ±
↑ , χ±

↓ . Since there is a total of
4 fields, by Fermi statistics there is a unique 4-fermion
interaction with hamiltonian density

Hint = 8π2g χ−
↑ χ+

↑ χ−
↓ χ+

↓ (3)

Repulsive interactions correspond to positive g. Since the
field has classical scaling dimension 1

2
in 2d, the above

operator has dimension 2 and is therefore relevant. At
low energies the coupling flows to an interacting fixed
point with non-Fermi liquid behavior. (iii) Although our
model was originally motivated by expanding near a cir-
cular Fermi surface, it can also be obtained from inter-
acting itinerant lattice fermion models like the Hubbard
model at half-filling, thus it can interpolate between the
two Fermi surfaces shown in Figure ??. At strong cou-
pling the latter is known to correspond to the Heisen-
berg anti-ferromagnet, with a low energy description in
terms of an O(3) non-linear sigma model[? ? ] for a

field #φ constrained to have fixed length with lagrangian
L = ∂µ

#φ · ∂µ#φ. In our model the #φ order parameter is
#φ = χ−#σχ+ (see below) and the constraint on #φ follows
from the simple constraint χ−χ+ equal to a constant.
Inserting this into the #φ action one obtains the second
order action (??) up to some irrelevant operators.

There is no violation of the spin-statistics connection
since here spin is a flavor and the fields are fermionic.
The issue rather has to do with unitarity. The mode
expansion of the fields is

χ−(x, t) =

∫
(d2p)
√

2ωp

(
a†
p e−ip·x + bp eip·x

)

χ+(x, t) =

∫
(d2p)
√

2ωp

(
−b†p e−ip·x + ap eip·x

)
(4)

where ωp =
√

p2 and p · x ≡ ωpt − p · x. The addi-
tional minus sign in the expansion of χ+ is chosen so that
the canonical quantization relations of the fields leads to
the usual canonical relations in momentum space for the
a and b’s. The canonical hamiltonian of the theory is
precisely (??). Introduce a unitary operator C that dis-
tinguishes particles and holes: CaC = a, CbC = −b
where C2 = 1. Then χ+ = C(χ−)†C and in terms of
fields the hamiltonian is pseudo-hermitian: H† = CHC[?
]. It was understood long ago by Pauli that a pseudo-
hermitian hamiltonian gives a consistent quantum me-
chanics with a unitary time evolution and real eigen-
values. In the present context, pseudo-hermiticity has
additional meaning with regard to the kinematics of the
expansion around the Fermi surface since C distinguishes
particles and holes. Conservation of the physical momen-
tum k is only equivalent to conservation of p for processes
where particles are paired with particles and holes with
holes. For the study of SC, these are of course the pro-
cesses we are primarily concerned with. We are thus only
interested in eigenstates which are also eigenstates of C,
and for these H = H†.

The SO(5) symmetry is easiest to see if one introduces
an N -component version with fields χ±

α , α = 1, .., N ,
which has Sp(2N) symmetry[? ]. For spin 1

2 particles,
N = 2 and Sp(4) = SO(5). The SO(5) has an SU(2)
spin subgroup and a U(1) charge that commutes with
it. The ± indices on the fields χ± correspond to elec-
tric charge. One can construct an SO(5) vector of order

parameters #Φ = (φx, φy, φz , φ+
e , φ−

e ) where #φ is an electri-
cally neutral SU(2) vector and φ±

e are Cooper pair fields
of charge ±2 which are SU(2) spin singlets:

#φ = χ−#σχ+, φ+
e = χ+

↑ χ+
↓ , φ−

e = χ−
↓ χ−

↑ (5)

Low energy fixed point. It is important to carry out the
RG directly in 2d. As usual, the RG prescription in-
volves two energy scales, the cut-off Λc and a lower run-
ning scale Λ. Since the coupling g has units of energy
in 2d, we define g(Λ) = Λĝ(Λ) where ĝ is dimensionless.
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the theory of high Tc superconductivity. How can one
theory interpolate between anti-ferromagnetic (AF) and
superconducting (SC) order, since AF requires repulsive
interactions and SC attractive? Why is the pairing d-
wave? What is the nature of the pseudogap? In this
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wherein these basic questions can be addressed. The
most important guide in formulating our model is the
non-Fermi liquid behavior, as emphasized early on by
Anderson[? ]. The reason is that if one insists on a
local field theory description in a rotationally invariant
long wavelength limit, relevant interactions which lead
to a low energy fixed point are exceedingly constrained
and in fact rare. We describe an essentially unique non-
Fermi liquid theory in 2d based on 4-fermion interactions
which automatically has SO(5) symmetry. It thus gives
a microscopic model where the ideas of Zhang may be
explored[? ]. This model was proposed earlier in some
preliminary work by one of us[? ? ] which focused on
AF order; at the time the d-wave SC properties were not
understood; many other properties are analyzed here for
the first time. The model is in line with ideas that em-
phasize the rôle of the Hubbard model[? ? ], however our
model cannot be simply derived by a naive scaling limit
since the latter only has at most SO(4) symmetry[? ];
nevertheless we can relate the model to lattice fermions
in the AF phase. Once the theory is formulated, the
main properties of high Tc follow naturally in an analysis
involving only simple 1-loop calculations, which are ac-
curate since at the fixed point the coupling is small ≈ 1
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Our model thus reveals that high Tc SC may be a re-
markably universal phenomenon that manages to realize
some subtle theoretical loopholes. Such quantum criti-
cal points were emphasized by Vojta and Sachdev[? ].
We begin by motivating our model with RG arguments
and derivations of it in two limits. The rest of the paper
explains how we calculated the phase diagram shown in
Figure ??.
Expansion around the Fermi surface. Consider free non-
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based on a single parameter 0 < γ < 1, set equal to 1 (in-
finitely strong coupling at short distances). What is shown
are solutions δ′s, δ
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low, which are proportional to the critical temperature. Tpg

is simply the RG scale of the coupling g. The AF transi-
tion point at hAF = 3
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h∗ = 3

2π2 is second-order and corresponds to the fixed point
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a circle in 2d as shown in Figure ??. For a band of
energies near the Fermi surface, k = kF (k) + p(k) as
shown and the particles have a linear dispersion relation
ε(k) ≈ εF ±vF |p|. Let ap correspond to particles and bp
to holes. Then the effective hamiltonian is

H =

∫

|p|<Λc

(d2p)
[
(vF |p|− µ̂)a†

p
ap + (vF |p| + µ̂)b†

p
bp

]

(1)
where µ̂ = µ − εF is zero at zero temperature. This is
an approximation to the density of states that correctly
reproduces the high-energy physics[? ]. Our expansion
around the Fermi surface is thus in the same spirit as
in[? ], but differs in the latter fact. We demand a con-
sistent local effective quantum field theory that gives the
above H . Since the energy corresponds to massless par-
ticles with a linear dispersion relation, we identify an
emergent Lorentz symmetry and describe H using a rel-
ativistic field theory. There are only 2 known candidates
which differ in whether the lagrangian is first or second
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FIG. 5: Fermi surface contours for free lattice fermions in 2d with lattice spacing a = 1.

III. REQUIREMENTS ON THE FREE LOCAL FIELD THEORY

The main requirements we impose for a local field theory description of the last

section are:

(i) The theory has a lagrangian description with a consistent quantization.

(ii) In momentum space the hamiltonian reduces to equation (10) for particles and

holes of energy vF |p|. The latter is a relativistic dispersion relation for massless

particles.

In order to motivate our arguments, let us start from non-relativistic particles with

εk = k2/2m∗. The second-quantized description consists of a single field Ψ(x, t) with

lagrangian

L =

∫
ddx

(
iΨ†∂tΨ −

1

2m∗
#∇Ψ† · #∇Ψ

)
(15)

The field has the momentum space expansion

Ψ(x, t) =

∫
(ddk) ck e−iεk+ik·x (16)

16



Requiring a field theory description with relevant 
interactions points to a unique theory with the 
action  for fermionic fields:

I. INTRODUCTION

II. THE MODEL, IT’S SYMMETRIES AND ORDER PARAMETERS

The fundamental fields of the model are charged fermionic fields χ±
α , where the flavor

index α =↑, ↓ corresponds to spin. The euclidean action in 2 spatial dimensions is the

following

S =

∫
d2xdt

(
∑

α=↑,↓

(
∂µχ

−
α∂µχ+

α + m2χ−
αχ+

α

)
− 8π2g χ−

↑ χ+
↑ χ−

↓ χ+
↓

)

(1)

where ∂µ∂µ = ∂2
t + %∇2.

The quartic interaction is unique up to the sign of the coupling by fermionic statistics.

Another consequence of the fermionic statistics is that the model has an SO(5) symmetry.

This symmetry is manifest if one considers an N -component version, α = 1, .., N , which has

Sp(2N) symmetry, and one notes Sp(4) = SO(5). The SO(5) contains a spin SO(3) and

a U(1) which can be identified with electric charge. The conserved electric current then

corresponds to

Je
µ = −i

∑

α

(
χ−

α∂µχ
+
α + χ+

α∂µχ
−
α

)
(2)

and the fields χ± have electric charge ±1.

The important order parameters for the study of spontaneous symmetry breaking are

composite bilinears in the fermions. The 4 fields χ±
α transform under the spinor representa-

tion of SO(5). The bilinears can be decomposed as 4⊗4 = 1⊕5⊕10 where 1 is the singlet,

5 the vector representation, and 10 the adjoint. The singlet is the field
∑

α χ−χ+ ≡ χ−χ+

and corresponds to the mass term in the action. The 5-vector of fields corresponds to

%Φ = (%φ, φ+
e , φ−

e ) = (χ−%σχ+/
√

2, χ+
↑ χ+

↓ , χ−
↓ χ−

↑ ) (3)

where %σ are Pauli matrices. The triplet of fields %φ are electrically neutral and transform as

a spin vector under the SU(2) and serve as magnetic order parameters. The fields φ±
e on

the other hand are spin singlets but carry electric charge ±2 and are thus Cooper pair fields

for superconducting order. The SO(5) invariant product is

%Φ · %Φ = %φ · %φ − 2φ+
e φ−

e (4)

2

*The free theory has the correct spectrum with a 
relativistic dispersion relation.

* Interaction is a unique dimension 2 operator, 
i.e. relevent.  



Unitarity,  spin statistics!? 

• spin is a flavor here and thus does not need to 
be embedded in the Lorentz group. 

• pseudo-hermiticity:      

• C distinguishes particles and holes:

2

order in derivatives. The first order case requires a multi-
component Dirac field, and since here a 4-fermion interac-
tion is an irrelevant dimension 4 operator in 2d, it cannot
lead to a non-Fermi liquid.
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FIG. 2: Expansion around a circular Fermi Surface. The
diamond corresponds to a half-filled lattice.

The other possibility is second-order in both space and
time derivatives with action

S =

∫
dt d2x

(
∂tχ

−∂tχ
+ − v2

F
#∇χ− · #∇χ+

)
(2)

The Fermi velocity plays the role of the speed of light
which just serves to convert units of space and time so
it can be set equal to 1. This form for a fermionic field
is very unconventional, and to a particle physicist it ap-
pears to violate the spin-statistics theorem. Since the
above kinetic term is crucial to all that follows, we give
the following compelling arguments in favor of it: (i)
It correctly reproduces the desired effective hamiltonian
(??) for particles and holes near the Fermi surface. Thus
the free theory is perfectly hermitian and unitary in mo-
mentum space. (ii) In the condensed matter context, spin
is a flavor and for spin 1

2
particles we simply double the

number of components χ±
↑ , χ±

↓ . Since there is a total of
4 fields, by Fermi statistics there is a unique 4-fermion
interaction with hamiltonian density

Hint = 8π2g χ−
↑ χ+

↑ χ−
↓ χ+

↓ (3)

Repulsive interactions correspond to positive g. Since the
field has classical scaling dimension 1

2
in 2d, the above

operator has dimension 2 and is therefore relevant. At
low energies the coupling flows to an interacting fixed
point with non-Fermi liquid behavior. (iii) Although our
model was originally motivated by expanding near a cir-
cular Fermi surface, it can also be obtained from inter-
acting itinerant lattice fermion models like the Hubbard
model at half-filling, thus it can interpolate between the
two Fermi surfaces shown in Figure ??. At strong cou-
pling the latter is known to correspond to the Heisen-
berg anti-ferromagnet, with a low energy description in
terms of an O(3) non-linear sigma model[? ? ] for a

field #φ constrained to have fixed length with lagrangian
L = ∂µ

#φ · ∂µ#φ. In our model the #φ order parameter is
#φ = χ−#σχ+ (see below) and the constraint on #φ follows
from the simple constraint χ−χ+ equal to a constant.
Inserting this into the #φ action one obtains the second
order action (??) up to some irrelevant operators.

There is no violation of the spin-statistics connection
since here spin is a flavor and the fields are fermionic.
The issue rather has to do with unitarity. The mode
expansion of the fields is

χ−(x, t) =

∫
(d2p)
√

2ωp

(
a†
p e−ip·x + bp eip·x

)

χ+(x, t) =

∫
(d2p)
√

2ωp

(
−b†p e−ip·x + ap eip·x

)
(4)

where ωp =
√

p2 and p · x ≡ ωpt − p · x. The addi-
tional minus sign in the expansion of χ+ is chosen so that
the canonical quantization relations of the fields leads to
the usual canonical relations in momentum space for the
a and b’s. The canonical hamiltonian of the theory is
precisely (??). Introduce a unitary operator C that dis-
tinguishes particles and holes: CaC = a, CbC = −b
where C2 = 1. Then χ+ = C(χ−)†C and in terms of
fields the hamiltonian is pseudo-hermitian: H† = CHC[?
]. It was understood long ago by Pauli that a pseudo-
hermitian hamiltonian gives a consistent quantum me-
chanics with a unitary time evolution and real eigen-
values. In the present context, pseudo-hermiticity has
additional meaning with regard to the kinematics of the
expansion around the Fermi surface since C distinguishes
particles and holes. Conservation of the physical momen-
tum k is only equivalent to conservation of p for processes
where particles are paired with particles and holes with
holes. For the study of SC, these are of course the pro-
cesses we are primarily concerned with. We are thus only
interested in eigenstates which are also eigenstates of C,
and for these H = H†.

The SO(5) symmetry is easiest to see if one introduces
an N -component version with fields χ±

α , α = 1, .., N ,
which has Sp(2N) symmetry[? ]. For spin 1

2 particles,
N = 2 and Sp(4) = SO(5). The SO(5) has an SU(2)
spin subgroup and a U(1) charge that commutes with
it. The ± indices on the fields χ± correspond to elec-
tric charge. One can construct an SO(5) vector of order

parameters #Φ = (φx, φy, φz , φ+
e , φ−

e ) where #φ is an electri-
cally neutral SU(2) vector and φ±

e are Cooper pair fields
of charge ±2 which are SU(2) spin singlets:

#φ = χ−#σχ+, φ+
e = χ+

↑ χ+
↓ , φ−

e = χ−
↓ χ−

↑ (5)

Low energy fixed point. It is important to carry out the
RG directly in 2d. As usual, the RG prescription in-
volves two energy scales, the cut-off Λc and a lower run-
ning scale Λ. Since the coupling g has units of energy
in 2d, we define g(Λ) = Λĝ(Λ) where ĝ is dimensionless.
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order in derivatives. The first order case requires a multi-
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The other possibility is second-order in both space and
time derivatives with action

S =

∫
dt d2x

(
∂tχ

−∂tχ
+ − v2

F
#∇χ− · #∇χ+

)
(2)

The Fermi velocity plays the role of the speed of light
which just serves to convert units of space and time so
it can be set equal to 1. This form for a fermionic field
is very unconventional, and to a particle physicist it ap-
pears to violate the spin-statistics theorem. Since the
above kinetic term is crucial to all that follows, we give
the following compelling arguments in favor of it: (i)
It correctly reproduces the desired effective hamiltonian
(??) for particles and holes near the Fermi surface. Thus
the free theory is perfectly hermitian and unitary in mo-
mentum space. (ii) In the condensed matter context, spin
is a flavor and for spin 1

2
particles we simply double the

number of components χ±
↑ , χ±

↓ . Since there is a total of
4 fields, by Fermi statistics there is a unique 4-fermion
interaction with hamiltonian density

Hint = 8π2g χ−
↑ χ+

↑ χ−
↓ χ+

↓ (3)

Repulsive interactions correspond to positive g. Since the
field has classical scaling dimension 1

2
in 2d, the above

operator has dimension 2 and is therefore relevant. At
low energies the coupling flows to an interacting fixed
point with non-Fermi liquid behavior. (iii) Although our
model was originally motivated by expanding near a cir-
cular Fermi surface, it can also be obtained from inter-
acting itinerant lattice fermion models like the Hubbard
model at half-filling, thus it can interpolate between the
two Fermi surfaces shown in Figure ??. At strong cou-
pling the latter is known to correspond to the Heisen-
berg anti-ferromagnet, with a low energy description in
terms of an O(3) non-linear sigma model[? ? ] for a

field #φ constrained to have fixed length with lagrangian
L = ∂µ

#φ · ∂µ#φ. In our model the #φ order parameter is
#φ = χ−#σχ+ (see below) and the constraint on #φ follows
from the simple constraint χ−χ+ equal to a constant.
Inserting this into the #φ action one obtains the second
order action (??) up to some irrelevant operators.

There is no violation of the spin-statistics connection
since here spin is a flavor and the fields are fermionic.
The issue rather has to do with unitarity. The mode
expansion of the fields is

χ−(x, t) =

∫
(d2p)
√

2ωp

(
a†
p e−ip·x + bp eip·x

)

χ+(x, t) =

∫
(d2p)
√

2ωp

(
−b†p e−ip·x + ap eip·x

)
(4)

where ωp =
√

p2 and p · x ≡ ωpt − p · x. The addi-
tional minus sign in the expansion of χ+ is chosen so that
the canonical quantization relations of the fields leads to
the usual canonical relations in momentum space for the
a and b’s. The canonical hamiltonian of the theory is
precisely (??). Introduce a unitary operator C that dis-
tinguishes particles and holes: CaC = a, CbC = −b
where C2 = 1. Then χ+ = C(χ−)†C and in terms of
fields the hamiltonian is pseudo-hermitian: H† = CHC[?
]. It was understood long ago by Pauli that a pseudo-
hermitian hamiltonian gives a consistent quantum me-
chanics with a unitary time evolution and real eigen-
values. In the present context, pseudo-hermiticity has
additional meaning with regard to the kinematics of the
expansion around the Fermi surface since C distinguishes
particles and holes. Conservation of the physical momen-
tum k is only equivalent to conservation of p for processes
where particles are paired with particles and holes with
holes. For the study of SC, these are of course the pro-
cesses we are primarily concerned with. We are thus only
interested in eigenstates which are also eigenstates of C,
and for these H = H†.

The SO(5) symmetry is easiest to see if one introduces
an N -component version with fields χ±

α , α = 1, .., N ,
which has Sp(2N) symmetry[? ]. For spin 1

2 particles,
N = 2 and Sp(4) = SO(5). The SO(5) has an SU(2)
spin subgroup and a U(1) charge that commutes with
it. The ± indices on the fields χ± correspond to elec-
tric charge. One can construct an SO(5) vector of order

parameters #Φ = (φx, φy, φz , φ+
e , φ−

e ) where #φ is an electri-
cally neutral SU(2) vector and φ±

e are Cooper pair fields
of charge ±2 which are SU(2) spin singlets:

#φ = χ−#σχ+, φ+
e = χ+

↑ χ+
↓ , φ−

e = χ−
↓ χ−

↑ (5)

Low energy fixed point. It is important to carry out the
RG directly in 2d. As usual, the RG prescription in-
volves two energy scales, the cut-off Λc and a lower run-
ning scale Λ. Since the coupling g has units of energy
in 2d, we define g(Λ) = Λĝ(Λ) where ĝ is dimensionless.

2

order in derivatives. The first order case requires a multi-
component Dirac field, and since here a 4-fermion interac-
tion is an irrelevant dimension 4 operator in 2d, it cannot
lead to a non-Fermi liquid.
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The Fermi velocity plays the role of the speed of light
which just serves to convert units of space and time so
it can be set equal to 1. This form for a fermionic field
is very unconventional, and to a particle physicist it ap-
pears to violate the spin-statistics theorem. Since the
above kinetic term is crucial to all that follows, we give
the following compelling arguments in favor of it: (i)
It correctly reproduces the desired effective hamiltonian
(??) for particles and holes near the Fermi surface. Thus
the free theory is perfectly hermitian and unitary in mo-
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4 fields, by Fermi statistics there is a unique 4-fermion
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in 2d, the above

operator has dimension 2 and is therefore relevant. At
low energies the coupling flows to an interacting fixed
point with non-Fermi liquid behavior. (iii) Although our
model was originally motivated by expanding near a cir-
cular Fermi surface, it can also be obtained from inter-
acting itinerant lattice fermion models like the Hubbard
model at half-filling, thus it can interpolate between the
two Fermi surfaces shown in Figure ??. At strong cou-
pling the latter is known to correspond to the Heisen-
berg anti-ferromagnet, with a low energy description in
terms of an O(3) non-linear sigma model[? ? ] for a

field #φ constrained to have fixed length with lagrangian
L = ∂µ

#φ · ∂µ#φ. In our model the #φ order parameter is
#φ = χ−#σχ+ (see below) and the constraint on #φ follows
from the simple constraint χ−χ+ equal to a constant.
Inserting this into the #φ action one obtains the second
order action (??) up to some irrelevant operators.

There is no violation of the spin-statistics connection
since here spin is a flavor and the fields are fermionic.
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tional minus sign in the expansion of χ+ is chosen so that
the canonical quantization relations of the fields leads to
the usual canonical relations in momentum space for the
a and b’s. The canonical hamiltonian of the theory is
precisely (??). Introduce a unitary operator C that dis-
tinguishes particles and holes: CaC = a, CbC = −b
where C2 = 1. Then χ+ = C(χ−)†C and in terms of
fields the hamiltonian is pseudo-hermitian: H† = CHC[?
]. It was understood long ago by Pauli that a pseudo-
hermitian hamiltonian gives a consistent quantum me-
chanics with a unitary time evolution and real eigen-
values. In the present context, pseudo-hermiticity has
additional meaning with regard to the kinematics of the
expansion around the Fermi surface since C distinguishes
particles and holes. Conservation of the physical momen-
tum k is only equivalent to conservation of p for processes
where particles are paired with particles and holes with
holes. For the study of SC, these are of course the pro-
cesses we are primarily concerned with. We are thus only
interested in eigenstates which are also eigenstates of C,
and for these H = H†.

The SO(5) symmetry is easiest to see if one introduces
an N -component version with fields χ±

α , α = 1, .., N ,
which has Sp(2N) symmetry[? ]. For spin 1

2 particles,
N = 2 and Sp(4) = SO(5). The SO(5) has an SU(2)
spin subgroup and a U(1) charge that commutes with
it. The ± indices on the fields χ± correspond to elec-
tric charge. One can construct an SO(5) vector of order

parameters #Φ = (φx, φy, φz , φ+
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e ) where #φ is an electri-
cally neutral SU(2) vector and φ±

e are Cooper pair fields
of charge ±2 which are SU(2) spin singlets:

#φ = χ−#σχ+, φ+
e = χ+
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↓ , φ−

e = χ−
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Low energy fixed point. It is important to carry out the
RG directly in 2d. As usual, the RG prescription in-
volves two energy scales, the cut-off Λc and a lower run-
ning scale Λ. Since the coupling g has units of energy
in 2d, we define g(Λ) = Λĝ(Λ) where ĝ is dimensionless.



and the interaction can be expressed in the manifestly SO(5) invariant manner:

Lint =
8π2

5
g "Φ · "Φ (5)

It was shown in [14] that the free χ theory with the relativistic mass m = 0 reproduces

the effective hamiltonian for particles and holes near a circular Fermi surface, and thus

correspond to electron fields. The momentum expansion of the free fields is

χ−(x, t) =

∫
d2p

(2π)2
√

2ωp

(
a†
pe−ip·x + bpeip·x) (6)

χ+(x, t) =

∫
d2p

(2π)2
√

2ωp

(
−b†

pe−ip·x + apeip·x)

where ωp =
√

p2 + m2 and p · x = ωpt − p · x. The canonical quantization of the theory

based on the action leads to the canonical anti-commutations in momentum space:

{ap, a†
p′} = {bp, b†

p′} = (2π)2δ(p− p′) (7)

and the hamiltonian is

H =

∫
d2p

(2π)2

∑

α=↑,↓

ωp

(
a†
p,αap,α + b†

p,αbp,α

)
(8)

Above, p is a momentum relative to the Fermi surface. When the mass m = 0, ωp = |p|,

which is the characteristic linear dispersion relation near the Fermi surface.

III. RENORMALIZATION GROUP PRESCRIPTIONS

In all approaches to the renormalization group (RG) there are two cut-offs, a fixed upper

cut-off Λc which here can be taken as the inverse lattice spacing, and a lower cut-off Λ < Λc

which is the running RG scale. Renormalization effectively removes the degrees of freedom

with energy between Λ and Λc. In the high-energy physics context, the cut-off Λc is unknown,

so one normally performs the renormalization by sending Λc to infinity and incorporating

counter-terms to cancel ultra-violet divergences. In D = 4 spacetime dimensions this can be

conveniently and systematically performed by using dimensional regularization in D = 4− ε

dimensions, which leads to the epsilon-expansion technique for studying models in D = 3.

In the present context, since the cut-off Λc is in principle known and physical quantities
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SO(5) symmetry
N-component version has Sp(2N) symmetry
Sp(4) = SO(5) 

5-vector of bilinears can serve as order 
parameters for both spontaneous symmetry 
breaking of spin SU(2) (AF)  and the charge 
U(1) for superconductivity

I. INTRODUCTION

II. THE MODEL, IT’S SYMMETRIES AND ORDER PARAMETERS

The fundamental fields of the model are charged fermionic fields χ±
α , where the flavor

index α =↑, ↓ corresponds to spin. The euclidean action in 2 spatial dimensions is the

following

S =

∫
d2xdt

(
∑

α=↑,↓

(
∂µχ

−
α∂µχ+

α + m2χ−
αχ+

α

)
− 8π2g χ−

↑ χ+
↑ χ−

↓ χ+
↓

)

(1)

where ∂µ∂µ = ∂2
t + %∇2.

The quartic interaction is unique up to the sign of the coupling by fermionic statistics.

Another consequence of the fermionic statistics is that the model has an SO(5) symmetry.

This symmetry is manifest if one considers an N -component version, α = 1, .., N , which has

Sp(2N) symmetry, and one notes Sp(4) = SO(5). The SO(5) contains a spin SO(3) and

a U(1) which can be identified with electric charge. The conserved electric current then

corresponds to

Je
µ = −i

∑

α

(
χ−

α∂µχ
+
α + χ+

α∂µχ
−
α

)
(2)

and the fields χ± have electric charge ±1.

The important order parameters for the study of spontaneous symmetry breaking are

composite bilinears in the fermions. The 4 fields χ±
α transform under the spinor representa-

tion of SO(5). The bilinears can be decomposed as 4⊗4 = 1⊕5⊕10 where 1 is the singlet,

5 the vector representation, and 10 the adjoint. The singlet is the field
∑

α χ−χ+ ≡ χ−χ+

and corresponds to the mass term in the action. The 5-vector of fields corresponds to

%Φ = (%φ, φ+
e , φ−

e ) = (χ−%σχ+/
√

2, χ+
↑ χ+

↓ , χ−
↓ χ−

↑ ) (3)

where %σ are Pauli matrices. The triplet of fields %φ are electrically neutral and transform as

a spin vector under the SU(2) and serve as magnetic order parameters. The fields φ±
e on

the other hand are spin singlets but carry electric charge ±2 and are thus Cooper pair fields

for superconducting order. The SO(5) invariant product is

%Φ · %Φ = %φ · %φ − 2φ+
e φ−

e (4)
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The other possibility is second-order in both space and
time derivatives with action

S =

∫
dt d2x

(
∂tχ

−∂tχ
+ − v2

F
#∇χ− · #∇χ+

)
(2)

The Fermi velocity plays the role of the speed of light
which just serves to convert units of space and time so
it can be set equal to 1. This form for a fermionic field
is very unconventional, and to a particle physicist it ap-
pears to violate the spin-statistics theorem. Since the
above kinetic term is crucial to all that follows, we give
the following compelling arguments in favor of it: (i)
It correctly reproduces the desired effective hamiltonian
(??) for particles and holes near the Fermi surface. Thus
the free theory is perfectly hermitian and unitary in mo-
mentum space. (ii) In the condensed matter context, spin
is a flavor and for spin 1

2
particles we simply double the

number of components χ±
↑ , χ±

↓ . Since there is a total of
4 fields, by Fermi statistics there is a unique 4-fermion
interaction with hamiltonian density

Hint = 8π2g χ−
↑ χ+

↑ χ−
↓ χ+

↓ (3)

Repulsive interactions correspond to positive g. Since the
field has classical scaling dimension 1

2
in 2d, the above

operator has dimension 2 and is therefore relevant. At
low energies the coupling flows to an interacting fixed
point with non-Fermi liquid behavior. (iii) Although our
model was originally motivated by expanding near a cir-
cular Fermi surface, it can also be obtained from inter-
acting itinerant lattice fermion models like the Hubbard
model at half-filling, thus it can interpolate between the
two Fermi surfaces shown in Figure ??. At strong cou-
pling the latter is known to correspond to the Heisen-
berg anti-ferromagnet, with a low energy description in
terms of an O(3) non-linear sigma model[? ? ] for a

field #φ constrained to have fixed length with lagrangian
L = ∂µ

#φ · ∂µ#φ. In our model the #φ order parameter is
#φ = χ−#σχ+ (see below) and the constraint on #φ follows
from the simple constraint χ−χ+ equal to a constant.
Inserting this into the #φ action one obtains the second
order action (??) up to some irrelevant operators.

There is no violation of the spin-statistics connection
since here spin is a flavor and the fields are fermionic.
The issue rather has to do with unitarity. The mode
expansion of the fields is

χ−(x, t) =

∫
(d2p)
√

2ωp

(
a†
p e−ip·x + bp eip·x

)

χ+(x, t) =

∫
(d2p)
√

2ωp

(
−b†p e−ip·x + ap eip·x

)
(4)

where ωp =
√

p2 and p · x ≡ ωpt − p · x. The addi-
tional minus sign in the expansion of χ+ is chosen so that
the canonical quantization relations of the fields leads to
the usual canonical relations in momentum space for the
a and b’s. The canonical hamiltonian of the theory is
precisely (??). Introduce a unitary operator C that dis-
tinguishes particles and holes: CaC = a, CbC = −b
where C2 = 1. Then χ+ = C(χ−)†C and in terms of
fields the hamiltonian is pseudo-hermitian: H† = CHC[?
]. It was understood long ago by Pauli that a pseudo-
hermitian hamiltonian gives a consistent quantum me-
chanics with a unitary time evolution and real eigen-
values. In the present context, pseudo-hermiticity has
additional meaning with regard to the kinematics of the
expansion around the Fermi surface since C distinguishes
particles and holes. Conservation of the physical momen-
tum k is only equivalent to conservation of p for processes
where particles are paired with particles and holes with
holes. For the study of SC, these are of course the pro-
cesses we are primarily concerned with. We are thus only
interested in eigenstates which are also eigenstates of C,
and for these H = H†.

The SO(5) symmetry is easiest to see if one introduces
an N -component version with fields χ±

α , α = 1, .., N ,
which has Sp(2N) symmetry[? ]. For spin 1

2 particles,
N = 2 and Sp(4) = SO(5). The SO(5) has an SU(2)
spin subgroup and a U(1) charge that commutes with
it. The ± indices on the fields χ± correspond to elec-
tric charge. One can construct an SO(5) vector of order

parameters #Φ = (φx, φy, φz , φ+
e , φ−

e ) where #φ is an electri-
cally neutral SU(2) vector and φ±

e are Cooper pair fields
of charge ±2 which are SU(2) spin singlets:

#φ = χ−#σχ+, φ+
e = χ+

↑ χ+
↓ , φ−

e = χ−
↓ χ−

↑ (5)

Low energy fixed point. It is important to carry out the
RG directly in 2d. As usual, the RG prescription in-
volves two energy scales, the cut-off Λc and a lower run-
ning scale Λ. Since the coupling g has units of energy
in 2d, we define g(Λ) = Λĝ(Λ) where ĝ is dimensionless.

2

order in derivatives. The first order case requires a multi-
component Dirac field, and since here a 4-fermion interac-
tion is an irrelevant dimension 4 operator in 2d, it cannot
lead to a non-Fermi liquid.
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time derivatives with action

S =

∫
dt d2x

(
∂tχ

−∂tχ
+ − v2

F
#∇χ− · #∇χ+

)
(2)

The Fermi velocity plays the role of the speed of light
which just serves to convert units of space and time so
it can be set equal to 1. This form for a fermionic field
is very unconventional, and to a particle physicist it ap-
pears to violate the spin-statistics theorem. Since the
above kinetic term is crucial to all that follows, we give
the following compelling arguments in favor of it: (i)
It correctly reproduces the desired effective hamiltonian
(??) for particles and holes near the Fermi surface. Thus
the free theory is perfectly hermitian and unitary in mo-
mentum space. (ii) In the condensed matter context, spin
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Repulsive interactions correspond to positive g. Since the
field has classical scaling dimension 1
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in 2d, the above

operator has dimension 2 and is therefore relevant. At
low energies the coupling flows to an interacting fixed
point with non-Fermi liquid behavior. (iii) Although our
model was originally motivated by expanding near a cir-
cular Fermi surface, it can also be obtained from inter-
acting itinerant lattice fermion models like the Hubbard
model at half-filling, thus it can interpolate between the
two Fermi surfaces shown in Figure ??. At strong cou-
pling the latter is known to correspond to the Heisen-
berg anti-ferromagnet, with a low energy description in
terms of an O(3) non-linear sigma model[? ? ] for a

field #φ constrained to have fixed length with lagrangian
L = ∂µ

#φ · ∂µ#φ. In our model the #φ order parameter is
#φ = χ−#σχ+ (see below) and the constraint on #φ follows
from the simple constraint χ−χ+ equal to a constant.
Inserting this into the #φ action one obtains the second
order action (??) up to some irrelevant operators.

There is no violation of the spin-statistics connection
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tional minus sign in the expansion of χ+ is chosen so that
the canonical quantization relations of the fields leads to
the usual canonical relations in momentum space for the
a and b’s. The canonical hamiltonian of the theory is
precisely (??). Introduce a unitary operator C that dis-
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where C2 = 1. Then χ+ = C(χ−)†C and in terms of
fields the hamiltonian is pseudo-hermitian: H† = CHC[?
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chanics with a unitary time evolution and real eigen-
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particles and holes. Conservation of the physical momen-
tum k is only equivalent to conservation of p for processes
where particles are paired with particles and holes with
holes. For the study of SC, these are of course the pro-
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and for these H = H†.
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The other possibility is second-order in both space and
time derivatives with action

S =

∫
dt d2x

(
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The Fermi velocity plays the role of the speed of light
which just serves to convert units of space and time so
it can be set equal to 1. This form for a fermionic field
is very unconventional, and to a particle physicist it ap-
pears to violate the spin-statistics theorem. Since the
above kinetic term is crucial to all that follows, we give
the following compelling arguments in favor of it: (i)
It correctly reproduces the desired effective hamiltonian
(??) for particles and holes near the Fermi surface. Thus
the free theory is perfectly hermitian and unitary in mo-
mentum space. (ii) In the condensed matter context, spin
is a flavor and for spin 1

2
particles we simply double the

number of components χ±
↑ , χ±

↓ . Since there is a total of
4 fields, by Fermi statistics there is a unique 4-fermion
interaction with hamiltonian density

Hint = 8π2g χ−
↑ χ+

↑ χ−
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↓ (3)

Repulsive interactions correspond to positive g. Since the
field has classical scaling dimension 1

2
in 2d, the above

operator has dimension 2 and is therefore relevant. At
low energies the coupling flows to an interacting fixed
point with non-Fermi liquid behavior. (iii) Although our
model was originally motivated by expanding near a cir-
cular Fermi surface, it can also be obtained from inter-
acting itinerant lattice fermion models like the Hubbard
model at half-filling, thus it can interpolate between the
two Fermi surfaces shown in Figure ??. At strong cou-
pling the latter is known to correspond to the Heisen-
berg anti-ferromagnet, with a low energy description in
terms of an O(3) non-linear sigma model[? ? ] for a

field #φ constrained to have fixed length with lagrangian
L = ∂µ

#φ · ∂µ#φ. In our model the #φ order parameter is
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There is no violation of the spin-statistics connection
since here spin is a flavor and the fields are fermionic.
The issue rather has to do with unitarity. The mode
expansion of the fields is

χ−(x, t) =

∫
(d2p)
√

2ωp

(
a†
p e−ip·x + bp eip·x

)

χ+(x, t) =

∫
(d2p)
√

2ωp

(
−b†p e−ip·x + ap eip·x

)
(4)

where ωp =
√

p2 and p · x ≡ ωpt − p · x. The addi-
tional minus sign in the expansion of χ+ is chosen so that
the canonical quantization relations of the fields leads to
the usual canonical relations in momentum space for the
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where C2 = 1. Then χ+ = C(χ−)†C and in terms of
fields the hamiltonian is pseudo-hermitian: H† = CHC[?
]. It was understood long ago by Pauli that a pseudo-
hermitian hamiltonian gives a consistent quantum me-
chanics with a unitary time evolution and real eigen-
values. In the present context, pseudo-hermiticity has
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expansion around the Fermi surface since C distinguishes
particles and holes. Conservation of the physical momen-
tum k is only equivalent to conservation of p for processes
where particles are paired with particles and holes with
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interested in eigenstates which are also eigenstates of C,
and for these H = H†.

The SO(5) symmetry is easiest to see if one introduces
an N -component version with fields χ±

α , α = 1, .., N ,
which has Sp(2N) symmetry[? ]. For spin 1

2 particles,
N = 2 and Sp(4) = SO(5). The SO(5) has an SU(2)
spin subgroup and a U(1) charge that commutes with
it. The ± indices on the fields χ± correspond to elec-
tric charge. One can construct an SO(5) vector of order

parameters #Φ = (φx, φy, φz , φ+
e , φ−

e ) where #φ is an electri-
cally neutral SU(2) vector and φ±

e are Cooper pair fields
of charge ±2 which are SU(2) spin singlets:

#φ = χ−#σχ+, φ+
e = χ+

↑ χ+
↓ , φ−

e = χ−
↓ χ−

↑ (5)

Low energy fixed point. It is important to carry out the
RG directly in 2d. As usual, the RG prescription in-
volves two energy scales, the cut-off Λc and a lower run-
ning scale Λ. Since the coupling g has units of energy
in 2d, we define g(Λ) = Λĝ(Λ) where ĝ is dimensionless.

3

The 1-loop beta function is − dbg
log Λ

= ĝ − 8ĝ2 which has
a low energy fixed point at ĝ∗ = 1/8. To understand the
phase diagram as a function of doping, it is first conve-
nient to introduce the variable x = 1/ĝ where the fixed
point value is at x∗ = 8. We also introduce a variable x0

that encodes the strength of the coupling at the cut-off:
x0 = 1/ĝ0 where g(Λc) = Λcĝ0. We assume that at short
distances the coupling is strong, i.e. g > g∗. It will also
be useful to define γ = (x∗ − x0)/x∗ which is a small
parameter between 0 and 1. The coupling at short dis-
tances can be arbitrarily strong, where infinite coupling
corresponds to γ = 1. Integrating the beta-function with
this initial short-distance data gives a linear form that is
specific to 2d

Tpg ≡
Λ

Λc
= −

1

γ

(
x

x∗
− 1

)
(6)

and turns out to be important in connection with hole
doping, which we now turn to.
Hole doping. In the non-linear sigma-model description
at half-filling, the order parameter "φ is constrained to
have fixed length. As explained above this constraint
follows from a constraint on the χ fields: χ−

↑ χ+
↑ +χ−

↓ χ+
↓ =

ihΛc. Then one can show "φ · "φ = 3h2Λ2
c/2. Relaxing this

constraint moves away from half-filling. Thus a measure
of hole doping is the 1-point function h = −i〈χ−χ+〉/Λc.
Including the 1-loop order g self-energy correction to the
propagator and expressing everything in terms of the x
variables one obtains

h(x) =
1

π2

(
x − x0

x∗ − x0

) [
1 +

4

x

(
x − x0

x∗ − x0

)]
(7)

Pseudogap. In Figure ?? the dashed line is a plot of
Λ/Λc in eq. (??) as a function of the above h for γ = 1.
(For γ %= 1 it is not exactly a straight line.) It crosses
the h axis at h∗ = 3/2π2, which is the location of the
RG fixed point. The scale Λ is the scale of the coupling
since g = Λĝ, thus along this line the energy scales are
such that corrections in g to the Fermi liquid behavior
become appreciable. The scale Λ can thus be associated
with a pseudogap temperature Tpg, and the region below
is what is normally called the pseudogap. The line Tpg is
observed in many experiments, and our prediction that
it passes through the SC termination point is becoming
the consensus[? ]. Only 〈χ−χ+〉 %= 0 and no symmetries
are broken at this line. A natural candidate for a true
pseudogap is a dynamically generated relativistic mass
∝ Λ.
AF phase. This phase can be analyzed by a standard
mean field analysis. One introduces an auxiliary field "s
for the order parameter "φ and derives the effective poten-
tial for constant "s by performing the functional integral
over the χ fields. Minimizing this effective potential with
respect to "s gives the gap equation

"s = −16π2g

∫ Λc

0

dω d2k

(2π)3
"s

(ω2 + k2)2 − "s2
(8)

For positive g, there are solutions due to the compen-
sating minus signs. Since s has dimension 2, define
s = δ2

sΛ2
c . Then δs is a solution to the equation

Λc

g
=

4

δs

(
1

2
log

(
δs + 1

δs − 1

)
− tan−1 1/δs

)
(9)

When g is small enough, the solution flattens out with
δs ≈ 1+. This behavior is unphysical since the gap
should be zero when g is zero. The resolution of this
puzzle involves regulating the infra-red divergence with
the low energy cut-off Λ and interpreting the result with
the RG. Setting s = 0, the gap equation can be ap-
proximately re-expressed as 1/g(Λ) = 8/Λc. This shows
that at g = Λc/8, a consistent non-trivial solution is
s = 0. We interpret this as a first-order transition where
δs drops discontinuously to zero. In terms of x this oc-
curs at xAF = x∗

1+γ . Since δs is in units of the cut-off
one must perform an RG transformation and rescale it:
δ′s = Λ

Λc
δs, where the scale factor is given in terms of

x in (??). In Figure ?? we show the solutions to the
gap equation as a function of doping h. The Néel tem-
perature TN is proportional to the zero temperature gap
as we will describe below. The AF transition occurs at
hAF = h(xAF ) = 3/4π2 when γ = 1.
d-wave SC gap. There is no s-wave SC in mean field
since the interactions are repulsive. However when one
incorporates momentum dependent scattering of Cooper
pairs near the Fermi surface, an attractive d-wave chan-
nel opens up. We emphasize that this d-wave pairing is
generated dynamically in our model, and not put in by
hand. Introducing non-constant auxiliary pair fields, one
can derive the momentum dependent gap equation

q(k) = −
∫

dω d2k′

(2π)3
G(k,k′)

q(k′)

(ω2 + k′2)2 + q(k′)2
(10)

where q+ = q− are the auxiliary fields for the SC order
parameters φ±

e . The kernel G is related to a particular
4-particle Green function specialized to Cooper pairs of
opposite momenta ±k and ±k′ calculated below. In a
rotationally invariant theory one can expand in circular
harmonics:

G(k,k′) =
∞∑

"=0

G"(k, k′) cos ((θ − θ′)

q(k) =
∞∑

"=0

q"(k) cos (θ (11)

where k is the magnitude of k and θ − θ′ is the angle
between k and k′. Performing a low energy momentum
expansion at 1-loop one finds an attractive ( = 2 channel:
G2(k, k′) = −8π2g2k2k′2 where g2 = 4ĝ2/25Λ3. The
solution to the above gap equation has the characteristic
d-wave form

q(k) = δ2
qk2 cos 2θ = δ2

q (k2
x − k2

y) (12)

fixed point:
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that encodes the strength of the coupling at the cut-off:
x0 = 1/ĝ0 where g(Λc) = Λcĝ0. We assume that at short
distances the coupling is strong, i.e. g > g∗. It will also
be useful to define γ = (x∗ − x0)/x∗ which is a small
parameter between 0 and 1. The coupling at short dis-
tances can be arbitrarily strong, where infinite coupling
corresponds to γ = 1. Integrating the beta-function with
this initial short-distance data gives a linear form that is
specific to 2d
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Λ

Λc
= −

1

γ

(
x

x∗
− 1

)
(6)

and turns out to be important in connection with hole
doping, which we now turn to.
Hole doping. In the non-linear sigma-model description
at half-filling, the order parameter "φ is constrained to
have fixed length. As explained above this constraint
follows from a constraint on the χ fields: χ−

↑ χ+
↑ +χ−

↓ χ+
↓ =

ihΛc. Then one can show "φ · "φ = 3h2Λ2
c/2. Relaxing this

constraint moves away from half-filling. Thus a measure
of hole doping is the 1-point function h = −i〈χ−χ+〉/Λc.
Including the 1-loop order g self-energy correction to the
propagator and expressing everything in terms of the x
variables one obtains

h(x) =
1

π2
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Pseudogap. In Figure ?? the dashed line is a plot of
Λ/Λc in eq. (??) as a function of the above h for γ = 1.
(For γ %= 1 it is not exactly a straight line.) It crosses
the h axis at h∗ = 3/2π2, which is the location of the
RG fixed point. The scale Λ is the scale of the coupling
since g = Λĝ, thus along this line the energy scales are
such that corrections in g to the Fermi liquid behavior
become appreciable. The scale Λ can thus be associated
with a pseudogap temperature Tpg, and the region below
is what is normally called the pseudogap. The line Tpg is
observed in many experiments, and our prediction that
it passes through the SC termination point is becoming
the consensus[? ]. Only 〈χ−χ+〉 %= 0 and no symmetries
are broken at this line. A natural candidate for a true
pseudogap is a dynamically generated relativistic mass
∝ Λ.
AF phase. This phase can be analyzed by a standard
mean field analysis. One introduces an auxiliary field "s
for the order parameter "φ and derives the effective poten-
tial for constant "s by performing the functional integral
over the χ fields. Minimizing this effective potential with
respect to "s gives the gap equation

"s = −16π2g

∫ Λc
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(ω2 + k2)2 − "s2
(8)

For positive g, there are solutions due to the compen-
sating minus signs. Since s has dimension 2, define
s = δ2

sΛ2
c . Then δs is a solution to the equation
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=

4
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1
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δs + 1

δs − 1

)
− tan−1 1/δs

)
(9)

When g is small enough, the solution flattens out with
δs ≈ 1+. This behavior is unphysical since the gap
should be zero when g is zero. The resolution of this
puzzle involves regulating the infra-red divergence with
the low energy cut-off Λ and interpreting the result with
the RG. Setting s = 0, the gap equation can be ap-
proximately re-expressed as 1/g(Λ) = 8/Λc. This shows
that at g = Λc/8, a consistent non-trivial solution is
s = 0. We interpret this as a first-order transition where
δs drops discontinuously to zero. In terms of x this oc-
curs at xAF = x∗

1+γ . Since δs is in units of the cut-off
one must perform an RG transformation and rescale it:
δ′s = Λ

Λc
δs, where the scale factor is given in terms of

x in (??). In Figure ?? we show the solutions to the
gap equation as a function of doping h. The Néel tem-
perature TN is proportional to the zero temperature gap
as we will describe below. The AF transition occurs at
hAF = h(xAF ) = 3/4π2 when γ = 1.
d-wave SC gap. There is no s-wave SC in mean field
since the interactions are repulsive. However when one
incorporates momentum dependent scattering of Cooper
pairs near the Fermi surface, an attractive d-wave chan-
nel opens up. We emphasize that this d-wave pairing is
generated dynamically in our model, and not put in by
hand. Introducing non-constant auxiliary pair fields, one
can derive the momentum dependent gap equation

q(k) = −
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(2π)3
G(k,k′)
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(ω2 + k′2)2 + q(k′)2
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where q+ = q− are the auxiliary fields for the SC order
parameters φ±

e . The kernel G is related to a particular
4-particle Green function specialized to Cooper pairs of
opposite momenta ±k and ±k′ calculated below. In a
rotationally invariant theory one can expand in circular
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where k is the magnitude of k and θ − θ′ is the angle
between k and k′. Performing a low energy momentum
expansion at 1-loop one finds an attractive ( = 2 channel:
G2(k, k′) = −8π2g2k2k′2 where g2 = 4ĝ2/25Λ3. The
solution to the above gap equation has the characteristic
d-wave form
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Integrate: 
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= ĝ − 8ĝ2 which has
a low energy fixed point at ĝ∗ = 1/8. To understand the
phase diagram as a function of doping, it is first conve-
nient to introduce the variable x = 1/ĝ where the fixed
point value is at x∗ = 8. We also introduce a variable x0

that encodes the strength of the coupling at the cut-off:
x0 = 1/ĝ0 where g(Λc) = Λcĝ0. We assume that at short
distances the coupling is strong, i.e. g > g∗. It will also
be useful to define γ = (x∗ − x0)/x∗ which is a small
parameter between 0 and 1. The coupling at short dis-
tances can be arbitrarily strong, where infinite coupling
corresponds to γ = 1. Integrating the beta-function with
this initial short-distance data gives a linear form that is
specific to 2d
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and turns out to be important in connection with hole
doping, which we now turn to.
Hole doping. In the non-linear sigma-model description
at half-filling, the order parameter "φ is constrained to
have fixed length. As explained above this constraint
follows from a constraint on the χ fields: χ−

↑ χ+
↑ +χ−

↓ χ+
↓ =

ihΛc. Then one can show "φ · "φ = 3h2Λ2
c/2. Relaxing this

constraint moves away from half-filling. Thus a measure
of hole doping is the 1-point function h = −i〈χ−χ+〉/Λc.
Including the 1-loop order g self-energy correction to the
propagator and expressing everything in terms of the x
variables one obtains
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Pseudogap. In Figure ?? the dashed line is a plot of
Λ/Λc in eq. (??) as a function of the above h for γ = 1.
(For γ %= 1 it is not exactly a straight line.) It crosses
the h axis at h∗ = 3/2π2, which is the location of the
RG fixed point. The scale Λ is the scale of the coupling
since g = Λĝ, thus along this line the energy scales are
such that corrections in g to the Fermi liquid behavior
become appreciable. The scale Λ can thus be associated
with a pseudogap temperature Tpg, and the region below
is what is normally called the pseudogap. The line Tpg is
observed in many experiments, and our prediction that
it passes through the SC termination point is becoming
the consensus[? ]. Only 〈χ−χ+〉 %= 0 and no symmetries
are broken at this line. A natural candidate for a true
pseudogap is a dynamically generated relativistic mass
∝ Λ.
AF phase. This phase can be analyzed by a standard
mean field analysis. One introduces an auxiliary field "s
for the order parameter "φ and derives the effective poten-
tial for constant "s by performing the functional integral
over the χ fields. Minimizing this effective potential with
respect to "s gives the gap equation
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For positive g, there are solutions due to the compen-
sating minus signs. Since s has dimension 2, define
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c . Then δs is a solution to the equation
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When g is small enough, the solution flattens out with
δs ≈ 1+. This behavior is unphysical since the gap
should be zero when g is zero. The resolution of this
puzzle involves regulating the infra-red divergence with
the low energy cut-off Λ and interpreting the result with
the RG. Setting s = 0, the gap equation can be ap-
proximately re-expressed as 1/g(Λ) = 8/Λc. This shows
that at g = Λc/8, a consistent non-trivial solution is
s = 0. We interpret this as a first-order transition where
δs drops discontinuously to zero. In terms of x this oc-
curs at xAF = x∗

1+γ . Since δs is in units of the cut-off
one must perform an RG transformation and rescale it:
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δs, where the scale factor is given in terms of

x in (??). In Figure ?? we show the solutions to the
gap equation as a function of doping h. The Néel tem-
perature TN is proportional to the zero temperature gap
as we will describe below. The AF transition occurs at
hAF = h(xAF ) = 3/4π2 when γ = 1.
d-wave SC gap. There is no s-wave SC in mean field
since the interactions are repulsive. However when one
incorporates momentum dependent scattering of Cooper
pairs near the Fermi surface, an attractive d-wave chan-
nel opens up. We emphasize that this d-wave pairing is
generated dynamically in our model, and not put in by
hand. Introducing non-constant auxiliary pair fields, one
can derive the momentum dependent gap equation

q(k) = −
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(ω2 + k′2)2 + q(k′)2
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where q+ = q− are the auxiliary fields for the SC order
parameters φ±

e . The kernel G is related to a particular
4-particle Green function specialized to Cooper pairs of
opposite momenta ±k and ±k′ calculated below. In a
rotationally invariant theory one can expand in circular
harmonics:

G(k,k′) =
∞∑

"=0

G"(k, k′) cos ((θ − θ′)
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where k is the magnitude of k and θ − θ′ is the angle
between k and k′. Performing a low energy momentum
expansion at 1-loop one finds an attractive ( = 2 channel:
G2(k, k′) = −8π2g2k2k′2 where g2 = 4ĝ2/25Λ3. The
solution to the above gap equation has the characteristic
d-wave form
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perature TN is proportional to the zero temperature gap
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since the interactions are repulsive. However when one
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point value is at x∗ = 8. We also introduce a variable x0

that encodes the strength of the coupling at the cut-off:
x0 = 1/ĝ0 where g(Λc) = Λcĝ0. We assume that at short
distances the coupling is strong, i.e. g > g∗. It will also
be useful to define γ = (x∗ − x0)/x∗ which is a small
parameter between 0 and 1. The coupling at short dis-
tances can be arbitrarily strong, where infinite coupling
corresponds to γ = 1. Integrating the beta-function with
this initial short-distance data gives a linear form that is
specific to 2d

Tpg ≡
Λ

Λc
= −

1

γ

(
x

x∗
− 1

)
(6)

and turns out to be important in connection with hole
doping, which we now turn to.
Hole doping. In the non-linear sigma-model description
at half-filling, the order parameter "φ is constrained to
have fixed length. As explained above this constraint
follows from a constraint on the χ fields: χ−

↑ χ+
↑ +χ−

↓ χ+
↓ =

ihΛc. Then one can show "φ · "φ = 3h2Λ2
c/2. Relaxing this

constraint moves away from half-filling. Thus a measure
of hole doping is the 1-point function h = −i〈χ−χ+〉/Λc.
Including the 1-loop order g self-energy correction to the
propagator and expressing everything in terms of the x
variables one obtains

h(x) =
1

π2

(
x − x0

x∗ − x0

) [
1 +

4

x

(
x − x0

x∗ − x0

)]
(7)

Pseudogap. In Figure ?? the dashed line is a plot of
Λ/Λc in eq. (??) as a function of the above h for γ = 1.
(For γ %= 1 it is not exactly a straight line.) It crosses
the h axis at h∗ = 3/2π2, which is the location of the
RG fixed point. The scale Λ is the scale of the coupling
since g = Λĝ, thus along this line the energy scales are
such that corrections in g to the Fermi liquid behavior
become appreciable. The scale Λ can thus be associated
with a pseudogap temperature Tpg, and the region below
is what is normally called the pseudogap. The line Tpg is
observed in many experiments, and our prediction that
it passes through the SC termination point is becoming
the consensus[? ]. Only 〈χ−χ+〉 %= 0 and no symmetries
are broken at this line. A natural candidate for a true
pseudogap is a dynamically generated relativistic mass
∝ Λ.
AF phase. This phase can be analyzed by a standard
mean field analysis. One introduces an auxiliary field "s
for the order parameter "φ and derives the effective poten-
tial for constant "s by performing the functional integral
over the χ fields. Minimizing this effective potential with
respect to "s gives the gap equation

"s = −16π2g

∫ Λc

0

dω d2k

(2π)3
"s

(ω2 + k2)2 − "s2
(8)

For positive g, there are solutions due to the compen-
sating minus signs. Since s has dimension 2, define
s = δ2

sΛ2
c . Then δs is a solution to the equation

Λc

g
=

4

δs

(
1

2
log

(
δs + 1

δs − 1

)
− tan−1 1/δs

)
(9)

When g is small enough, the solution flattens out with
δs ≈ 1+. This behavior is unphysical since the gap
should be zero when g is zero. The resolution of this
puzzle involves regulating the infra-red divergence with
the low energy cut-off Λ and interpreting the result with
the RG. Setting s = 0, the gap equation can be ap-
proximately re-expressed as 1/g(Λ) = 8/Λc. This shows
that at g = Λc/8, a consistent non-trivial solution is
s = 0. We interpret this as a first-order transition where
δs drops discontinuously to zero. In terms of x this oc-
curs at xAF = x∗

1+γ . Since δs is in units of the cut-off
one must perform an RG transformation and rescale it:
δ′s = Λ

Λc
δs, where the scale factor is given in terms of

x in (??). In Figure ?? we show the solutions to the
gap equation as a function of doping h. The Néel tem-
perature TN is proportional to the zero temperature gap
as we will describe below. The AF transition occurs at
hAF = h(xAF ) = 3/4π2 when γ = 1.
d-wave SC gap. There is no s-wave SC in mean field
since the interactions are repulsive. However when one
incorporates momentum dependent scattering of Cooper
pairs near the Fermi surface, an attractive d-wave chan-
nel opens up. We emphasize that this d-wave pairing is
generated dynamically in our model, and not put in by
hand. Introducing non-constant auxiliary pair fields, one
can derive the momentum dependent gap equation

q(k) = −
∫

dω d2k′

(2π)3
G(k,k′)

q(k′)

(ω2 + k′2)2 + q(k′)2
(10)

where q+ = q− are the auxiliary fields for the SC order
parameters φ±

e . The kernel G is related to a particular
4-particle Green function specialized to Cooper pairs of
opposite momenta ±k and ±k′ calculated below. In a
rotationally invariant theory one can expand in circular
harmonics:

G(k,k′) =
∞∑

"=0

G"(k, k′) cos ((θ − θ′)

q(k) =
∞∑

"=0

q"(k) cos (θ (11)

where k is the magnitude of k and θ − θ′ is the angle
between k and k′. Performing a low energy momentum
expansion at 1-loop one finds an attractive ( = 2 channel:
G2(k, k′) = −8π2g2k2k′2 where g2 = 4ĝ2/25Λ3. The
solution to the above gap equation has the characteristic
d-wave form

q(k) = δ2
qk2 cos 2θ = δ2

q (k2
x − k2

y) (12)
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II. THE MODEL, IT’S SYMMETRIES AND ORDER PARAMETERS

The fundamental fields of the model are charged fermionic fields χ±α , where the flavor

index α =↑, ↓ corresponds to spin. The euclidean action in 2 spatial dimensions is the

following

S =

∫
d2xdt

(
∑

α=↑,↓

(
∂µχ

−
α∂µχ

+
α + m2χ−

αχ+
α

)
− 8π2g χ−

↑ χ+
↑ χ−

↓ χ+
↓

)
(1)

where ∂µ∂µ = ∂2
t + &∇2.

The quartic interaction is unique up to the sign of the coupling by fermionic statistics.

Another consequence of the fermionic statistics is that the model has an SO(5) symmetry.

This symmetry is manifest if one considers an N -component version, α = 1, .., N , which has

Sp(2N) symmetry, and one notes Sp(4) = SO(5). The SO(5) contains a spin SO(3) and
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Sp(2N) symmetry, and one notes Sp(4) = SO(5). The SO(5) contains a spin SO(3) and

a U(1) which can be identified with electric charge. The conserved electric current then

corresponds to

Je
µ = −i

∑

α

(
χ−

α∂µχ
+
α + χ+

α∂µχ
−
α

)
(2)

and the fields χ± have electric charge ±1.

The important order parameters for the study of spontaneous symmetry breaking are

composite bilinears in the fermions. The 4 fields χ±α transform under the spinor representa-

tion of SO(5). The bilinears can be decomposed as 4⊗4 = 1⊕5⊕10 where 1 is the singlet,

5 the vector representation, and 10 the adjoint. The singlet is the field
∑

α χ−χ+ ≡ χ−χ+

and corresponds to the mass term in the action. The 5-vector of fields corresponds to

%Φ = (%φ, φ+
e , φ−e ) = (χ−%σχ+/

√
2, χ+

↑ χ+
↓ , χ−

↓ χ−
↑ ) (3)
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Since running the RG depopulates the spectrum,
a measure of hole doping is:

A physical way to set the scale is through the 1-point 
function:

I. INTRODUCTION

Tex for talk:

h = hole doping ∝
(

1− Λ

Λc

)

h = 〈χ−χ+〉/Λc ≈
1

π2

(
1− Λ

Λc

)
=

1

π2

(
x− x0

x∗ − x0

)

II. THE MODEL, IT’S SYMMETRIES AND ORDER PARAMETERS

The fundamental fields of the model are charged fermionic fields χ±α , where the flavor

index α =↑, ↓ corresponds to spin. The euclidean action in 2 spatial dimensions is the

following

S =

∫
d2xdt

(
∑

α=↑,↓

(
∂µχ

−
α∂µχ

+
α + m2χ−

αχ+
α

)
− 8π2g χ−

↑ χ+
↑ χ−

↓ χ+
↓

)
(1)

where ∂µ∂µ = ∂2
t + %∇2.

The quartic interaction is unique up to the sign of the coupling by fermionic statistics.

Another consequence of the fermionic statistics is that the model has an SO(5) symmetry.

This symmetry is manifest if one considers an N -component version, α = 1, .., N , which has

Sp(2N) symmetry, and one notes Sp(4) = SO(5). The SO(5) contains a spin SO(3) and

a U(1) which can be identified with electric charge. The conserved electric current then

corresponds to

Je
µ = −i

∑

α

(
χ−

α∂µχ
+
α + χ+

α∂µχ
−
α

)
(2)

and the fields χ± have electric charge ±1.

The important order parameters for the study of spontaneous symmetry breaking are

composite bilinears in the fermions. The 4 fields χ±α transform under the spinor representa-

tion of SO(5). The bilinears can be decomposed as 4⊗4 = 1⊕5⊕10 where 1 is the singlet,

5 the vector representation, and 10 the adjoint. The singlet is the field
∑

α χ−χ+ ≡ χ−χ+

and corresponds to the mass term in the action. The 5-vector of fields corresponds to

%Φ = (%φ, φ+
e , φ−e ) = (χ−%σχ+/

√
2, χ+

↑ χ+
↓ , χ−

↓ χ−
↑ ) (3)

2

The point:  hole doping linear in x,  at least to lowest order
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FIG. 12: Global phase diagram for Type A. The slope of the dashed line is − 1
γx∗

. The

various transition points are related geometrically by x0 = (1 − γ)x∗, xAF = x∗/(1 + γ),

and x1 ≈ (1 − .1γ)x∗, where x∗ = 8. The dashed line represents eq. (??).

as we have calculated it is too narrow, which would imply that we overestimated

x1. However as stated above, the value of x1 is less universal than x0, xAF and x∗,

and could easily change by improving our approximations, for example taking into

account s and d wave mixing, or incorporating other effects we have neglected, such

as interplane coupling and disorder. The important point is that there is both an

onset and termination of the SC phase, and the termination point on the overdoped
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Warm up:   s-wave.    To study spontaneous symmetry 
breaking of U(1),  consider VEVs: 

Mean field gap equation:  

As expected:  no solutions for positive g (repulsive). 
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Solution in 3d for negative g:



equation:

q(k) = −
∫

dω ddk′

(2π)d+1
G(k,k′)

q(k′)

(ω2 + k′2)2 + q(k′)2
(116)

where the kernel G is given by a Green function related to the scattering of pairs

with momenta ±k and ±k′. We have set the mass m = 0; it can be restored by

ω2 → ω2+m2. (As explained in Appendix A, q(k) is not simply the Fourier transform

of q(x).)

For our model the kernel will be computed to 1-loop in the next section. In this

section we analyze the orbital properties of the gap in 2d in a model independent

way based only on the structure of the gap equation and its symmetries. Similar

arguments apply to a BCS type of gap equation.

Let us assume that G is symmetric, G(k,k′) = G(k′,k). If G is also rotationally

invariant, then its angular dependence arises only through the dependence on k ·k′ =

kk′ cos(θ − θ′). The kernel and gap can thus be expanded as follows:

G(k,k′) =
∞∑

!=0

G!(k, k′) cos $(θ − θ′)

q(k) =
∞∑

!=0

q!(k) cos $θ (117)

Substituting the above expansions into the gap equation one sees that due to the

non-linearity different $ can mix. For simplicity consider a single channel, i.e. assume

G has only one term in its expansion at fixed $. The angular integral
∫

dθ′ can be

performed and turns out to be independent of $:
∫ 2π

0

dθ
cos2 $θ

1 + a cos2 $θ
=

2π

a

(
1 − (1 + a)−1/2

)
(118)

The result is

q!(k) = −
1

(2π)2

∫ ∞

−∞
dω

∫ ∞

0

dk′ k′ G!(k, k′)
1

q!(k′)

(

1 −
ω2 + k′2

√
(ω2 + k′2)2 + q2

! (k
′)

)

(119)
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Beyond mean field:   include 1-loop scattering 

Expand in circular harmonics: 

equation:

q(k) = −
∫

dω ddk′

(2π)d+1
G(k,k′)

q(k′)

(ω2 + k′2)2 + q(k′)2
(116)
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p3,α

= −4π2g

FIG. 9: Interaction vertex

their momentum dependence. It is interesting to carry out this part of the calcula-

tion for arbitrary N . The Sp(2N) group theory factors are 2 − N, 1, 1 respectively

for the three diagrams, where the −N dependence comes about from the closed loop

and a fermionic minus sign.

+ +

2 − N 1 1

FIG. 10: 1-loop Feynman diagrams with group theory factors

To this order one thus has

G(4)(p1, p2, p3, p4) = 4π2g − 2(4π2g)2
[
(2 − N)f(p2

13) + f(p2
12) + f(p2

14)
]

(128)

where pij = pi + pj and f is the function:

f(p2) =

∫
dD"

(2π)D

1

["2 + m2][(" + p)2 + m2]
(129)

=

∫
dD"

(2π)D

∫ 1

0

dx
1

["2 + x(1 − x)p2 + m2]2
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1- loop scattering

It’s important to note that although G(k,k′) varies in sign due to the oscillating

cosine, the sign of G!(k, k′) is meaningful and determines whether the ! channel is

attractive or repulsive. Negative G! corresponds to an attractive channel. Further-

more, any ! = 0, 1, 2, .. is in principle allowed.

The channel ! = 2 can arise rather naturally from a term in the kernel of the

form −2g2(k · k′)2 = −g2k2k′2(1 + cos 2θ) for g2 a constant, which gives rise to both

! = 0, 2 with the same sign. As we will show in the next section, for our model ! = 2

is the first attractive channel. In particular G2 has the form

G2(k, k′) = −8π2g2k
2k′2 (120)

with g2 a positive constant which we will calculate in the next section. This leads to

a solution of the pure d-wave gap equation of the form

q(k) = δ2
q k2 cos 2θ = δ2

q (k2
x − k2

y) (121)

where δq is a constant satisfying the integral equation:

δ4
q = 2g2

∫ Λc

0

dω dk2



1 −
ω2 + k2

√
(ω2 + k2)2 + δ4

qk
4



 (122)

The dependence on k for ! = 2 is of the same form as a particular linear combination

of ! = 2 spherical harmonics in 3d, thus we refer to it as dx2−y2 , or simply d-wave,

as in the literature; ! = 0, 1 can be referred to as s and p wave.

The above gap equation has some interesting properties, in particular, δq = 0

when g2 is too small. Since this kind of gap equation must be regularized in the UV,

we are led to define

g2 =
ĝ2

Λ3
c

(123)

where ĝ2 is dimensionless. To estimate the lowest value of ĝ2 with non-zero gap, the

integrand in the above equation can be expanded in powers of δq. Keeping terms of
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gives:

The solution to the RG flow equation is then

ĝ(Λ) =
Λcĝ0

Λ + 4(4 − N)(Λc − Λ)ĝ0
(143)

The fixed point value ĝ∗ is reached irregardless of whether the initial coupling ĝ0 at

the cut-off Λc is large or small, as long as it is positive. This behavior is sketched in

Figure ??.

Λ

ĝ(Λ)

ĝ∗ = 1
8

Λc

FIG. 11: RG flow to 1
8 at low energies from either strong or weak coupling at short distances.

The coupling g2 that enters the d-wave gap equation can now be expressed as

g2 =
4

25

ĝ2

Λ3
(144)

where we have safely taken Λc to ∞ in eq. (??) and set N = 2.
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x0 xAF
x1 x∗

δ′q

Λ/Λc

δ′s

AF

pseudogap

SC

x

FIG. 12: Global phase diagram for Type A. The slope of the dashed line is − 1
γx∗

. The

various transition points are related geometrically by x0 = (1 − γ)x∗, xAF = x∗/(1 + γ),

and x1 ≈ (1 − .1γ)x∗, where x∗ = 8. The dashed line represents eq. (??).

as we have calculated it is too narrow, which would imply that we overestimated

x1. However as stated above, the value of x1 is less universal than x0, xAF and x∗,

and could easily change by improving our approximations, for example taking into

account s and d wave mixing, or incorporating other effects we have neglected, such

as interplane coupling and disorder. The important point is that there is both an

onset and termination of the SC phase, and the termination point on the overdoped
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solution to d-wave gap eqn.

solution to an su(2) breaking gap eqn



The pseudogap? 

• previously identified as the running RG scale.

• possible manifestation:

• dynamically generated relativistic mass. 

I. INTRODUCTION

Tex for talk:

h = hole doping ∝
(

1− Λ

Λc

)

h = 〈χ−χ+〉/Λc ≈
1

π2

(
1− Λ

Λc

)
=

1

π2

(
x− x0

x∗ − x0

)

q± = 〈χ±↑ χ±↓ 〉

q± = −8π2g

∫
dωd2k

(2π)3

q±

(ω2 + k2)2 + q+q−

∆ =
√

q = Λce
1/g

m ∝ Λ

II. THE MODEL, IT’S SYMMETRIES AND ORDER PARAMETERS

The fundamental fields of the model are charged fermionic fields χ±α , where the flavor

index α =↑, ↓ corresponds to spin. The euclidean action in 2 spatial dimensions is the

following

S =

∫
d2xdt

(
∑

α=↑,↓

(
∂µχ

−
α∂µχ

+
α + m2χ−

αχ+
α

)
− 8π2g χ−

↑ χ+
↑ χ−

↓ χ+
↓

)
(1)

where ∂µ∂µ = ∂2
t + &∇2.

The quartic interaction is unique up to the sign of the coupling by fermionic statistics.

Another consequence of the fermionic statistics is that the model has an SO(5) symmetry.

This symmetry is manifest if one considers an N -component version, α = 1, .., N , which has

Sp(2N) symmetry, and one notes Sp(4) = SO(5). The SO(5) contains a spin SO(3) and

a U(1) which can be identified with electric charge. The conserved electric current then

corresponds to

Je
µ = −i

∑

α

(
χ−

α∂µχ
+
α + χ+

α∂µχ
−
α

)
(2)

2



Tc

is set primarily by vF and Λc, i.e. it is only weakly dependent on the coupling g or

the Hubbard couplings by eq. (108); this is the beauty of having a low energy fixed

point. The scale Λc = 1/a is an inverse length a, which should be on the order of

the lattice spacing.

To give a rough estimate of Tc, let us take the lattice spacing to be that of the

CuO2 square lattice a = 3.8Å. For vF we use the universal nodal Fermi velocity

from[20], which we estimated to be vF ≈ 210km/s in section III for LSCO. The

most unknown quantity is α that sets the relation between temperature and mass;

let use the estimate of α = π5/4/
√

6 from section VII. With the average values

δ′q = 0.11, cSC = 0.6, from the above table, this gives Tc ≈ 140K, which is quite

reasonable considering all of the order 1 constants we have approximated. Note that

this result relies on the relatively small value of δ′q we found from numerical solutions

of the d-wave gap equation; a value δ′q of order 1 would give Tc higher by an order

of magnitude.

A useful form of the above equation for Tc is

Tc = cSC
vF

a
· 650K (173)

where we have set α to its estimated value α = 1.7. For the range of cSC shown

in the above table, 120K < Tc < 160K. The maximum Tc occurs around γ = 1/4.

Since this Tc is on the high side, this is perhaps because we underestimated α in our

simplified inclusion of temperature. Another possibility is that Λc should instead be

set by the average separation of holes. At doping h = .15 this increases a by a factor

of about 2.6 leading to 46K < Tc < 62K.

The above formula gives some hints on how to increase Tc: shorten the lattice

spacing, increase the Fermi velocity by somehow modifying the effective electron

mass m∗, or tuning the material to γ = 1/4, which would require screening the

Coulomb potential at short distances. In particular Tc should increase with pressure
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the scale of Tc is set by the lattice spacing and 
universal nodal Fermi velocity.   (X. J. Zhou et. al. 2003)

LSCO:

(Here temperature was mimicked as a mass term, a 
better treatment is required.)   



Conclusions and open 
problems 

• a simple model that appears to capture the 
main features of HTSC in a calculable way

• Relation to Hubbard model,  lattice effects? 

• calculation of the non-Fermi liquid properties, 
such as specific heat,  conductivity,  etc. 

• manifestation of the pseudogap,  need to 
include temperature properly.    



h = doping
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FIG. 1: Calculated phase diagram as a function of hole doping, which depends on a single

parameter 0 < γ < 1 determined by the strength of the interaction at short distances.

We set γ = 1 corresponding to infinitely strong coupling. The vertical axis represents the

low energy scale relative to the cut-off. What is shown are solutions δ′s and δ′q of the AF

and d-wave gap equations (??,??) in units of the cut-off Λc. The critical temperatures are

proportional to these gaps with constants of order unity which we estimate, eqns. (??,??).

The overall temperature scale is determined by the universal nodal Fermi velocity and

lattice spacing (??). The running coupling g in the gap equations is in terms of x in

eq. (??), where x is the inverse dimensionless coupling. The hole-hoping h(x) is the one

loop corrected expression (??). The straight line Tpg is the renormalization group scale

corresponding to the energy scale of the coupling, eq. (??), and represents the boundary

to the pseudogap region. The AF transition point at hAF = 3/4π2 is first order. The

SC transition at h∗ = 3/2π2 is second-order and corresponds to the fixed point of the

renormalization group, i.e. a quantum critical point. The transition point h1 ≈ 0.13 is not

universal, but relies on mathematical properties of the gap equation.
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