Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

Topological Quantum Computation with non-Abelian Anyons

Lachezar S. Georgiev

Institute for Nuclear Research and Nuclear Energy, Sofia Institut für Mathematische Physik, TU-Braunschweig

Phys. Rev. B 74 (2006) 235112, Nucl. Phys. B 789 (2008) 552

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

OUTLINE of Part 1: Basics of TQC

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

OUTLINE of Part 1: Basics of TQC

- Quantum Computation in general:

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

OUTLINE of Part 1: Basics of TQC

- Quantum Computation in general:

เน Qubits, measurements

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

OUTLINE of Part 1: Basics of TQC

- Quantum Computation in general:

Le Qubits, measurements
LT Quantum gates, decoherence

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

OUTLINE of Part 1: Basics of TQC

- Quantum Computation in general:

เै Qubits, measurements
res Quantum gates, decoherence
Des Discrete universal set of gates

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

OUTLINE of Part 1: Basics of TQC

- Quantum Computation in general:

เै Qubits, measurements
res Quantum gates, decoherence
Les Discrete universal set of gates

- Shor's prime factorization algorithm:

OUTLINE of Part 1: Basics of TQC

- Quantum Computation in general:

Le Qubits, measurements
เİ Quantum gates, decoherence
Des Discrete universal set of gates

- Shor's prime factorization algorithm:
res Factorization Complexity

Българска Академия на

OUTLINE of Part 1: Basics of TQC

- Quantum Computation in general:

Le Qubits, measurements
Lex Quantum gates, decoherence
res Discrete universal set of gates

- Shor's prime factorization algorithm:

Factorization Complexity
rex Fourier transform

Българска Академия на

OUTLINE of Part 1: Basics of TQC

- Quantum Computation in general:

Le Qubits, measurements
res Quantum gates, decoherence
Des Discrete universal set of gates

- Shor's prime factorization algorithm:

Factorization Complexity
Lere Fourier transform
reve Phase estimation

OUTLINE of Part 1: Basics of TQC

- Quantum Computation in general:

Le Qubits, measurements
res Quantum gates, decoherence
Les Discrete universal set of gates

- Shor's prime factorization algorithm:

Factorization Complexity
Lerer Fourier transform
res Phase estimation
L. Georgiev [IMaPh-TU-Braunschweig, INRNE-Sofia]

Support: AvH, INRNE-BAS, INFN, ESF, NCSR-BG

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze Order finding

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

เTE Order finding
 เ턱 Hard computational problems

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
Order finding

- What is Topological Quantum Computation?
- What is Topological Quantum Computation?

Non-local information encoding

Hard computational problems

- What is Topological Quantum Computation?
res Non-local information encoding
Non-Abelian fusion rules
rex Hard computational problems
- What is Topological Quantum Computation?
res Non-local information encoding
닺 Non-Abelian fusion rules
res Fusion paths: labeling anyonic states of matter

Tre Order finding
Hard computational problems

- What is Topological Quantum Computation?

Lre Non-local information encoding
nes Non-Abelian fusion rules
res Fusion paths: labeling anyonic states of matter
Ex Examples: Ising and Fibonacci anyons

Tre Order finding
Hard computational problems

- What is Topological Quantum Computation?

Lre Non-local information encoding
res Non-Abelian fusion rules
res Fusion paths: labeling anyonic states of matter
Lex Examples: Ising and Fibonacci anyons
res Quantum gates: adiabatic transport of anyons

Tre Order finding
Hard computational problems

- What is Topological Quantum Computation?

Lre Non-local information encoding
nes Non-Abelian fusion rules
เ®es Fusion paths: labeling anyonic states of matter
Lex Examples: Ising and Fibonacci anyons
เ
14
Measurements: Fabry-Perot \& Mach-Zehnder

Tre Order finding
Hard computational problems

- What is Topological Quantum Computation?

Lre Non-local information encoding
nes Non-Abelian fusion rules
res Fusion paths: labeling anyonic states of matter
Lex Examples: Ising and Fibonacci anyons
เ
Det
ए Degeneracy and matrix Berry phase

Tre Order finding
Hard computational problems

- What is Topological Quantum Computation?

Lre Non-local information encoding
nes Non-Abelian fusion rules
เ®es Fusion paths: labeling anyonic states of matter
Lex Examples: Ising and Fibonacci anyons
re Quantum gates: adiabatic transport of anyons
路
ए Degeneracy and matrix Berry phase
res Topological protection
res Order finding
Hard computational problems

- What is Topological Quantum Computation?
res Non-local information encoding
I Non-Abelian fusion rules
เ®es Fusion paths: labeling anyonic states of matter
एex Examples: Ising and Fibonacci anyons
Quantum gates: adiabatic transport of anyons
Le Measurements: Fabry-Perot \& Mach-Zehnder
res Degeneracy and matrix Berry phase
Ter Topological protection

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Open problems:

- Open problems:

- Acknowledegments: Ivan Todorov, Ady Stern, Valentina Petkova, Chetan Nayak, Lyudmil Hadjiivanov, Michael Geller, Sergey Bravyi, Reinhard F. Werner and Andre’ Ahlbrecht

- Open problems:

- Acknowledegments:

Ivan Todorov, Ady Stern, Valentina Petkova, Chetan Nayak, Lyudmil Hadjiivanov, Michael Geller, Sergey Bravyi, Reinhard F. Werner and Andre' Ahlbrecht

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

Quantum computation in general

- Qubit construction:

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

Quantum computation in general

- Qubit construction: $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

Quantum computation in general

- Qubit construction: $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle, \quad|\alpha|^{2}+|\beta|^{2}=1$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

Quantum computation in general

- Qubit construction: $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle, \quad|\alpha|^{2}+|\beta|^{2}=1$
- State Preparation:

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

Quantum computation in general

- Qubit construction: $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle, \quad|\alpha|^{2}+|\beta|^{2}=1$
- State Preparation: define (orthonormal) $|0\rangle,|1\rangle$

Quantum computation in general

- Qubit construction: $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle, \quad|\alpha|^{2}+|\beta|^{2}=1$
- State Preparation: define (orthonormal) $|0\rangle,|1\rangle$ and construct $|\psi\rangle=|0\rangle$ or $|\psi\rangle=|1\rangle$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

Quantum computation in general

- Qubit construction: $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle, \quad|\alpha|^{2}+|\beta|^{2}=1$
- State Preparation: define (orthonormal) $|0\rangle,|1\rangle$ and construct $|\psi\rangle=|0\rangle$ or $|\psi\rangle=|1\rangle$
- Measurement:

Quantum computation in general

- Qubit construction: $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle, \quad|\alpha|^{2}+|\beta|^{2}=1$
- State Preparation: define (orthonormal) $|0\rangle,|1\rangle$ and construct $|\psi\rangle=|0\rangle$ or $|\psi\rangle=|1\rangle$
- Measurement: collection $\left\{M_{m}\right\}$ of measurement operators (m-th outcome)

$$
\sum_{m} M_{m}^{\dagger} M_{m}=\mathbb{I} \quad \text { (completeness) }
$$

Quantum computation in general

- Qubit construction: $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle, \quad|\alpha|^{2}+|\beta|^{2}=1$
- State Preparation: define (orthonormal) $|0\rangle,|1\rangle$ and construct $|\psi\rangle=|0\rangle$ or $|\psi\rangle=|1\rangle$
- Measurement: collection $\left\{M_{m}\right\}$ of measurement operators (m-th outcome)

$$
\sum_{m} M_{m}^{\dagger} M_{m}=\mathbb{I} \quad \text { (completeness) }
$$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- state before measurement: $|\psi\rangle$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- state before measurement: $|\psi\rangle$
- probability for outcome m :

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- state before measurement: $|\psi\rangle$
- probability for outcome m :

$$
p(m)=\langle\psi| M_{m}^{\dagger} M_{m}|\psi\rangle
$$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- state before measurement: $|\psi\rangle$
- probability for outcome m :

$$
p(m)=\langle\psi| M_{m}^{\dagger} M_{m}|\psi\rangle
$$

- state after measurement:

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- state before measurement: $|\psi\rangle$
- probability for outcome m :

$$
p(m)=\langle\psi| M_{m}^{\dagger} M_{m}|\psi\rangle
$$

- state after measurement:

$$
\frac{M_{m}|\psi\rangle}{\sqrt{\langle\psi| M_{m}^{\dagger} M_{m}|\psi\rangle}}
$$

- state before measurement: $|\psi\rangle$
- probability for outcome m :

$$
p(m)=\langle\psi| M_{m}^{\dagger} M_{m}|\psi\rangle
$$

- state after measurement:

$$
\frac{M_{m}|\psi\rangle}{\sqrt{\langle\psi| M_{m}^{\dagger} M_{m}|\psi\rangle}}
$$

- Orthonormal computational basis:
- state before measurement: $|\psi\rangle$
- probability for outcome m :

$$
p(m)=\langle\psi| M_{m}^{\dagger} M_{m}|\psi\rangle
$$

- state after measurement:

$$
\frac{M_{m}|\psi\rangle}{\sqrt{\langle\psi| M_{m}^{\dagger} M_{m}|\psi\rangle}}
$$

- Orthonormal computational basis:
distinguishing between states:
- state before measurement: $|\psi\rangle$
- probability for outcome m :

$$
p(m)=\langle\psi| M_{m}^{\dagger} M_{m}|\psi\rangle
$$

- state after measurement:

$$
\frac{M_{m}|\psi\rangle}{\sqrt{\langle\psi| M_{m}^{\dagger} M_{m}|\psi\rangle}}
$$

- Orthonormal computational basis: distinguishing between states: if not orthonormal - no measurement can distinguish between them

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Multiple-qubit construction:

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Multiple-qubit construction: tensor products;

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Multiple-qubit construction: tensor products;

$$
\mathcal{H}^{n}=\otimes^{n} \mathbb{C}^{2}
$$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Multiple-qubit construction: tensor products;

$$
\mathcal{H}^{n}=\otimes^{n} \mathbb{C}^{2} \simeq \mathbb{C}^{2^{n}}
$$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Multiple-qubit construction: tensor products;

$$
\mathcal{H}^{n}=\otimes^{n} \mathbb{C}^{2} \simeq \mathbb{C}^{2^{n}} \quad \text { (projective) }
$$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Multiple-qubit construction: tensor products;

$$
\mathcal{H}^{n}=\otimes^{n} \mathbb{C}^{2} \simeq \mathbb{C}^{2^{n}} \quad \text { (projective) }
$$

- Initialization:

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Multiple-qubit construction: tensor products;

$$
\mathcal{H}^{n}=\otimes^{n} \mathbb{C}^{2} \simeq \mathbb{C}^{2^{n}} \quad \text { (projective) }
$$

- Initialization: 010011000... 01

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Multiple-qubit construction: tensor products;

$$
\mathcal{H}^{n}=\otimes^{n} \mathbb{C}^{2} \simeq \mathbb{C}^{2^{n}} \quad \text { (projective) }
$$

- Initialization: 010011000...01 $\xrightarrow{\text { QC }} \quad|010011000 \ldots . .01\rangle$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Multiple-qubit construction: tensor products;

$$
\mathcal{H}^{n}=\otimes^{n} \mathbb{C}^{2} \simeq \mathbb{C}^{2^{n}} \quad \text { (projective) }
$$

- Initialization: 010011000...01 $\xrightarrow{\text { QC }} \quad|010011000 \ldots . .01\rangle$
- Quantum gates: unitary operators over \mathcal{H}^{n}
- Multiple-qubit construction: tensor products;

$$
\mathcal{H}^{n}=\otimes^{n} \mathbb{C}^{2} \simeq \mathbb{C}^{2^{n}} \quad \text { (projective) }
$$

- Initialization: 010011000...01 $\xrightarrow{\text { QC }} \quad|010011000 \ldots 01\rangle$
- Quantum gates: unitary operators over \mathcal{H}^{n}
i.e., realize by physical processes all $2^{n} \times 2^{n}$ matrices

$$
G \in S U\left(2^{n}\right)
$$

- Exponential speed-up:
- Multiple-qubit construction: tensor products;

$$
\mathcal{H}^{n}=\otimes^{n} \mathbb{C}^{2} \simeq \mathbb{C}^{2^{n}} \quad \text { (projective) }
$$

- Initialization: 010011000...01 $\xrightarrow{\text { QC }} \quad|010011000 \ldots 01\rangle$
- Quantum gates: unitary operators over \mathcal{H}^{n}
i.e., realize by physical processes all $2^{n} \times 2^{n}$ matrices

$$
G \in S U\left(2^{n}\right)
$$

- Exponential speed-up:
entanglement \rightarrow quantum parallelism:
- Multiple-qubit construction: tensor products;

$$
\mathcal{H}^{n}=\otimes^{n} \mathbb{C}^{2} \simeq \mathbb{C}^{2^{n}} \quad \text { (projective) }
$$

- Initialization: 010011000...01 $\xrightarrow{\text { QC }} \quad|010011000 \ldots 01\rangle$
- Quantum gates: unitary operators over \mathcal{H}^{n}
i.e., realize by physical processes all $2^{n} \times 2^{n}$ matrices

$$
G \in S U\left(2^{n}\right)
$$

- Exponential speed-up: entanglement \rightarrow quantum parallelism:

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze compute all values of $f(x)$ using coherent superpositions of states such as $x=|010011000 \ldots 01\rangle$ in just one run

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
compute all values of $f(x)$ using coherent superpositions of states such as $x=|010011000 \ldots 01\rangle$ in just one run

- Discrete Universal set of quantum gates:

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
compute all values of $f(x)$ using coherent superpositions of states such as $x=|010011000 . . .01\rangle$ in just one run

- Discrete Universal set of quantum gates: any unitary operator can be approximated by products of 4 universal gates: H, S, CNOT and T states such as $x=|010011000 \ldots 01\rangle$ in just one run
- Discrete Universal set of quantum gates: any unitary operator can be approximated by products of 4 universal gates: H, S, CNOT and T
with arbitrary precision in

$$
E(U, V) \equiv \max _{|\psi\rangle} \|(U-V)|\psi\rangle \|
$$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Explicit gate realization in the basis $\{|0\rangle,|1\rangle\}$:

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Explicit gate realization in the basis $\{|0\rangle,|1\rangle\}$:

$$
H=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right], \quad S=\left[\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right], \quad T=\left[\begin{array}{cc}
1 & 0 \\
0 & \mathrm{e}^{i \pi / 4}
\end{array}\right]
$$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Explicit gate realization in the basis $\{|0\rangle,|1\rangle\}$:

$$
\begin{gathered}
H=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right], \quad S=\left[\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right], \quad T=\left[\begin{array}{cc}
1 & 0 \\
0 & \mathrm{e}^{i \pi / 4}
\end{array}\right] \\
\mathrm{CNOT}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right], \quad \text { in the basis }\{|00\rangle,|01\rangle,|10\rangle,|11\rangle\}
\end{gathered}
$$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Explicit gate realization in the basis $\{|0\rangle,|1\rangle\}$:

$$
H=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right], \quad S=\left[\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right], \quad T=\left[\begin{array}{cc}
1 & 0 \\
0 & \mathrm{e}^{i \pi / 4}
\end{array}\right]
$$

CNOT $=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right], \quad$ in the basis $\{|00\rangle,|01\rangle,|10\rangle,|11\rangle\}$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Decoherence and noise: unavoidable

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Decoherence and noise: unavoidable due to local interactions destroying coherent phenomena and flipping $|0\rangle \leftrightarrow|1\rangle$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Decoherence and noise: unavoidable due to local interactions destroying coherent phenomena and flipping $|0\rangle \leftrightarrow|1\rangle$
- Quantum Error-Correcting algorithms:

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Decoherence and noise: unavoidable due to local interactions destroying coherent phenomena and flipping $|0\rangle \leftrightarrow|1\rangle$
- Quantum Error-Correcting algorithms:

Nice if the threshold theorem indeed applies

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Decoherence and noise: unavoidable due to local interactions destroying coherent phenomena and flipping $|0\rangle \leftrightarrow|1\rangle$
- Quantum Error-Correcting algorithms:

Nice if the threshold theorem indeed applies

Not a big help on the scale of 1000 qubits (huge overhead)

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

Shor's Prime Factorization Algorithm

\triangleright Factorization Complexity: outside P (believed), inside NP (obvious) but not NP-complete (believed; 3000)

Shor's Prime Factorization Algorithm

\triangleright Factorization Complexity: outside P (believed), inside NP (obvious) but not NP-complete (believed; 3000)

- Classical Computer: No published algorithm allows to factor integer $N \sim 10^{b}$ in time $O\left(b^{k}\right)$ for some constant k.

Shor's Prime Factorization Algorithm

\triangleright Factorization Complexity: outside P (believed), inside NP (obvious) but not NP-complete (believed; 3000)

- Classical Computer: No published algorithm allows to factor integer $N \sim 10^{b}$ in time $O\left(b^{k}\right)$ for some constant k.
- Quantum Computer: Shor's algorithm solves in $O\left(b^{3}\right)$ (time) and $O(b)$ (space) - efficient factorization of large numbers on QC:

Shor's Prime Factorization Algorithm

\triangleright Factorization Complexity: outside P (believed), inside NP (obvious) but not NP-complete (believed; 3000)

- Classical Computer: No published algorithm allows to factor integer $N \sim 10^{b}$ in time $O\left(b^{k}\right)$ for some constant k.
- Quantum Computer: Shor's algorithm solves in $O\left(b^{3}\right)$ (time) and $O(b)$ (space) - efficient factorization of large numbers on QC:

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

Fourier transform \rightarrow Phase estimation \rightarrow Order finding

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
Fourier transform \rightarrow Phase estimation \rightarrow Order finding
\triangleright Fourier transform: $|0\rangle,|1\rangle, \ldots,|N-1\rangle$ (orthonormal)

$$
|j\rangle \stackrel{F}{\rightarrow} \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \mathrm{e}^{2 \pi i \frac{j \cdot k}{N}}|k\rangle
$$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

Fourier transform \rightarrow Phase estimation \rightarrow Order finding

\triangleright Fourier transform: $|0\rangle,|1\rangle, \ldots,|N-1\rangle$ (orthonormal)

$$
|j\rangle \stackrel{F}{\rightarrow} \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \mathrm{e}^{2 \pi i \frac{j . k}{N}}|k\rangle
$$

Fourier transform of n-qubits, $N=2^{n}$ can be executed by the Hadamard gate H and Controlled- R_{k} operations

$$
H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right], \quad C R_{k}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & \mathrm{e}^{2 \pi i / 2^{k}}
\end{array}\right]
$$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
\triangleright Phase estimation: Given a unitary operator U and an eigenstate $|u\rangle$ find the phase ϕ of its eigenvalue $\mathrm{e}^{2 \pi i \phi}$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
\triangleright Phase estimation: Given a unitary operator U and an eigenstate $|u\rangle$ find the phase ϕ of its eigenvalue $\mathrm{e}^{2 \pi i \phi}$ Needed:

- black boxes (oracles) to prepare $|u\rangle$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
\triangleright Phase estimation: Given a unitary operator U and an eigenstate $|u\rangle$ find the phase ϕ of its eigenvalue $\mathrm{e}^{2 \pi i \phi}$ Needed:

- black boxes (oracles) to prepare $|u\rangle$
- apply $H \otimes \cdots \otimes H$ to $|0, \ldots, 0\rangle$ creating uniform coherent superposition of all computational states

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
\triangleright Phase estimation: Given a unitary operator U and an eigenstate $|u\rangle$ find the phase ϕ of its eigenvalue $\mathrm{e}^{2 \pi i \phi}$ Needed:

- black boxes (oracles) to prepare $|u\rangle$
- apply $H \otimes \cdots \otimes H$ to $|0, \ldots, 0\rangle$ creating uniform coherent superposition of all computational states
- execute controlled- $U^{2^{j}}$ (modular exponentiation), for integer j

$$
C U^{2^{j}}=|0\rangle\langle 0| \otimes \mathbb{I}+|1\rangle\langle 1| \otimes U^{2^{j}}
$$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
creates entanglement crucial for the quantum speed-up
\triangleright Order finding: for x and N positive integers find the smallest positive integer r such that

$$
x^{r}=1(\bmod N), \quad \text { where } \quad x<N \quad \text { and } \quad \operatorname{gcd}(x, N)=1
$$

Apply phase estimation algorithm to

$$
U|y\rangle \equiv|x y(\bmod N)\rangle
$$

\triangleright Remark: Prime factorization could be reduced to orderfinding;
creates entanglement crucial for the quantum speed-up
\triangleright Order finding: for x and N positive integers find the smallest positive integer r such that

$$
x^{r}=1(\bmod N), \quad \text { where } \quad x<N \quad \text { and } \quad \operatorname{gcd}(x, N)=1
$$

Apply phase estimation algorithm to

$$
U|y\rangle \equiv|x y(\bmod N)\rangle
$$

\triangleright Remark: Prime factorization could be reduced to orderfinding;3000 hard computational problems (NP-complete)

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

What is Topological Quantum Computation?

- Noise and decoherence due to local interactions

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

What is Topological Quantum Computation?

- Noise and decoherence due to local interactions
- Avoid them by global quantum information encoding:

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

What is Topological Quantum Computation?

- Noise and decoherence due to local interactions
- Avoid them by global quantum information encoding:
i.e., encoding quantum information non-locally

What is Topological Quantum Computation?

- Noise and decoherence due to local interactions
- Avoid them by global quantum information encoding:
i.e., encoding quantum information non-locally
e.g., in fusion channels (property of anyon pairs)

What is Topological Quantum Computation?

- Noise and decoherence due to local interactions
- Avoid them by global quantum information encoding:
i.e., encoding quantum information non-locally e.g., in fusion channels (property of anyon pairs)
- hidden from enemies (noise=local interactions)

What is Topological Quantum Computation?

- Noise and decoherence due to local interactions
- Avoid them by global quantum information encoding:
i.e., encoding quantum information non-locally
e.g., in fusion channels (property of anyon pairs)
- hidden from enemies (noise=local interactions)
- hidden even from us! no local measurement could determine fusion channel - need non-local measurement of

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze at least two anyons

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze at least two anyons

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Topological protection of qubits and quantum gates:

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Topological protection of qubits and quantum gates: quantum information is inaccessible to local interactions, because they cannot distinguish between $|0\rangle$ and $|1\rangle$ and hence cannot lead to decoherence and noise

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Topological protection of qubits and quantum gates: quantum information is inaccessible to local interactions, because they cannot distinguish between $|0\rangle$ and $|1\rangle$ and hence cannot lead to decoherence and noise
- TQC strategy: improving hardware rather than compensating hardware deficiency by clever circuit design

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Topological protection of qubits and quantum gates: quantum information is inaccessible to local interactions, because they cannot distinguish between $|0\rangle$ and $|1\rangle$ and hence cannot lead to decoherence and noise
- TQC strategy: improving hardware rather than compensating hardware deficiency by clever circuit design
- Quantum gates: change homotopy classes

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Topological protection of qubits and quantum gates: quantum information is inaccessible to local interactions, because they cannot distinguish between $|0\rangle$ and $|1\rangle$ and hence cannot lead to decoherence and noise
- TQC strategy: improving hardware rather than compensating hardware deficiency by clever circuit design
- Quantum gates: change homotopy classes implemented by braid operations

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Topological protection of qubits and quantum gates: quantum information is inaccessible to local interactions, because they cannot distinguish between $|0\rangle$ and $|1\rangle$ and hence cannot lead to decoherence and noise
- TQC strategy: improving hardware rather than compensating hardware deficiency by clever circuit design
- Quantum gates: change homotopy classes implemented by braid operations \Longleftarrow topological protection

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Topological protection of qubits and quantum gates: quantum information is inaccessible to local interactions, because they cannot distinguish between $|0\rangle$ and $|1\rangle$ and hence cannot lead to decoherence and noise
- TQC strategy: improving hardware rather than compensating hardware deficiency by clever circuit design
- Quantum gates: change homotopy classes implemented by braid operations \Longleftarrow topological protection

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Degeneracy needed in the plane:

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Degeneracy needed in the plane: non-Abelian quasiparticles
(plektons: higher dimensional IRs of the Braid group)

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Degeneracy needed in the plane: non-Abelian quasiparticles
(plektons: higher dimensional IRs of the Braid group)

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

Fusion paths: label anyonic states of matter

\triangleright Specify a multi-anyon state:

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

Fusion paths: label anyonic states of matter

\triangleright Specify a multi-anyon state:

- Anyon's positions and quantum numbers are NOT enough

Fusion paths: label anyonic states of matter

\triangleright Specify a multi-anyon state:

- Anyon's positions and quantum numbers are NOT enough
- Non-local information is necessary

Fusion paths: label anyonic states of matter

\triangleright Specify a multi-anyon state:

- Anyon's positions and quantum numbers are NOT enough
- Non-local information is necessary
for non-Abelian anyons we need to specify the fusion channel of any two neighbors

Fusion paths: label anyonic states of matter

\triangleright Specify a multi-anyon state:

- Anyon's positions and quantum numbers are NOT enough
- Non-local information is necessary
for non-Abelian anyons we need to specify the fusion channel of any two neighbors
- Reason: same multi-anyon configuration may correspond to different independent states (CFT blocks) because of multiple fusion channels

Fusion paths: label anyonic states of matter

\triangleright Specify a multi-anyon state:

- Anyon's positions and quantum numbers are NOT enough
- Non-local information is necessary
for non-Abelian anyons we need to specify the fusion channel of any two neighbors
- Reason: same multi-anyon configuration may correspond to different independent states (CFT blocks) because of multiple fusion channels

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

\triangleright Fusion channels:

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
\triangleright Fusion channels:

$$
\Psi_{a} \times \Psi_{b}=\sum_{a=1}^{g} N_{a b}^{c} \Psi_{c}
$$

($N_{a b}^{c}$ symmetric, associative)
\triangleright Fusion channels: $\quad \Psi_{a} \times \Psi_{b}=\sum_{a=1}^{g} N_{a b}^{c} \Psi_{c}$
($N_{a b}^{c}$ symmetric, associative)
\triangleright Two classes of anyons:

- Abelian: $\forall a, b \exists!c$ s.th. $N_{a b}^{c} \neq 0$
- non-Abelian: if for some a and $b N_{a b}^{c} \neq 0$ for more than one c
\triangleright Fusion channels: $\quad \Psi_{a} \times \Psi_{b}=\sum_{a=1}^{g} N_{a b}^{c} \Psi_{c}$
($N_{a b}^{c}$ symmetric, associative)
\triangleright Two classes of anyons:
- Abelian: $\forall a, b \exists!c$ s.th. $N_{a b}^{c} \neq 0$
- non-Abelian: if for some a and $b N_{a b}^{c} \neq 0$ for more than one c
\triangleright Information encoding for non-Abelian anyons:
\Rightarrow encode information in the number of the fusion channel
\triangleright Fusion channels:

$$
\Psi_{a} \times \Psi_{b}=\sum_{a=1}^{g} N_{a b}^{c} \Psi_{c}
$$

($N_{a b}^{c}$ symmetric, associative)
\triangleright Two classes of anyons:

- Abelian: $\forall a, b \exists!c$ s.th. $N_{a b}^{c} \neq 0$
- non-Abelian: if for some a and $b N_{a b}^{c} \neq 0$ for more than one c
\triangleright Information encoding for non-Abelian anyons:
\Rightarrow encode information in the number of the fusion channel

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

\triangleright Example: Ising anyons

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
\triangleright Example: Ising anyons $\Psi_{I}(z)=\sigma(z): \mathrm{e}^{i \frac{1}{2 \sqrt{2}} \phi(z)}$:

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
\triangleright Example: Ising anyons $\quad \Psi_{I}(z)=\sigma(z): \mathrm{e}^{i \frac{1}{2 \sqrt{2}} \phi(z)}$:

$$
\sigma \times \sigma=\mathbb{I}+\psi \quad \text { (Ising spin field) }
$$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
\triangleright Example: Ising anyons $\Psi_{I}(z)=\sigma(z): e^{i \frac{1}{2 \sqrt{2}} \phi(z)}$:

$$
\sigma \times \sigma=\mathbb{I}+\psi \quad(\text { Ising spin field })
$$

\Rightarrow Information encoding:

$$
\begin{array}{lll}
|0\rangle=(\sigma, \sigma)_{\mathbb{I}} & \longleftrightarrow & \sigma \times \sigma \rightarrow \mathbb{I} \\
|1\rangle=(\sigma, \sigma)_{\psi} & \longleftrightarrow & \sigma \times \sigma \rightarrow \psi
\end{array}
$$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
\triangleright Example: Ising anyons $\Psi_{I}(z)=\sigma(z): e^{i \frac{1}{2 \sqrt{2}} \phi(z)}$:

$$
\sigma \times \sigma=\mathbb{I}+\psi \quad(\text { Ising spin field })
$$

\Rightarrow Information encoding:

$$
\begin{array}{rll}
|0\rangle=(\sigma, \sigma)_{\mathbb{I}} & \longleftrightarrow & \sigma \times \sigma \rightarrow \mathbb{I} \\
|1\rangle & =(\sigma, \sigma)_{\psi} & \longleftrightarrow \\
\sigma \times \sigma \rightarrow \psi
\end{array}
$$

\triangleright Example 2: Fibonacci anyons
$\left(\mathbb{Z}_{3}\right.$ parafermions: $\left.\sigma_{1}, \sigma_{2}, \psi_{1}, \psi_{2}, \epsilon\right)$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
\triangleright Example: Ising anyons $\Psi_{I}(z)=\sigma(z): \mathrm{e}^{i \frac{1}{2 \sqrt{2}} \phi(z)}$:

$$
\sigma \times \sigma=\mathbb{I}+\psi \quad(\text { Ising spin field })
$$

\Rightarrow Information encoding:

$$
\begin{array}{rlll}
|0\rangle & =(\sigma, \sigma)_{\mathbb{I}} & \longleftrightarrow & \sigma \times \sigma \rightarrow \mathbb{I} \\
|1\rangle & =(\sigma, \sigma)_{\psi} & \longleftrightarrow & \sigma \times \sigma \rightarrow \psi
\end{array}
$$

\triangleright Example 2: Fibonacci anyons
$\left(\mathbb{Z}_{3}\right.$ parafermions: $\left.\sigma_{1}, \sigma_{2}, \psi_{1}, \psi_{2}, \epsilon\right)$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze $\Psi_{F}(z)=\sigma_{1}(z): \mathrm{e}^{i \frac{1}{\sqrt{15}} \phi(z)}:(3$-state Pots model spin field)

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
$\Psi_{F}(z)=\sigma_{1}(z): \mathrm{e}^{i \frac{1}{\sqrt{15}} \phi(z)}:(3$-state Pots model spin field)

- Non-Abelian fusion rules:

$$
\begin{aligned}
\sigma_{1} \times \sigma_{1} & =\sigma_{2}+\psi_{1}, \quad \sigma_{1} \times \sigma_{2}=\mathbb{I}+\epsilon \\
\sigma_{2} \times \sigma_{2} & =\sigma_{1}+\psi_{2}, \quad \sigma_{1} \times \epsilon=\sigma_{2}+\psi_{1} \\
\epsilon \times \epsilon & =\mathbb{I}+\epsilon
\end{aligned}
$$

$\Psi_{F}(z)=\sigma_{1}(z): e^{i \frac{1}{\sqrt{15}} \phi(z)}:(3$-state Pots model spin field)

- Non-Abelian fusion rules:

$$
\begin{aligned}
\sigma_{1} \times \sigma_{1} & =\sigma_{2}+\psi_{1}, \quad \sigma_{1} \times \sigma_{2}=\mathbb{I}+\epsilon \\
\sigma_{2} \times \sigma_{2} & =\sigma_{1}+\psi_{2}, \quad \sigma_{1} \times \epsilon=\sigma_{2}+\psi_{1} \\
\epsilon \times \epsilon & =\mathbb{I}+\epsilon
\end{aligned}
$$

- Abelian fusion: fixed by conservation of \mathbb{Z}_{3} charge
$Q\left(\sigma_{1}\right)=Q\left(\psi_{2}\right)=1, Q\left(\sigma_{2}\right)=Q\left(\psi_{1}\right)=2, Q(\mathbb{I})=Q(\epsilon)=0$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Field identification: mapping to Fibonacci anyons

$$
\tau \times \tau=\mathbb{I}+\tau, \quad \mathbb{I} \equiv\left\{1, \psi_{1}, \psi_{2}\right\}, \quad \tau \equiv\left\{\sigma_{1}, \sigma_{2}, \epsilon\right\}
$$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Field identification: mapping to Fibonacci anyons

$$
\tau \times \tau=\mathbb{I}+\tau, \quad \mathbb{I} \equiv\left\{1, \psi_{1}, \psi_{2}\right\}, \quad \tau \equiv\left\{\sigma_{1}, \sigma_{2}, \epsilon\right\}
$$

\Rightarrow Information encoding:

$$
\begin{array}{rlll}
|0\rangle & =\left(\left(\sigma_{1}, \sigma_{1}\right)_{\psi_{1}}, \sigma_{1}\right)_{\epsilon} & \longleftrightarrow & \tau \times \tau \rightarrow \mathbb{I} \rightarrow \tau \\
|1\rangle & =\left(\left(\sigma_{1}, \sigma_{1}\right)_{\sigma_{2}}, \sigma_{1}\right)_{\epsilon} & \longleftrightarrow & \tau \times \tau \rightarrow \tau \rightarrow \tau \\
|N\rangle & =\left(\left(\sigma_{1}, \sigma_{1}\right)_{\sigma_{2}}, \sigma_{1}\right) \mathbb{I} & \longleftrightarrow & \tau \times \tau \rightarrow \tau \rightarrow \mathbb{I}
\end{array}
$$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Field identification: mapping to Fibonacci anyons

$$
\tau \times \tau=\mathbb{I}+\tau, \quad \mathbb{I} \equiv\left\{1, \psi_{1}, \psi_{2}\right\}, \quad \tau \equiv\left\{\sigma_{1}, \sigma_{2}, \epsilon\right\}
$$

\Rightarrow Information encoding:

$$
\begin{array}{rlll}
|0\rangle & =\left(\left(\sigma_{1}, \sigma_{1}\right)_{\psi_{1}}, \sigma_{1}\right)_{\epsilon} & \longleftrightarrow & \tau \times \tau \rightarrow \mathbb{I} \rightarrow \tau \\
|1\rangle & =\left(\left(\sigma_{1}, \sigma_{1}\right)_{\sigma_{2}}, \sigma_{1}\right)_{\epsilon} & \longleftrightarrow & \tau \times \tau \rightarrow \tau \rightarrow \tau \\
|N\rangle & =\left(\left(\sigma_{1}, \sigma_{1}\right)_{\sigma_{2}}, \sigma_{1}\right) \mathbb{I} & \longleftrightarrow & \tau \times \tau \rightarrow \tau \rightarrow \mathbb{I}
\end{array}
$$

\triangleright Topological quantity: fusion channel is independent of the fusion process details

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Field identification: mapping to Fibonacci anyons

$$
\tau \times \tau=\mathbb{I}+\tau, \quad \mathbb{I} \equiv\left\{1, \psi_{1}, \psi_{2}\right\}, \quad \tau \equiv\left\{\sigma_{1}, \sigma_{2}, \epsilon\right\}
$$

\Rightarrow Information encoding:

$$
\begin{array}{rlll}
|0\rangle & =\left(\left(\sigma_{1}, \sigma_{1}\right)_{\psi_{1}}, \sigma_{1}\right)_{\epsilon} & \longleftrightarrow & \tau \times \tau \rightarrow \mathbb{I} \rightarrow \tau \\
|1\rangle & =\left(\left(\sigma_{1}, \sigma_{1}\right)_{\sigma_{2}}, \sigma_{1}\right)_{\epsilon} & \longleftrightarrow & \tau \times \tau \rightarrow \tau \rightarrow \tau \\
|N\rangle & =\left(\left(\sigma_{1}, \sigma_{1}\right)_{\sigma_{2}}, \sigma_{1}\right) \mathbb{I} & \longleftrightarrow & \tau \times \tau \rightarrow \tau \rightarrow \mathbb{I}
\end{array}
$$

\triangleright Topological quantity: fusion channel is independent of the fusion process details

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
\triangleright Non-local: fusion channel is independent of the anyon separation and is preserved even for large separation

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
\triangleright Non-local: fusion channel is independent of the anyon separation and is preserved even for large separation
\triangleright The message: Multi-anyon state \Leftrightarrow Fusion path (path = concatenation of elementary fusion channels)

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
\triangleright Non-local: fusion channel is independent of the anyon separation and is preserved even for large separation
\triangleright The message: Multi-anyon state \Leftrightarrow Fusion path (path $=$ concatenation of elementary fusion channels)
i.e., for an array of anyonic fields we must fix the fusion channels of each neighbors
\triangleright Remember: Multi-anyon states are labeled by paths in Bratteli diagrams

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

Quantum gates: adiabatic transport of anyons

\triangleright Adiabatic approximation:

Quantum gates: adiabatic transport of anyons

\triangleright Adiabatic approximation:

- Gapped Hamiltonian: non-zero energy gap Δ between the ground state and excitations

Quantum gates: adiabatic transport of anyons

\triangleright Adiabatic approximation:

- Gapped Hamiltonian: non-zero energy gap Δ between the ground state and excitations
- External parameters: put k anyons in the plane at positions R_{1}, \ldots, R_{k} (trapping potentials)

Quantum gates: adiabatic transport of anyons

\triangleright Adiabatic approximation:

- Gapped Hamiltonian: non-zero energy gap Δ between the ground state and excitations
- External parameters: put k anyons in the plane at positions R_{1}, \ldots, R_{k} (trapping potentials)
- Fixed positions: we are interested in operations which keep the positions fixed so that final configuration is at most permutation/braiding of the anyons in the original

Quantum gates: adiabatic transport of anyons

\triangleright Adiabatic approximation:

- Gapped Hamiltonian: non-zero energy gap Δ between the ground state and excitations
- External parameters: put k anyons in the plane at positions R_{1}, \ldots, R_{k} (trapping potentials)
- Fixed positions: we are interested in operations which keep the positions fixed so that final configuration is at most permutation/braiding of the anyons in the original

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Braiding: take one anyon slowly (adiabatically) around another where $t \in[0, T]$ with $T \gg \Delta^{-1}$
($\left.\Delta=500 \mathrm{mK} \Longleftrightarrow T_{\min } \sim 10^{-10} \mathrm{~s}\right)$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Braiding: take one anyon slowly (adiabatically) around another where $t \in[0, T]$ with $T \gg \Delta^{-1}$
($\Delta=500 \mathrm{mK} \Longleftrightarrow T_{\min } \sim 10^{-10} \mathrm{~s}$)
- Adiabatic theorem: if initially the system is in the ground state then the final state is, up to phase, again the ground state

$$
\psi_{f}^{\left(R_{1}, \ldots, R_{k}\right)}\left(z_{1}, \ldots, z_{N}\right)=\mathrm{e}^{i \phi} \psi_{i}^{\left(R_{1}, \ldots, R_{k}\right)}\left(z_{1}, \ldots, z_{N}\right)
$$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Braiding: take one anyon slowly (adiabatically) around another where $t \in[0, T]$ with $T \gg \Delta^{-1}$
($\Delta=500 \mathrm{mK} \Longleftrightarrow T_{\text {min }} \sim 10^{-10} \mathrm{~s}$)
- Adiabatic theorem: if initially the system is in the ground state then the final state is, up to phase, again the ground state

$$
\psi_{f}^{\left(R_{1}, \ldots, R_{k}\right)}\left(z_{1}, \ldots, z_{N}\right)=\mathrm{e}^{i \phi} \psi_{i}^{\left(R_{1}, \ldots, R_{k}\right)}\left(z_{1}, \ldots, z_{N}\right)
$$

- Dynamical phase: $\mathrm{e}^{i \frac{1}{\hbar} \int d t E(\mathbf{R}(t))}$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Braiding: take one anyon slowly (adiabatically) around another where $t \in[0, T]$ with $T \gg \Delta^{-1}$
($\Delta=500 \mathrm{mK} \Longleftrightarrow T_{\min } \sim 10^{-10} \mathrm{~s}$)
- Adiabatic theorem: if initially the system is in the ground state then the final state is, up to phase, again the ground state

$$
\psi_{f}^{\left(R_{1}, \ldots, R_{k}\right)}\left(z_{1}, \ldots, z_{N}\right)=\mathrm{e}^{i \phi} \psi_{i}^{\left(R_{1}, \ldots, R_{k}\right)}\left(z_{1}, \ldots, z_{N}\right)
$$

- Dynamical phase: $\mathrm{e}^{i \frac{1}{\hbar} \int d t E(\mathbf{R}(t))}$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
\triangleright (Non-)Abelian Berry phase: $\mathrm{e}^{i \alpha}$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
\triangleright (Non-)Abelian Berry phase: $\mathrm{e}^{i \alpha}$

$$
\alpha=\oint d \mathbf{R}\langle\psi(\mathbf{R})| \nabla_{\mathbf{R}}|\psi(\mathbf{R})\rangle, \quad \mathbf{R}=\left(R_{1}, \ldots, R_{k}\right)
$$

\triangleright Three contributions:

- geometrical phase (Abelian AB phase \propto Area)

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
\triangleright (Non-)Abelian Berry phase: $\mathrm{e}^{i \alpha}$

$$
\alpha=\oint d \mathbf{R}\langle\psi(\mathbf{R})| \nabla_{\mathbf{R}}|\psi(\mathbf{R})\rangle, \quad \mathbf{R}=\left(R_{1}, \ldots, R_{k}\right)
$$

\triangleright Three contributions:

- geometrical phase (Abelian AB phase \propto Area)
- topological phase (statistics, independent of the geometry)

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
\triangleright (Non-)Abelian Berry phase: $\mathrm{e}^{i \alpha}$

$$
\alpha=\oint d \mathbf{R}\langle\psi(\mathbf{R})| \nabla_{\mathbf{R}}|\psi(\mathbf{R})\rangle, \quad \mathbf{R}=\left(R_{1}, \ldots, R_{k}\right)
$$

\triangleright Three contributions:

- geometrical phase (Abelian AB phase \propto Area)
- topological phase (statistics, independent of the geometry)
- monodromy of wave functions

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
\triangleright (Non-)Abelian Berry phase: $\mathrm{e}^{i \alpha}$

$$
\alpha=\oint d \mathbf{R}\langle\psi(\mathbf{R})| \nabla_{\mathbf{R}}|\psi(\mathbf{R})\rangle, \quad \mathbf{R}=\left(R_{1}, \ldots, R_{k}\right)
$$

\triangleright Three contributions:

- geometrical phase (Abelian AB phase \propto Area)
- topological phase (statistics, independent of the geometry)
- monodromy of wave functions
N.B.: crucial: non-degenerate ground state!

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Degeneracy of energy eigenstates: (approximate)

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Degeneracy of energy eigenstates: (approximate)

$$
\psi_{a}^{\left(R_{1}, \ldots, R_{k}\right)}\left(z_{1}, \ldots, z_{N}\right), \quad a=1, \ldots, g,
$$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Degeneracy of energy eigenstates: (approximate)

$$
\psi_{a}^{\left(R_{1}, \ldots, R_{k}\right)}\left(z_{1}, \ldots, z_{N}\right), \quad a=1, \ldots, g, \quad E_{a}-E_{b} \sim \mathrm{e}^{-\frac{\left|R_{i}-R_{j}\right|}{l}}
$$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Degeneracy of energy eigenstates: (approximate)
$\psi_{a}^{\left(R_{1}, \ldots, R_{k}\right)}\left(z_{1}, \ldots, z_{N}\right), \quad a=1, \ldots, g, \quad E_{a}-E_{b} \sim \mathrm{e}^{-\frac{\left|R_{i}-R_{j}\right|}{l}}$,
i.e., $\quad E_{a}-E_{b} \rightarrow 0 \quad$ for $\quad \min _{i, j}\left|R_{i}-R_{j}\right| \rightarrow \infty$
$a=$ "topological" quantum numbers labeling fusion paths

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Degeneracy of energy eigenstates: (approximate)
$\psi_{a}^{\left(R_{1}, \ldots, R_{k}\right)}\left(z_{1}, \ldots, z_{N}\right), \quad a=1, \ldots, g, \quad E_{a}-E_{b} \sim \mathrm{e}^{-\frac{\left|R_{i}-R_{j}\right|}{l}}$,
i.e., $\quad E_{a}-E_{b} \rightarrow 0 \quad$ for $\quad \min _{i, j}\left|R_{i}-R_{j}\right| \rightarrow \infty$
$a=$ "topological" quantum numbers labeling fusion paths
\triangleright Adiabatic theorem + ground state degeneracy:
- Degeneracy of energy eigenstates: (approximate)
$\psi_{a}^{\left(R_{1}, \ldots, R_{k}\right)}\left(z_{1}, \ldots, z_{N}\right), \quad a=1, \ldots, g, \quad E_{a}-E_{b} \sim \mathrm{e}^{-\frac{\left|R_{i}-R_{j}\right|}{l}}$,
i.e., $\quad E_{a}-E_{b} \rightarrow 0 \quad$ for $\quad \min _{i, j}\left|R_{i}-R_{j}\right| \rightarrow \infty$
$a=$ "topological" quantum numbers labeling fusion paths
\triangleright Adiabatic theorem + ground state degeneracy: final state is again a GS but might be different from the initial one

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Degeneracy of energy eigenstates: (approximate)
$\psi_{a}^{\left(R_{1}, \ldots, R_{k}\right)}\left(z_{1}, \ldots, z_{N}\right), \quad a=1, \ldots, g, \quad E_{a}-E_{b} \sim \mathrm{e}^{-\frac{\left|R_{i}-R_{j}\right|}{l}}$,
i.e., $\quad E_{a}-E_{b} \rightarrow 0 \quad$ for $\quad \min _{i, j}\left|R_{i}-R_{j}\right| \rightarrow \infty$
$a=$ "topological" quantum numbers labeling fusion paths
\triangleright Adiabatic theorem + ground state degeneracy: final state is again a GS but might be different from the initial one
- Matrix Berry phase:

$$
m_{a b}=\left\langle\psi_{a}(\mathbf{R})\right| \nabla_{\mathbf{R}}\left|\psi_{b}(\mathbf{R})\right\rangle, \quad \mathbf{R}=\left(R_{1}, \ldots, R_{k}\right)
$$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

$$
\begin{gathered}
\psi_{a}^{\left(R_{1}, \ldots, R_{k}\right)}\left(z_{1}, \ldots, z_{N}\right)=M_{a b} \psi_{b}^{\left(R_{1}, \ldots, R_{k}\right)}\left(z_{1}, \ldots, z_{N}\right) \\
M_{a b}=\mathrm{P}-\exp \left(i \oint m_{a b}(\mathbf{R}) d \mathbf{R}\right)
\end{gathered}
$$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

$$
\begin{gathered}
\psi_{a}^{\left(R_{1}, \ldots, R_{k}\right)}\left(z_{1}, \ldots, z_{N}\right)=M_{a b} \psi_{b}^{\left(R_{1}, \ldots, R_{k}\right)}\left(z_{1}, \ldots, z_{N}\right) \\
M_{a b}=\mathrm{P}-\exp \left(i \oint m_{a b}(\mathbf{R}) d \mathbf{R}\right)
\end{gathered}
$$

- Adiabaticity:
the transformation $M_{a b}$ acts entirely inside the degenerate subspace

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

$$
\begin{gathered}
\psi_{a}^{\left(R_{1}, \ldots, R_{k}\right)}\left(z_{1}, \ldots, z_{N}\right)=M_{a b} \psi_{b}^{\left(R_{1}, \ldots, R_{k}\right)}\left(z_{1}, \ldots, z_{N}\right) \\
M_{a b}=\mathrm{P}-\exp \left(i \oint m_{a b}(\mathbf{R}) d \mathbf{R}\right)
\end{gathered}
$$

- Adiabaticity:
the transformation $M_{a b}$ acts entirely inside the degenerate subspace $\Rightarrow M_{a b}$ is a unitary matrix \Rightarrow

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

$$
\begin{gathered}
\psi_{a}^{\left(R_{1}, \ldots, R_{k}\right)}\left(z_{1}, \ldots, z_{N}\right)=M_{a b} \psi_{b}^{\left(R_{1}, \ldots, R_{k}\right)}\left(z_{1}, \ldots, z_{N}\right) \\
M_{a b}=\mathrm{P}-\exp \left(i \oint m_{a b}(\mathbf{R}) d \mathbf{R}\right)
\end{gathered}
$$

- Adiabaticity:
the transformation $M_{a b}$ acts entirely inside the degenerate subspace $\Rightarrow M_{a b}$ is a unitary matrix \Rightarrow can be used to implement quantum gates

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

SUMMARY of Part 1:

- Topological protection of information encoding:

SUMMARY of Part 1:

- Topological protection of information encoding: use non-Abelian anyon's fusion paths to label computational states

SUMMARY of Part 1:

- Topological protection of information encoding: use non-Abelian anyon's fusion paths to label computational states (Bratteli diagrams)

SUMMARY of Part 1:

- Topological protection of information encoding: use non-Abelian anyon's fusion paths to label computational states (Bratteli diagrams)
- Topological protection of quantum gates:

SUMMARY of Part 1:

- Topological protection of information encoding: use non-Abelian anyon's fusion paths to label computational states (Bratteli diagrams)
- Topological protection of quantum gates: use adiabatic transport to implement gates by braiding

SUMMARY of Part 1:

- Topological protection of information encoding: use non-Abelian anyon's fusion paths to label computational states (Bratteli diagrams)
- Topological protection of quantum gates: use adiabatic transport to implement gates by braiding \Longrightarrow a gap is needed

SUMMARY of Part 1:

- Topological protection of information encoding: use non-Abelian anyon's fusion paths to label computational states (Bratteli diagrams)
- Topological protection of quantum gates: use adiabatic transport to implement gates by braiding \Longrightarrow a gap is needed
- Degeneracy of GS's is needed: (in presence of trapping potentials)

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

OUTLINE of Part 2: TQC with Ising anyons

- CFT description of FQH states and qubits:

OUTLINE of Part 2: TQC with Ising anyons

- CFT description of FQH states and qubits:

Le Wave functions by CFT blocks

OUTLINE of Part 2: TQC with Ising anyons

- CFT description of FQH states and qubits:
rex Wave functions by CFT blocks
AT Antidots

OUTLINE of Part 2: TQC with Ising anyons

- CFT description of FQH states and qubits:
rex Wave functions by CFT blocks
Ase Antidots
Pfaffian wave functions

OUTLINE of Part 2: TQC with Ising anyons

- CFT description of FQH states and qubits:
rex Wave functions by CFT blocks
Antidots
Praffian wave functions
Qubit initialization and measurement

OUTLINE of Part 2: TQC with Ising anyons

- CFT description of FQH states and qubits:
rex Wave functions by CFT blocks
Are Antidots
Praffian wave functions
Qubit initialization and measurement
- Braid-group representation:

OUTLINE of Part 2: TQC with Ising anyons

- CFT description of FQH states and qubits:
re Wave functions by CFT blocks
rex Antidots
Preffian wave functions
Qubit initialization and measurement
- Braid-group representation:

เ Analytic continuation

OUTLINE of Part 2: TQC with Ising anyons

- CFT description of FQH states and qubits:
rex Wave functions by CFT blocks
rex Antidots
Praffian wave functions
Qubit initialization and measurement
- Braid-group representation:
res Analytic continuation
Us Using fusion instead

OUTLINE of Part 2: TQC with Ising anyons

- CFT description of FQH states and qubits:
rex Wave functions by CFT blocks
Antidots
Praffian wave functions
Qubit initialization and measurement
- Braid-group representation:
res Analytic continuation
res Using fusion instead

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
4 Ising anyons: positive and negative parity

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
(1) 4 Ising anyons: positive and negative parity

- 6 Ising anyons and more

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
(1) 4 Ising anyons: positive and negative parity

- 6 Ising anyons and more
(19) Using fusion recursively

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
(1) 4 Ising anyons: positive and negative parity

- 6 Ising anyons and more

Us) Using fusion recursively
Bre Braid generators

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
(1) 4 Ising anyons: positive and negative parity

- 6 Ising anyons and more

Us) Using fusion recursively
res Braid generators
Two-qubit Clifford gates

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
(1) 4 Ising anyons: positive and negative parity

- 6 Ising anyons and more

Us) Using fusion recursively
res Braid generators
Ter Two-qubit Clifford gates

- Spinor approach:

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
4 Ising anyons: positive and negative parity

- 6 Ising anyons and more

Us) Using fusion recursively
Bre Braid generators
Tes Two-qubit Clifford gates

- Spinor approach:

『ब $\quad \gamma$ matrices and $\mathrm{SO}(2 n+2)$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
(1) 4 Ising anyons: positive and negative parity

- 6 Ising anyons and more

Using fusion recursively
Bre Braid generators
Tes Two-qubit Clifford gates

- Spinor approach:
rex $\quad \gamma$ matrices and $\mathrm{SO}(2 n+2)$
Clifford gates

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
(1) 4 Ising anyons: positive and negative parity

- 6 Ising anyons and more

Us) Using fusion recursively
Bre Braid generators
Tes Two-qubit Clifford gates

- Spinor approach:
re $\quad \gamma$ matrices and $\mathrm{SO}(2 n+2)$
rex Clifford gates

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

The Pfaffian quantum Hall state:

- Most promising non-Abelian candidate:

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

The Pfaffian quantum Hall state:

- Most promising non-Abelian candidate: fract. quantum Hall state with filling factor $v=5 / 2$ (second Landau level)

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

The Pfaffian quantum Hall state:

- Most promising non-Abelian candidate: fract. quantum Hall state with filling factor $v=5 / 2$ (second Landau level)
- Routinely observed in ultrahigh-mobility samples [Pan et al., Xia et al., Eisenstein et al., Choi et al.]

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

The Pfaffian quantum Hall state:

- Most promising non-Abelian candidate: fract. quantum Hall state with filling factor $v=5 / 2$ (second Landau level)
- Routinely observed in ultrahigh-mobility samples [Pan et al., Xia et al., Eisenstein et al., Choi et al.]
- In the universality class of the Moore-Read state (Pfaffian CFT: $\widehat{u(1)} \times$ Ising)

The Pfaffian quantum Hall state:

- Most promising non-Abelian candidate: fract. quantum Hall state with filling factor $v=5 / 2$ (second Landau level)
- Routinely observed in ultrahigh-mobility samples [Pan et al., Xia et al., Eisenstein et al., Choi et al.]
- In the universality class of the Moore-Read state (Pfaffian CFT: $\widehat{u(1)} \times$ Ising)
- non-Abelian statistics might be easier to be observed than the Abelian one [Stern-Halperin, Kitaev et al.]

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

Topological protection in the Pfaffian FQH state

- Residual noise and decoherence:

Topological protection in the Pfaffian FQH state

- Residual noise and decoherence: due to thermally activated q.p.-q.h. pairs (executing uncontrolled braidings)

Topological protection in the Pfaffian FQH state

- Residual noise and decoherence: due to thermally activated q.p.-q.h. pairs (executing uncontrolled braidings)
- Exponentially suppressed at low temperature ($T \sim 5$ mK) by the bulk energy gap ($\Delta / k_{B} \sim 500 \mathrm{mK}$) [Das Sarma]

Topological protection in the Pfaffian FQH state

- Residual noise and decoherence: due to thermally activated q.p.-q.h. pairs (executing uncontrolled braidings)
- Exponentially suppressed at low temperature ($T \sim 5$ mK) by the bulk energy gap ($\Delta / k_{B} \sim 500 \mathrm{mK}$) [Das Sarma]

$$
\text { Error rate } \simeq\left(\frac{k_{B} T}{\Delta}\right) \exp \left(-\frac{\Delta}{k_{B} T}\right)<10^{-30} \Rightarrow
$$

Topological protection in the Pfaffian FQH state

- Residual noise and decoherence: due to thermally activated q.p.-q.h. pairs (executing uncontrolled braidings)
- Exponentially suppressed at low temperature ($T \sim 5$ mK) by the bulk energy gap ($\Delta / k_{B} \sim 500 \mathrm{mK}$) [Das Sarma]

$$
\text { Error rate } \simeq\left(\frac{k_{B} T}{\Delta}\right) \exp \left(-\frac{\Delta}{k_{B} T}\right)<10^{-30} \quad \Rightarrow
$$

- Unpresedented precision of quantum information processing

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

CFT description of FQH states: fundamental

\triangleright Why CFT symmetry?

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

CFT description of FQH states: fundamental

\triangleright Why CFT symmetry?

- Scale invariance: angular momentum generator J_{z} is equal to the dilation generator $L_{0}+\bar{L}_{0}$

CFT description of FQH states: fundamental

\triangleright Why CFT symmetry?

- Scale invariance: angular momentum generator J_{z} is equal to the dilation generator $L_{0}+\bar{L}_{0}$
- Incompressibility: entire dynamics is on the edge

CFT description of FQH states: fundamental

\triangleright Why CFT symmetry?

- Scale invariance: angular momentum generator J_{z} is equal to the dilation generator $L_{0}+\bar{L}_{0}$
- Incompressibility: entire dynamics is on the edge \Longrightarrow the low- E effective QFT on the edge must be unitary

CFT description of FQH states: fundamental

\triangleright Why CFT symmetry?

- Scale invariance: angular momentum generator J_{z} is equal to the dilation generator $L_{0}+\bar{L}_{0}$
- Incompressibility: entire dynamics is on the edge the low- E effective QFT on the edge must be unitary
- Luscher-Mack Theorem: \Longrightarrow full CFT symmetry, i.e., the Laurent modes of the stress-energy tensor satisfy the Virasoro algebra

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
\triangleright TQFT Approach: Wen, Fröhlich, Cappelli

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
\triangleright TQFT Approach: Wen, Fröhlich, Cappelli

- Wen: first Chern-Simons description, topological order (insightful but not rigorous)
\triangleright TQFT Approach: Wen, Fröhlich, Cappelli
- Wen: first Chern-Simons description, topological order (insightful but not rigorous)
- Fröhlich et al: TD scaling limit of $2+1$ D non-relativistic electrons + incompressibility \Longrightarrow leading term is a CS action (very rigorous and insightful)
\triangleright TQFT Approach: Wen, Fröhlich, Cappelli
- Wen: first Chern-Simons description, topological order (insightful but not rigorous)
- Fröhlich et al: TD scaling limit of $2+1$ D non-relativistic electrons + incompressibility \Longrightarrow leading term is a CS action (very rigorous and insightful)
- Cappelli et al: TD limit for $v=1$ and $v=1 / m$ with explicit mapping of the non-relativistic field operators to the CFT electron operators (very instructive)
\triangleright TQFT Approach: Wen, Fröhlich, Cappelli
- Wen: first Chern-Simons description, topological order (insightful but not rigorous)
- Fröhlich et al: TD scaling limit of 2+1 D non-relativistic electrons + incompressibility \Longrightarrow leading term is a CS action (very rigorous and insightful)
- Cappelli et al: TD limit for $v=1$ and $v=1 / m$ with explicit mapping of the non-relativistic field operators to the CFT electron operators (very instructive)
- Witten: $(2+1)$ D Chern-Simons TQFT $\Longleftrightarrow(1+1) D$ RCFT
\triangleright FQH wave functions by CFT correlators:
- $v=1 / m$ Laughlin state: standard second-quantized relation between wave functions and state in filling number representation

$$
\Psi_{\mathrm{L}}\left(z_{1}, \ldots, z_{N}\right)=\frac{1}{\sqrt{N}}\left\langle\Psi_{N}\right| \psi^{\dagger}\left(z_{1}\right) \cdots \psi^{\dagger}\left(z_{N}\right)|0\rangle
$$

\triangleright FQH wave functions by CFT correlators:

- $v=1 / m$ Laughlin state: standard second-quantized relation between wave functions and state in filling number representation

$$
\Psi_{\mathrm{L}}\left(z_{1}, \ldots, z_{N}\right)=\frac{1}{\sqrt{N}}\left\langle\Psi_{N}\right| \psi^{\dagger}\left(z_{1}\right) \cdots \psi^{\dagger}\left(z_{N}\right)|0\rangle
$$

- GS ansatz [N. Read] : Bose condensate or homogeneous uniform charged two-dimensional plasma

$$
\left|\Psi_{N}\right\rangle=\left(\int d^{2} z \psi^{\dagger}(z)\right)^{N}|0\rangle \propto \exp \left(-i \int d^{2} z \sqrt{m} \rho_{0} \phi(z)\right)|0\rangle
$$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze In the TD limit $\phi(z)$ becomes the standard chiral boson used in 1D bosonization, with logarithmic normalized 2-pt function

$$
\langle\phi(z) \phi(w)\rangle=-\ln (z-w)
$$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
In the TD limit $\phi(z)$ becomes the standard chiral boson used in 1D bosonization, with logarithmic normalized 2-pt function

$$
\langle\phi(z) \phi(w)\rangle=-\ln (z-w)
$$

so that taking the integration the GS is represented by

$$
\left.\left|\Psi_{N}\right\rangle \rightarrow \mathrm{e}^{-i \sqrt{m} \rho_{0} \cdot \operatorname{Area} \cdot \ln U_{1}}|0\rangle\right\rangle_{\mathrm{CFT}}=U_{N \sqrt{m}}|0\rangle \equiv|N \sqrt{m}\rangle
$$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
In the TD limit $\phi(z)$ becomes the standard chiral boson used in 1D bosonization, with logarithmic normalized 2-pt function

$$
\langle\phi(z) \phi(w)\rangle=-\ln (z-w)
$$

so that taking the integration the GS is represented by

$$
\left.\left|\Psi_{N}\right\rangle \rightarrow \mathrm{e}^{-i \sqrt{m} \rho_{0} \cdot \operatorname{Area} \cdot \ln U_{1}}|0\rangle\right\rangle_{\mathrm{CFT}}=U_{N \sqrt{m}}|0\rangle \equiv|N \sqrt{m}\rangle
$$

where $\rho_{0}=\nu / 2 \pi$ and U_{1} is the charge-shift automorphism of $u(1)$ used in bosonization, e.g., of the 1D Dirac fermion

$$
\psi_{D}(z)=: \mathrm{e}^{i \phi(z)}: \equiv U_{1} \mathrm{e}^{i \phi_{+}(z)} z^{J_{0}} \mathrm{e}^{i \phi_{-}(z)}
$$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
Or, put differently, the second-quantized ground state is just a screening charge in the center of the disk

$$
\left|\Psi_{N}\right\rangle \rightarrow: \mathrm{e}^{-i N \sqrt{m} \phi(0)}:|0\rangle_{\mathrm{CFT}} \equiv|N \sqrt{m}\rangle
$$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
Or, put differently, the second-quantized ground state is just a screening charge in the center of the disk

$$
\left|\Psi_{N}\right\rangle \rightarrow: \mathrm{e}^{-i N \sqrt{m} \phi(0)}:|0\rangle_{\mathrm{CFT}} \equiv|N \sqrt{m}\rangle
$$

- CFT conjugation: (analytic coordinates)

$$
\left\langle\Psi_{N}\right|=\lim _{z_{0} \rightarrow \infty} z_{0}^{2 \Delta_{N \sqrt{m}}}\langle 0|: \mathrm{e}^{i N \sqrt{m} \phi\left(z_{0}\right)}: \equiv\langle N \sqrt{m}|
$$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
Or, put differently, the second-quantized ground state is just a screening charge in the center of the disk

$$
\left|\Psi_{N}\right\rangle \rightarrow: \mathrm{e}^{-i N \sqrt{m} \phi(0)}:|0\rangle_{\mathrm{CFT}} \equiv|N \sqrt{m}\rangle
$$

- CFT conjugation: (analytic coordinates)

$$
\left\langle\Psi_{N}\right|=\lim _{z_{0} \rightarrow \infty} z_{0}^{2 \Delta_{N} \sqrt{m}}\langle 0|: \mathrm{e}^{i N \sqrt{m} \phi\left(z_{0}\right)}: \equiv\langle N \sqrt{m}|
$$

- CFT correlators - wave function relation:
$\Psi_{\mathrm{L}}\left(z_{1}, \ldots, z_{N}\right)=\langle N \sqrt{m}|: \mathrm{e}^{-i \sqrt{m} \phi\left(z_{1}\right)}: \cdots: \mathrm{e}^{-i \sqrt{m} \phi\left(z_{N}\right)}:|0\rangle$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
where the electron is represented by the CFT operator $\psi_{\mathrm{el}}(z)=: \mathrm{e}^{-i \sqrt{m} \phi(z)}:$ and $|0\rangle$ is the CFT vacuum.

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
where the electron is represented by the CFT operator $\psi_{\mathrm{el}}(z)=: \mathrm{e}^{-i \sqrt{m} \phi(z)}:$ and $|0\rangle$ is the CFT vacuum.

- Quasiholes: are represented by the operators $\psi_{\mathrm{qh}}(z)=: \mathrm{e}^{i \frac{1}{\sqrt{m}} \phi(z)}$: and the quasihole wave function is

$$
\begin{aligned}
& \Psi_{\mathrm{qh}}\left(\eta, z_{1}, \ldots, z_{N}\right)=\langle N \sqrt{m}-1 / \sqrt{m}|: \mathrm{e}^{i \frac{1}{\sqrt{m}} \phi(\eta)}: \times \\
& \times: \mathrm{e}^{-i \sqrt{m} \phi\left(z_{1}\right)}: \cdots: \mathrm{e}^{-i \sqrt{m} \phi\left(z_{N}\right)}:|0\rangle= \\
& =\prod_{i=1}^{N}\left(\eta-z_{i}\right) \prod_{j<k}\left(z_{j}-z_{k}\right)^{m}
\end{aligned}
$$

Quantum Hall bar: edge currents

Quantum Hall bar: edge currents

Quantum Hall bar: edge currents

Quantum Hall bar: edge currents

Quantum Hall bar: edge currents

Antidots: localizing quasiholes in FQH droplets

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

TQC scheme of Das Sarma et al.: SUMMARY

- The Pfaffian FQH state: CFT $=\widehat{u(1)} \times$ Ising
- CFT electron and quasihole:

$$
\psi_{\mathrm{el}}(z)=\psi(z): \mathrm{e}^{-i \sqrt{2} \phi(z)}:,
$$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

TQC scheme of Das Sarma et al.: SUMMARY

- The Pfaffian FQH state: CFT $=\widehat{u(1)} \times$ Ising
- CFT electron and quasihole:

$$
\psi_{\mathrm{el}}(z)=\psi(z): \mathrm{e}^{-i \sqrt{2} \phi(z)}:, \quad, \psi_{\mathrm{qh}}(\eta)=\sigma(\eta): \mathrm{e}^{i \frac{1}{2 \sqrt{2}} \phi(\eta)}:
$$

TQC scheme of Das Sarma et al.: SUMMARY

- The Pfaffian FQH state: CFT $=\widehat{u(1)} \times$ Ising
- CFT electron and quasihole:

$$
\psi_{\mathrm{el}}(z)=\psi(z): \mathrm{e}^{-i \sqrt{2} \phi(z)}:, \quad, \psi_{\mathrm{qh}}(\eta)=\sigma(\eta): \mathrm{e}^{i \frac{1}{2 \sqrt{2}} \phi(\eta)}:
$$

- Single qubit construction:
$\nu=5 / 2$ FQHE sample with 4 non-Abelian quasiparticles at fixed positions η_{a} (e.g., localized on 4 quantum antidots)

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- N-electron wave function: CFT correlation function

$$
\begin{aligned}
& \Psi_{4 \mathrm{qh}}\left(\eta_{1}, \eta_{2}, \eta_{3}, \eta_{4},\left\{z_{i}\right\}\right)= \\
& \left\langle\psi_{\mathrm{qh}}\left(\eta_{1}\right) \psi_{\mathrm{qh}}\left(\eta_{2}\right) \psi_{\mathrm{qh}}\left(\eta_{3}\right) \psi_{\mathrm{qh}}\left(\eta_{4}\right) \prod_{i=1}^{N} \psi_{\mathrm{el}}\left(z_{i}\right)\right\rangle
\end{aligned}
$$

- N-electron wave function: CFT correlation function

$$
\begin{aligned}
& \Psi_{4 \mathrm{qh}}\left(\eta_{1}, \eta_{2}, \eta_{3}, \eta_{4},\left\{z_{i}\right\}\right)= \\
& \left\langle\psi_{\mathrm{qh}}\left(\eta_{1}\right) \psi_{\mathrm{qh}}\left(\eta_{2}\right) \psi_{\mathrm{qh}}\left(\eta_{3}\right) \psi_{\mathrm{qh}}\left(\eta_{4}\right) \prod_{i=1}^{N} \psi_{\mathrm{el}}\left(z_{i}\right)\right\rangle
\end{aligned}
$$

- Explicit result [Nayak-Wilczek]: $\left(\eta_{a b}=\eta_{a}-\eta_{b}\right)$

$$
\Psi_{4 \mathrm{qh}}\left(\eta_{1}, \eta_{2}, \eta_{3}, \eta_{4} ; z_{1}, \ldots, z_{N}\right)=\Psi_{4 \mathrm{qh}}^{(0)}+\Psi_{4 \mathrm{qh}}^{(1)}
$$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- N-electron wave function: CFT correlation function

$$
\begin{aligned}
& \Psi_{4 \mathrm{qh}}\left(\eta_{1}, \eta_{2}, \eta_{3}, \eta_{4},\left\{z_{i}\right\}\right)= \\
& \left\langle\psi_{\mathrm{qh}}\left(\eta_{1}\right) \psi_{\mathrm{qh}}\left(\eta_{2}\right) \psi_{\mathrm{qh}}\left(\eta_{3}\right) \psi_{\mathrm{qh}}\left(\eta_{4}\right) \prod_{i=1}^{N} \psi_{\mathrm{el}}\left(z_{i}\right)\right\rangle
\end{aligned}
$$

- Explicit result [Nayak-Wilczek]: $\left(\eta_{a b}=\eta_{a}-\eta_{b}\right)$

$$
\Psi_{4 \mathrm{qh}}\left(\eta_{1}, \eta_{2}, \eta_{3}, \eta_{4} ; z_{1}, \ldots, z_{N}\right)=\Psi_{4 \mathrm{qh}}^{(0)}+\Psi_{4 \mathrm{qh}}^{(1)}
$$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

$$
\Psi_{4 \mathrm{qh}}^{(0,1)}=\frac{\left(\eta_{13} \eta_{24}\right)^{\frac{1}{4}}}{\sqrt{1 \pm \sqrt{x}}}\left(\Psi_{(13)(24)} \pm \sqrt{x} \Psi_{(14)(23)}\right), \quad x \equiv \frac{\eta_{14} \eta_{23}}{\eta_{13} \eta_{24}}
$$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

$$
\Psi_{4 \mathrm{qh}}^{(0,1)}=\frac{\left(\eta_{13} \eta_{24}\right)^{\frac{1}{4}}}{\sqrt{1 \pm \sqrt{x}}}\left(\Psi_{(13)(24)} \pm \sqrt{x} \Psi_{(14)(23)}\right), \quad x \equiv \frac{\eta_{14} \eta_{23}}{\eta_{13} \eta_{24}}
$$

$$
\begin{aligned}
\Psi_{(a b)(c d)} & =\operatorname{Pf}\left(\frac{\left(z_{i}-\eta_{a}\right)\left(z_{i}-\eta_{b}\right)\left(z_{j}-\eta_{c}\right)\left(z_{j}-\eta_{d}\right)+(i \leftrightarrow j)}{z_{i}-z_{j}}\right) \\
& \times \prod_{1 \leq i<j \leq N}\left(z_{i}-z_{j}\right)^{2}, \quad(a<b, c<d) \quad \text { s.v. }
\end{aligned}
$$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

Initialization of the Pfaffian qubit

- Non-Abelian anyon $\sigma: Q_{\mathrm{el}}=1 / 4$, flux $=1 / 2$ (flux quantization \Rightarrow create Ising anyons in pairs)

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

Initialization of the Pfaffian qubit

- Non-Abelian anyon $\sigma: Q_{\mathrm{el}}=1 / 4$, flux $=1 / 2$ (flux quantization \Rightarrow create Ising anyons in pairs)
- Put 1 flux quantum h / e through one antidot 1

Initialization of the Pfaffian qubit

- Non-Abelian anyon $\sigma: Q_{\mathrm{el}}=1 / 4$, flux $=1 / 2$ (flux quantization \Rightarrow create Ising anyons in pairs)
- Put 1 flux quantum h / e through one antidot 1
- FQH liquid response: localize a charge $1 / 2$ quasiparticle on antidot 1 (flux-charge relation: $Q_{\mathrm{el}}=\nu \Phi$ with $\nu=1 / 2$)

Initialization of the Pfaffian qubit

- Non-Abelian anyon $\sigma: Q_{\mathrm{el}}=1 / 4$, flux $=1 / 2$ (flux quantization \Rightarrow create Ising anyons in pairs)
- Put 1 flux quantum h / e through one antidot 1
- FQH liquid response: localize a charge $1 / 2$ quasiparticle on antidot 1 (flux-charge relation: $Q_{\mathrm{el}}=\nu \Phi$ with $\nu=1 / 2$)
- Charge splitting: $1 / 2 \rightarrow 1 / 4 \times 1 / 4$ apply voltage between the two antidots

Initialization of the Pfaffian qubit

- Non-Abelian anyon $\sigma: Q_{\mathrm{el}}=1 / 4$, flux $=1 / 2$ (flux quantization \Rightarrow create Ising anyons in pairs)
- Put 1 flux quantum h / e through one antidot 1
- FQH liquid response: localize a charge $1 / 2$ quasiparticle on antidot 1 (flux-charge relation: $Q_{\mathrm{el}}=\nu \Phi$ with $\nu=1 / 2$)
- Charge splitting: $1 / 2 \rightarrow 1 / 4 \times 1 / 4$ apply voltage between the two antidots \Rightarrow the most relevant tunneling object is the non-Abelian anyon

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Non-Abelian anyons: $\operatorname{OPE}\left(\eta_{12}:=\eta_{1}-\eta_{2}\right)$

$$
\sigma\left(\eta_{1}\right) \sigma\left(\eta_{2}\right) \underset{\eta_{1}}{\sim} \eta_{\eta_{2}} \mathbb{I}+\sqrt{\frac{\eta_{12}}{2}} \psi_{\mathrm{el}}\left(\eta_{2}\right)+O\left(\eta_{12}\right)
$$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Non-Abelian anyons: $\operatorname{OPE}\left(\eta_{12}:=\eta_{1}-\eta_{2}\right)$

$$
\sigma\left(\eta_{1}\right) \sigma\left(\eta_{2}\right) \underset{\eta_{1}}{\sim} \mathbb{I} \eta_{2}+\sqrt{\frac{\eta_{12}}{2}} \psi_{\mathrm{el}}\left(\eta_{2}\right)+O\left(\eta_{12}\right)
$$

- Fusion rules: two channels with opposite fermion parity

$$
\sigma \times \sigma \simeq \mathbb{I}+\psi_{\mathrm{el}}
$$

- Non-Abelian anyons: $\operatorname{OPE}\left(\eta_{12}:=\eta_{1}-\eta_{2}\right)$

$$
\sigma\left(\eta_{1}\right) \sigma\left(\eta_{2}\right) \underset{\eta_{1}}{\simeq} \eta_{2} \mathbb{I}+\sqrt{\frac{\eta_{12}}{2}} \psi_{\mathrm{el}}\left(\eta_{2}\right)+O\left(\eta_{12}\right)
$$

- Fusion rules: two channels with opposite fermion parity

$$
\sigma \times \sigma \simeq \mathbb{I}+\psi_{\mathrm{el}}
$$

- Encoding of quantum information: fermion parity γ_{F}
- Non-Abelian anyons: $\operatorname{OPE}\left(\eta_{12}:=\eta_{1}-\eta_{2}\right)$

$$
\sigma\left(\eta_{1}\right) \sigma\left(\eta_{2}\right) \underset{\eta_{1}}{\sim} \mathbb{I} \eta_{2}+\sqrt{\frac{\eta_{12}}{2}} \psi_{\mathrm{el}}\left(\eta_{2}\right)+O\left(\eta_{12}\right)
$$

- Fusion rules: two channels with opposite fermion parity

$$
\sigma \times \sigma \simeq \mathbb{I}+\psi_{\mathrm{el}}
$$

- Encoding of quantum information: fermion parity γ_{F} pairs of σ either share a Majorana fermion ψ_{el} or not

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Non-Abelian anyons: OPE $\left(\eta_{12}:=\eta_{1}-\eta_{2}\right)$

$$
\sigma\left(\eta_{1}\right) \sigma\left(\eta_{2}\right) \underset{\eta_{1}}{\simeq} \mathbb{I}+\sqrt{\frac{\eta_{12}}{2}} \psi_{\mathrm{el}}\left(\eta_{2}\right)+O\left(\eta_{12}\right)
$$

- Fusion rules: two channels with opposite fermion parity

$$
\sigma \times \sigma \simeq \mathbb{I}+\psi_{\mathrm{el}}
$$

- Encoding of quantum information: fermion parity γ_{F} pairs of σ either share a Majorana fermion ψ_{el} or not

$$
\begin{aligned}
&|0\rangle \Longleftrightarrow \\
&|1\rangle \Longleftrightarrow \\
& \gamma_{F}(\sigma \times \sigma)=+1 \\
& \gamma_{F}(\sigma \times \sigma)=-1
\end{aligned}
$$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
-Ramond sector: Majorana zero-mode

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
-Ramond sector: Majorana zero-mode
\Longrightarrow double degenerate GS $|\sigma\rangle$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
-Ramond sector: Majorana zero-mode
\Longrightarrow double degenerate GS $|\sigma\rangle$

$$
\left\{\psi_{0}, \gamma_{F}\right\}=\operatorname{Clifford}(2),
$$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
-Ramond sector: Majorana zero-mode
\Longrightarrow double degenerate GS $|\sigma\rangle$

$$
\left\{\psi_{0}, \gamma_{F}\right\}=\operatorname{Clifford}(2), \quad \gamma_{F}\left|\sigma_{ \pm}\right\rangle= \pm\left|\sigma_{ \pm}\right\rangle
$$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
-Ramond sector: Majorana zero-mode
\Longrightarrow double degenerate GS $|\sigma\rangle$

$$
\left\{\psi_{0}, \gamma_{F}\right\}=\operatorname{Clifford}(2), \quad \gamma_{F}\left|\sigma_{ \pm}\right\rangle= \pm\left|\sigma_{ \pm}\right\rangle
$$

\bullet Abelian fusion rules: $\sigma_{ \pm} \times \sigma_{ \pm}=\mathbb{I}, \quad \sigma_{+} \times \sigma_{-}=\psi$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
-Ramond sector: Majorana zero-mode
\Longrightarrow double degenerate GS $|\sigma\rangle$

$$
\left\{\psi_{0}, \gamma_{F}\right\}=\operatorname{Clifford}(2), \quad \gamma_{F}\left|\sigma_{ \pm}\right\rangle= \pm\left|\sigma_{ \pm}\right\rangle
$$

\bullet Abelian fusion rules: $\sigma_{ \pm} \times \sigma_{ \pm}=\mathbb{I}, \quad \sigma_{+} \times \sigma_{-}=\psi$ dictated by conservation of fermion parity \Longrightarrow L.G., Nucl. Phys. B 651 (2003) 331
-Ramond sector: Majorana zero-mode
\Longrightarrow double degenerate GS $|\sigma\rangle$

$$
\left\{\psi_{0}, \gamma_{F}\right\}=\operatorname{Clifford}(2), \quad \gamma_{F}\left|\sigma_{ \pm}\right\rangle= \pm\left|\sigma_{ \pm}\right\rangle
$$

\bullet Abelian fusion rules: $\sigma_{ \pm} \times \sigma_{ \pm}=\mathbb{I}, \quad \sigma_{+} \times \sigma_{-}=\psi$ dictated by conservation of fermion parity
\Longrightarrow L.G., Nucl. Phys. B 651 (2003) 331
-However \Longrightarrow only 1 physical state:
-Ramond sector: Majorana zero-mode
\Longrightarrow double degenerate GS $|\sigma\rangle$

$$
\left\{\psi_{0}, \gamma_{F}\right\}=\operatorname{Clifford}(2), \quad \gamma_{F}\left|\sigma_{ \pm}\right\rangle= \pm\left|\sigma_{ \pm}\right\rangle
$$

\bullet Abelian fusion rules: $\sigma_{ \pm} \times \sigma_{ \pm}=\mathbb{I}, \quad \sigma_{+} \times \sigma_{-}=\psi$ dictated by conservation of fermion parity
\Longrightarrow L.G., Nucl. Phys. B 651 (2003) 331
-However \Longrightarrow only 1 physical state: GSO projection to find RCFT (modular invariance is important for anyons)
-Ramond sector: Majorana zero-mode
\Longrightarrow double degenerate GS $|\sigma\rangle$

$$
\left\{\psi_{0}, \gamma_{F}\right\}=\operatorname{Clifford}(2), \quad \gamma_{F}\left|\sigma_{ \pm}\right\rangle= \pm\left|\sigma_{ \pm}\right\rangle
$$

-Abelian fusion rules: $\sigma_{ \pm} \times \sigma_{ \pm}=\mathbb{I}, \quad \sigma_{+} \times \sigma_{-}=\psi$ dictated by conservation of fermion parity
\Longrightarrow L.G., Nucl. Phys. B 651 (2003) 331
-However \Longrightarrow only 1 physical state: GSO projection to find RCFT (modular invariance is important for anyons)

$$
\sigma \equiv \frac{\sigma_{+}+\sigma_{-}}{\sqrt{2}}
$$

-Ramond sector: Majorana zero-mode
\Longrightarrow double degenerate GS $|\sigma\rangle$

$$
\left\{\psi_{0}, \gamma_{F}\right\}=\operatorname{Clifford}(2), \quad \gamma_{F}\left|\sigma_{ \pm}\right\rangle= \pm\left|\sigma_{ \pm}\right\rangle
$$

-Abelian fusion rules: $\sigma_{ \pm} \times \sigma_{ \pm}=\mathbb{I}, \quad \sigma_{+} \times \sigma_{-}=\psi$ dictated by conservation of fermion parity
\Longrightarrow L.G., Nucl. Phys. B 651 (2003) 331
-However \Longrightarrow only 1 physical state: GSO projection to find RCFT (modular invariance is important for anyons)

$$
\sigma \equiv \frac{\sigma_{+}+\sigma_{-}}{\sqrt{2}} \quad \Longrightarrow \quad \sigma \times \sigma=\mathbb{I}+\psi
$$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze -Non-Abelian anyon!

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
-Non-Abelian anyon!
chiral fermion parity spontaneously broken by the fusion rules

- Two-dimensional space of correlation functions:

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
-Non-Abelian anyon!
chiral fermion parity spontaneously broken by the fusion rules

- Two-dimensional space of correlation functions: two linearly independent 4-point functions for fixed η_{a}

-Non-Abelian anyon!

chiral fermion parity spontaneously broken by the fusion rules

- Two-dimensional space of correlation functions: two linearly independent 4-point functions for fixed η_{a} because of the two fusion channels (non-Abelian statistics)

$$
\left\langle\sigma_{+}\left(\eta_{1}\right) \sigma_{ \pm}\left(\eta_{2}\right) \sigma_{+}\left(\eta_{3}\right) \sigma_{ \pm}\left(\eta_{4}\right)\right\rangle \simeq \sqrt{1 \pm \sqrt{\frac{\eta_{14} \eta_{23}}{\eta_{13} \eta_{24}}}}
$$

-Non-Abelian anyon!

chiral fermion parity spontaneously broken by the fusion rules

- Two-dimensional space of correlation functions: two linearly independent 4-point functions for fixed η_{a} because of the two fusion channels (non-Abelian statistics)

$$
\left\langle\sigma_{+}\left(\eta_{1}\right) \sigma_{ \pm}\left(\eta_{2}\right) \sigma_{+}\left(\eta_{3}\right) \sigma_{ \pm}\left(\eta_{4}\right)\right\rangle \simeq \sqrt{1 \pm \sqrt{\frac{\eta_{14} \eta_{23}}{\eta_{13} \eta_{24}}}}
$$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

Computational basis:

- Positive parity ($N=$ =even)

$$
\begin{aligned}
|0\rangle_{+} & \equiv\left\langle\sigma_{+}\left(\eta_{1}\right) \sigma_{+}\left(\eta_{2}\right) \sigma_{+}\left(\eta_{3}\right) \sigma_{+}\left(\eta_{4}\right) \prod_{j=1}^{N} \psi\left(z_{j}\right)\right\rangle, \\
|1\rangle_{+} & \equiv\left\langle\sigma_{+}\left(\eta_{1}\right) \sigma_{-}\left(\eta_{2}\right) \sigma_{+}\left(\eta_{3}\right) \sigma_{-}\left(\eta_{4}\right) \prod_{j=1}^{N} \psi\left(z_{j}\right)\right\rangle
\end{aligned}
$$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

Computational basis:

- Positive parity ($N=$ even)

$$
\begin{aligned}
|0\rangle_{+} & \equiv\left\langle\sigma_{+}\left(\eta_{1}\right) \sigma_{+}\left(\eta_{2}\right) \sigma_{+}\left(\eta_{3}\right) \sigma_{+}\left(\eta_{4}\right) \prod_{j=1}^{N} \psi\left(z_{j}\right)\right\rangle, \\
|1\rangle_{+} & \equiv\left\langle\sigma_{+}\left(\eta_{1}\right) \sigma_{-}\left(\eta_{2}\right) \sigma_{+}\left(\eta_{3}\right) \sigma_{-}\left(\eta_{4}\right) \prod_{j=1}^{N} \psi\left(z_{j}\right)\right\rangle
\end{aligned}
$$

corresponds to the fusion path $\sigma \times \sigma \rightarrow \mathbb{I} \times \sigma \rightarrow \sigma \times \sigma \rightarrow \mathbb{I}$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Negative parity ($N=$ even again)

However put one extra fermion at $z_{\infty}=\infty$ or at $z_{0}=0$)

$$
\begin{aligned}
|0\rangle_{-} & \equiv\left\langle\psi\left(z_{\infty}\right) \sigma_{+}\left(\eta_{1}\right) \sigma_{+}\left(\eta_{2}\right) \sigma_{+}\left(\eta_{3}\right) \sigma_{-}\left(\eta_{4}\right) \prod_{j=1}^{N} \psi\left(z_{j}\right)\right\rangle, \\
|1\rangle_{-} & \equiv\left\langle\psi\left(z_{\infty}\right) \sigma_{+}\left(\eta_{1}\right) \sigma_{-}\left(\eta_{2}\right) \sigma_{+}\left(\eta_{3}\right) \sigma_{+}\left(\eta_{4}\right) \prod_{j=1}^{N} \psi\left(z_{j}\right)\right\rangle
\end{aligned}
$$

corresponds to the fusion path $\sigma \times \sigma \rightarrow \psi \times \sigma \rightarrow \sigma \times \sigma \rightarrow \mathbb{I}$

- Fusion paths for the computational basis:

(4 anyons, positive parity)

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
\triangleright Derive braid matrices: -Analytic continuation of Pfaffian wave functions:

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
\triangleright Derive braid matrices:
-Analytic continuation of Pfaffian wave functions: works only for the positive parity representation

LGe L.G., Nucl. Phys. B 789 (2008) 552

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
\triangleright Derive braid matrices:
-Analytic continuation of Pfaffian wave functions: works only for the positive parity representation

นฺฺ L.G., Nucl. Phys. B 789 (2008) 552

Reason: we know explicitly the wave functions only for 4 anyons in the positive representation [Nayak-Wilczek]

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
\triangleright Derive braid matrices:
-Analytic continuation of Pfaffian wave functions: works only for the positive parity representation
res L.G., Nucl. Phys. B 789 (2008) 552

Reason: we know explicitly the wave functions only for 4 anyons in the positive representation [Nayak-Wilczek]

Problem: it appears there are 2 inequivalent IRs and we need both of them

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
\triangleright Derive braid matrices:
-Analytic continuation of Pfaffian wave functions: works only for the positive parity representation
res L.G., Nucl. Phys. B 789 (2008) 552

Reason: we know explicitly the wave functions only for 4 anyons in the positive representation [Nayak-Wilczek]

Problem: it appears there are 2 inequivalent IRs and we need both of them

Solution: use fusion rules

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze
\triangleright Derive braid matrices:
-Analytic continuation of Pfaffian wave functions: works only for the positive parity representation
res L.G., Nucl. Phys. B 789 (2008) 552
Reason: we know explicitly the wave functions only for 4 anyons in the positive representation [Nayak-Wilczek]

Problem: it appears there are 2 inequivalent IRs and we need both of them

Solution: use fusion rules (braid matrices are independent of the distance between anyons)

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Using fusion rules: Neveu-Schwarz sector
$\sigma_{+}\left(\eta_{1}\right) \sigma_{+}\left(\eta_{2}\right)=\mathbb{I}, \quad \sigma_{+}\left(\eta_{1}\right) \sigma_{-}\left(\eta_{2}\right)=\sqrt{\frac{\eta_{12}}{2}} \psi\left(\eta_{2}\right)$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Using fusion rules: Neveu-Schwarz sector
$\sigma_{+}\left(\eta_{1}\right) \sigma_{+}\left(\eta_{2}\right)=\mathbb{I}, \quad \sigma_{+}\left(\eta_{1}\right) \sigma_{-}\left(\eta_{2}\right)=\sqrt{\frac{\eta_{12}}{2}} \psi\left(\eta_{2}\right)$

$$
\begin{aligned}
& |0\rangle_{+} \underset{\eta_{12} \rightarrow 0}{\simeq}\left\langle\sigma_{+}\left(\eta_{3}\right) \sigma_{+}\left(\eta_{4}\right) \prod_{j=1}^{N=\text { even }} \psi\left(z_{j}\right)\right\rangle \\
& |1\rangle_{+} \underset{\eta_{12} \rightarrow 0}{\simeq} \sqrt{\frac{\eta_{12}}{2}}\left\langle\psi\left(\eta_{2}\right) \sigma_{+}\left(\eta_{3}\right) \sigma_{-}\left(\eta_{4}\right) \prod_{j=1}^{N=\text { even }} \psi\left(z_{j}\right)\right\rangle
\end{aligned}
$$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Using fusion rules: Neveu-Schwarz sector

$$
\sigma_{+}\left(\eta_{1}\right) \sigma_{+}\left(\eta_{2}\right)=\mathbb{I}, \quad \sigma_{+}\left(\eta_{1}\right) \sigma_{-}\left(\eta_{2}\right)=\sqrt{\frac{\eta_{12}}{2}} \psi\left(\eta_{2}\right)
$$

$$
|0\rangle_{+} \underset{\eta_{12} \rightarrow 0}{\simeq}\left\langle\sigma_{+}\left(\eta_{3}\right) \sigma_{+}\left(\eta_{4}\right) \prod_{j=1}^{N=\text { even }} \psi\left(z_{j}\right)\right\rangle
$$

$$
|1\rangle_{+} \underset{\eta_{12} \rightarrow 0}{\simeq} \sqrt{\frac{\eta_{12}}{2}}\left\langle\psi\left(\eta_{2}\right) \sigma_{+}\left(\eta_{3}\right) \sigma_{-}\left(\eta_{4}\right) \prod_{j=1}^{N=\text { even }} \psi\left(z_{j}\right)\right\rangle
$$

$$
R_{12}^{(4,+)}: \eta_{12} \rightarrow \mathrm{e}^{i \pi} \eta_{12} \Longrightarrow|0\rangle_{+} \rightarrow|0\rangle_{+}, \quad|1\rangle_{+} \rightarrow i|1\rangle_{+}
$$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Using fusion rules: Neveu-Schwarz sector

$$
\sigma_{+}\left(\eta_{1}\right) \sigma_{+}\left(\eta_{2}\right)=\mathbb{I}, \quad \sigma_{+}\left(\eta_{1}\right) \sigma_{-}\left(\eta_{2}\right)=\sqrt{\frac{\eta_{12}}{2}} \psi\left(\eta_{2}\right)
$$

$$
|0\rangle_{+} \underset{\eta_{12} \rightarrow 0}{\simeq}\left\langle\sigma_{+}\left(\eta_{3}\right) \sigma_{+}\left(\eta_{4}\right) \prod_{j=1}^{N=\text { even }} \psi\left(z_{j}\right)\right\rangle
$$

$$
|1\rangle_{+} \underset{\eta_{12} \rightarrow 0}{\simeq} \sqrt{\frac{\eta_{12}}{2}}\left\langle\psi\left(\eta_{2}\right) \sigma_{+}\left(\eta_{3}\right) \sigma_{-}\left(\eta_{4}\right) \prod_{j=1}^{N=\text { even }} \psi\left(z_{j}\right)\right\rangle
$$

$$
R_{12}^{(4,+)}: \eta_{12} \rightarrow \mathrm{e}^{i \pi} \eta_{12} \Longrightarrow|0\rangle_{+} \rightarrow|0\rangle_{+}, \quad|1\rangle_{+} \rightarrow i|1\rangle_{+}
$$

\Longrightarrow Compute in this way $R_{12}^{(4, \pm)}$ and $R_{34}^{(4, \pm)}$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Fusion rules in the Ramond sector:

Needed: for the computation of the braiding $\eta_{2} \leftrightarrow \eta_{3}$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Fusion rules in the Ramond sector:

Needed: for the computation of the braiding $\eta_{2} \leftrightarrow \eta_{3}$
More complicated: [Furlan-Sotkov-Todorov]

$$
\begin{aligned}
\sigma_{e_{1}}\left(z_{1}\right) \sigma_{e_{2}}\left(z_{2}\right)|e\rangle & =\frac{1}{\sqrt{2} z_{12}^{1 / 8}}\left\{\delta_{e_{1}, e_{2}}|e\rangle+\delta_{e_{1},-e_{2}}|-e\rangle\right. \\
& +\left(e . e_{2}\right) \sqrt{\frac{z_{12}}{2}} \psi\left(\sqrt{z_{1} \cdot z_{2}}\right)\left(\delta_{e_{1}, e_{2}}|-e\rangle+\delta_{e_{1},-e_{2}}|e\rangle\right.
\end{aligned}
$$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Fusion rules in the Ramond sector:

Needed: for the computation of the braiding $\eta_{2} \leftrightarrow \eta_{3}$
More complicated: [Furlan-Sotkov-Todorov]

$$
\begin{aligned}
\sigma_{e_{1}}\left(z_{1}\right) \sigma_{e_{2}}\left(z_{2}\right)|e\rangle & =\frac{1}{\sqrt{2} z_{12}^{1 / 8}}\left\{\delta_{e_{1}, e_{2}}|e\rangle+\delta_{e_{1},-e_{2}}|-e\rangle\right. \\
& +\left(e . e_{2}\right) \sqrt{\frac{z_{12}}{2}} \psi\left(\sqrt{z_{1} \cdot z_{2}}\right)\left(\delta_{e_{1}, e_{2}}|-e\rangle+\delta_{e_{1},-e_{2}}|e\rangle\right.
\end{aligned}
$$

Bottom line: \Longrightarrow it is possible to compute $R_{23}^{(4, \pm)}$ like this

- Result: finite 2-dimensional representations of \mathcal{B}_{4} :

2 inequivalent IRs: positive vs. negative fermion parity

$$
\begin{aligned}
& R_{12}^{(4,+)}=\left[\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right], \quad R_{23}^{(4,+)}=\frac{e^{i \frac{\pi}{4}}}{\sqrt{2}}\left[\begin{array}{rr}
1 & -i \\
-i & 1
\end{array}\right], \quad R_{34}^{(4,+)}=\left[\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right] \\
& R_{12}^{(4,-)}=\left[\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right], R_{23}^{(4,-)}=\frac{\mathrm{e}^{i \frac{\pi}{4}}}{\sqrt{2}}\left[\begin{array}{rr}
1 & -i \\
-i & 1
\end{array}\right], \quad R_{34}^{(4,-)}=\left[\begin{array}{ll}
i & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

- Result: finite 2-dimensional representations of \mathcal{B}_{4} :

2 inequivalent IRs: positive vs. negative fermion parity

$$
\begin{aligned}
& R_{12}^{(4,+)}=\left[\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right], \quad R_{23}^{(4,+)}=\frac{\mathrm{e}^{i \frac{\pi}{4}}}{\sqrt{2}}\left[\begin{array}{rr}
1 & -i \\
-i & 1
\end{array}\right], \quad R_{34}^{(4,+)}=\left[\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right] \\
& R_{12}^{(4,-)}=\left[\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right], R_{23}^{(4,-)}=\frac{\mathrm{e}^{i \frac{\pi}{4}}}{\sqrt{2}}\left[\begin{array}{rr}
1 & -i \\
-i & 1
\end{array}\right], \quad R_{34}^{(4,-)}=\left[\begin{array}{ll}
i & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

- Artin relations:

$$
R_{12}^{(4, \pm)} R_{23}^{(4, \pm)} R_{12}^{(4, \pm)}=R_{23}^{(4, \pm)} R_{12}^{(4, \pm)} R_{23}^{(4, \pm)}, \quad \text { etc. }
$$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Result: finite 2-dimensional representations of \mathcal{B}_{4} :

2 inequivalent IRs: positive vs. negative fermion parity

$$
\begin{aligned}
& R_{12}^{(4,+)}=\left[\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right], \quad R_{23}^{(4,+)}=\frac{e^{i \frac{\pi}{4}}}{\sqrt{2}}\left[\begin{array}{rr}
1 & -i \\
-i & 1
\end{array}\right], \quad R_{34}^{(4,+)}=\left[\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right] \\
& R_{12}^{(4,-)}=\left[\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right], \quad R_{23}^{(4,-)}=\frac{e^{i \frac{\pi}{4}}}{\sqrt{2}}\left[\begin{array}{rr}
1 & -i \\
-i & 1
\end{array}\right], \quad R_{34}^{(4,-)}=\left[\begin{array}{ll}
i & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

- Artin relations:

$$
R_{12}^{(4, \pm)} R_{23}^{(4, \pm)} R_{12}^{(4, \pm)}=R_{23}^{(4, \pm)} R_{12}^{(4, \pm)} R_{23}^{(4, \pm)}, \quad \text { etc. }
$$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Inequivalence:

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Inequivalence: Assume there exists non-singular 2×2 matrix A such that $A R_{12}^{(4,+)} A^{-1}=R_{12}^{(4,-)}$.

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Inequivalence: Assume there exists non-singular 2×2 matrix A such that $A R_{12}^{(4,+)} A^{-1}=R_{12}^{(4,-)}$. Consider

$$
A R_{12}^{(4,+)}-R_{12}^{(4,-)} A
$$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Inequivalence: Assume there exists non-singular 2×2 matrix A such that $A R_{12}^{(4,+)} A^{-1}=R_{12}^{(4,-)}$. Consider

$$
A R_{12}^{(4,+)}-R_{12}^{(4,-)} A=\left[\begin{array}{cc}
0 & A_{12}-i A_{12} \\
-A_{21}+i A_{21} & 0
\end{array}\right]
$$

- Inequivalence: Assume there exists non-singular 2×2 matrix A such that $A R_{12}^{(4,+)} A^{-1}=R_{12}^{(4,-)}$. Consider

$$
\begin{aligned}
& A R_{12}^{(4,+)}-R_{12}^{(4,-)} A=\left[\begin{array}{cc}
0 & A_{12}-i A_{12} \\
-A_{21}+i A_{21} & 0
\end{array}\right] \equiv 0 \\
& \Longrightarrow A=\operatorname{diag}\left(A_{11}, A_{22}\right)
\end{aligned}
$$

- Inequivalence: Assume there exists non-singular 2×2 matrix A such that $A R_{12}^{(4,+)} A^{-1}=R_{12}^{(4,-)}$. Consider

$$
\begin{aligned}
& A R_{12}^{(4,+)}-R_{12}^{(4,-)} A=\left[\begin{array}{cc}
0 & A_{12}-i A_{12} \\
-A_{21}+i A_{21} & 0
\end{array}\right] \equiv 0 \\
\Longrightarrow & A=\operatorname{diag}\left(A_{11}, A_{22}\right) \Longrightarrow \\
& A R_{34}^{(4,+)} A^{-1}=R_{34}^{(4,+)}
\end{aligned}
$$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Inequivalence: Assume there exists non-singular 2×2 matrix A such that $A R_{12}^{(4,+)} A^{-1}=R_{12}^{(4,-)}$. Consider

$$
\begin{aligned}
& A R_{12}^{(4,+)}-R_{12}^{(4,-)} A=\left[\begin{array}{cc}
0 & A_{12}-i A_{12} \\
-A_{21}+i A_{21} & 0
\end{array}\right] \equiv 0 \\
& \Longrightarrow A=\operatorname{diag}\left(A_{11}, A_{22}\right) \Longrightarrow \\
& \\
& A R_{34}^{(4,+)} A^{-1}=R_{34}^{(4,+)} \neq R_{34}^{(4,-)}
\end{aligned}
$$

- Inequivalence: Assume there exists non-singular 2×2 matrix A such that $A R_{12}^{(4,+)} A^{-1}=R_{12}^{(4,-)}$. Consider

$$
\begin{aligned}
& A R_{12}^{(4,+)}-R_{12}^{(4,-)} A=\left[\begin{array}{cc}
0 & A_{12}-i A_{12} \\
-A_{21}+i A_{21} & 0
\end{array}\right] \equiv 0 \\
\Longrightarrow & A=\operatorname{diag}\left(A_{11}, A_{22}\right) \Longrightarrow \\
& A R_{34}^{(4,+)} A^{-1}=R_{34}^{(4,+)} \neq R_{34}^{(4,-)} \Longrightarrow \text { inequivalent }
\end{aligned}
$$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

- Inequivalence: Assume there exists non-singular 2×2 matrix A such that $A R_{12}^{(4,+)} A^{-1}=R_{12}^{(4,-)}$. Consider

$$
\begin{aligned}
& A R_{12}^{(4,+)}-R_{12}^{(4,-)} A=\left[\begin{array}{cc}
0 & A_{12}-i A_{12} \\
-A_{21}+i A_{21} & 0
\end{array}\right] \equiv 0 \\
& \Longrightarrow A=\operatorname{diag}\left(A_{11}, A_{22}\right) \Longrightarrow \\
& A R_{34}^{(4,+)} A^{-1}=R_{34}^{(4,+)} \neq R_{34}^{(4,-)} \Longrightarrow \text { inequivalent }
\end{aligned}
$$

- Dimino's algorithm: (Maple)

$$
\mid \text { Image }\left(\mathcal{B}_{4}\right) \mid=96
$$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

Single-qubit gates: The Pauli X gate

The NOT gate [Das Sarma et al.] $X \equiv R_{23}^{2}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

Single-qubit gates: the Hadamard gate

$$
H \simeq R_{12}^{2} R_{13}=R_{12} R_{23} R_{12}=\frac{\mathrm{e}^{i \frac{\pi}{4}}}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right] .
$$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

Two-qubit gates: The Controlled-NOT gate

- CNOT in terms of 6-anyon braidings

$$
\begin{aligned}
\mathrm{CNOT}=H_{2} \text { CZ } H_{2} & =R_{56} R_{45} R_{56}^{-1} R_{34}^{-1} R_{12} R_{45} R_{56} \\
& \simeq\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
\end{aligned}
$$

- Alternatively

$$
\mathrm{CNOT}=R_{34}^{-1} R_{45} R_{34} R_{12} R_{56} R_{45} R_{34}^{-1} .
$$

- N.B.: 100 \% topological protection for CNOT - Just 7 elementary braids!

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

Construct the $\pi / 8$ gate T by braiding? No Way!

Construct the $\pi / 8$ gate T by braiding? No Way!

$$
T=\left[\begin{array}{cc}
1 & 0 \\
0 & \mathrm{e}^{i \pi / 4}
\end{array}\right] \Rightarrow \operatorname{det} T=\mathrm{e}^{i \pi / 4}
$$

Construct the $\pi / 8$ gate T by braiding? No Way!

$$
T=\left[\begin{array}{cc}
1 & 0 \\
0 & \mathrm{e}^{i \pi / 4}
\end{array}\right] \Rightarrow \operatorname{det} T=\mathrm{e}^{i \pi / 4}
$$

- Generators: $\quad \operatorname{det} R_{a, a+1}^{(4)}=i$
- $\Rightarrow \quad T$ is not expressible by products of $R_{a, a+1}^{(4)}$:

Construct the $\pi / 8$ gate T by braiding? No Way!

$$
T=\left[\begin{array}{cc}
1 & 0 \\
0 & \mathrm{e}^{i \pi / 4}
\end{array}\right] \Rightarrow \operatorname{det} T=\mathrm{e}^{i \pi / 4},
$$

- Generators: $\operatorname{det} R_{a, a+1}^{(4)}=i$
$\bullet \quad T$ is not expressible by products of $R_{a, a+1}^{(4)}$:
- $\Rightarrow \quad$ Not universal!

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

Two-qubits construction and two-qubit gates

$\operatorname{dim} \mathcal{H}_{2 n}=2^{n-1}$;

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

Two-qubits construction and two-qubit gates

$\operatorname{dim} \mathcal{H}_{2 n}=2^{n-1} ; \quad|0\rangle \simeq \sigma_{+} \sigma_{+} \sim \mathbb{I}, \quad|1\rangle \simeq \sigma_{+} \sigma_{-} \sim \psi$

Two-qubits construction and two-qubit gates

$\operatorname{dim} \mathcal{H}_{2 n}=2^{n-1} ; \quad|0\rangle \simeq \sigma_{+} \sigma_{+} \sim \mathbb{I}, \quad|1\rangle \simeq \sigma_{+} \sigma_{-} \sim \psi$

Two-qubits construction and two-qubit gates

 $\operatorname{dim} \mathcal{H}_{2 n}=2^{n-1} ; \quad|0\rangle \simeq \sigma_{+} \sigma_{+} \sim \mathbb{I}, \quad|1\rangle \simeq \sigma_{+} \sigma_{-} \sim \psi$

$$
\begin{array}{ll}
|00\rangle \equiv\left\langle\sigma_{+} \sigma_{+} \sigma_{+} \sigma_{+} \sigma_{+} \sigma_{+}\right\rangle, & |01\rangle \equiv\left\langle\sigma_{+} \sigma_{+} \sigma_{+} \sigma_{-} \sigma_{+} \sigma_{-}\right\rangle \\
|10\rangle \equiv\left\langle\sigma_{+} \sigma_{-} \sigma_{+} \sigma_{-} \sigma_{+} \sigma_{+}\right\rangle, & |11\rangle \equiv\left\langle\sigma_{+} \sigma_{-} \sigma_{+} \sigma_{+} \sigma_{+} \sigma_{-}\right\rangle
\end{array}
$$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

n-qubits: encoding

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

($n-1$)-qubits: $\mathbf{S O}(2 n)$ spinor IRs

Clifford algebra

$$
\left\{\gamma_{i}^{(n)}, \gamma_{j}^{(n)}\right\}=2 \delta_{i j}, \quad 1 \leq i, j \leq 2 n .
$$

($n-1$)-qubits: $\mathbf{S O}(2 n)$ spinor IRs

Clifford algebra

$$
\begin{gathered}
\left\{\gamma_{i}^{(n)}, \gamma_{j}^{(n)}\right\}=2 \delta_{i j}, \quad 1 \leq i, j \leq 2 n . \\
R_{i, i+1}=\mathrm{e}^{i \frac{\pi}{4}} \exp \left(-\frac{\pi}{4} \gamma_{i}^{(n)} \gamma_{i+1}^{(n)}\right) \equiv \frac{\mathrm{e}^{i \frac{\pi}{4}}}{\sqrt{2}}\left(\mathbb{I}-\gamma_{i}^{(n)} \gamma_{i+1}^{(n)}\right),
\end{gathered}
$$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

($n-1$)-qubits: $\mathbf{S O}(2 n)$ spinor IRs

Clifford algebra

$$
\begin{gathered}
\left\{\gamma_{i}^{(n)}, \gamma_{j}^{(n)}\right\}=2 \delta_{i j}, \quad 1 \leq i, j \leq 2 n . \\
R_{i, i+1}=\mathrm{e}^{i \frac{\pi}{4}} \exp \left(-\frac{\pi}{4} \gamma_{i}^{(n)} \gamma_{i+1}^{(n)}\right) \equiv \frac{\mathrm{e}^{i \frac{\pi}{4}}}{\sqrt{2}}\left(\mathbb{I}-\gamma_{i}^{(n)} \gamma_{i+1}^{(n)}\right), \\
\gamma_{1}^{(n)}=\sigma_{1} \otimes \sigma_{3} \otimes \cdots \otimes \sigma_{3}
\end{gathered}
$$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

$$
\begin{aligned}
\gamma_{2}^{(n)} & =\sigma_{2} \otimes \sigma_{3} \otimes \cdots \otimes \sigma_{3} \\
& \vdots \\
\gamma_{2 i-1}^{(n)} & =\underbrace{\mathbb{I}_{2} \otimes \cdots \otimes \mathbb{I}_{2} \otimes \sigma_{1} \otimes \underbrace{\sigma_{3} \otimes \cdots \otimes \sigma_{3}}_{n-i}}_{i-1} \\
\gamma_{2 i}^{(n)} & =\underbrace{\mathbb{I}_{2} \otimes \cdots \otimes \mathbb{I}_{2} \otimes \sigma_{2} \otimes \underbrace{\sigma_{3} \otimes \cdots \otimes \sigma_{3}}_{n-i}}_{i-1} \\
& \vdots \\
\gamma_{2 n-1}^{(n)} & =\mathbb{I}_{2^{n-1}} \otimes \sigma_{1} \\
\gamma_{2 n}^{(n)} & =\mathbb{I}_{2^{n-1}} \otimes \sigma_{2} .
\end{aligned}
$$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze The "gamma-five" matrix

$$
\gamma_{F}^{(n)}=(-i)^{n} \gamma_{1}^{(n)} \cdots \gamma_{2 n}^{(n)}
$$

and can be used to define two projectors

$$
P_{ \pm}^{(n)}=\frac{\mathbb{I}_{2^{n}} \pm \gamma_{F}^{(n)}}{2} \text {, i.e., }\left(P_{ \pm}^{(n)}\right)^{2}=P_{ \pm}^{(n)}=\left(P_{ \pm}^{(n)}\right)^{\dagger} .
$$

Generators of the IRs $\mathcal{B}_{2 n}$

$$
R_{i, i+1}^{(\pm)}=\mathrm{e}^{i \frac{\pi}{4}} P_{ \pm}^{(n)} \exp \left(-\frac{\pi}{4} \gamma_{i} \gamma_{i+1}\right) P_{ \pm}^{(n)}
$$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

$$
=\frac{\mathrm{e}^{i \frac{\pi}{4}}}{\sqrt{2}}\left(\mathbb{I}-\gamma_{i}^{(n)} \gamma_{i+1}^{(n)}\right) P_{ \pm}^{(n)}
$$

Lectures on TQC, GGI Workshop "Low-dimensional QFTs and Applications", 15 October 2008, Firenze

Open problems: everything is in the details

- Not possible to construct all Clifford gates

Open problems: everything is in the details

- Not possible to construct all Clifford gates
- Embed all single-qubit and two-qubit gates into threequbit system

Open problems: everything is in the details

- Not possible to construct all Clifford gates
- Embed all single-qubit and two-qubit gates into threequbit system
- Construct the Toffoli gate ?

Open problems: everything is in the details

- Not possible to construct all Clifford gates
- Embed all single-qubit and two-qubit gates into threequbit system
- Construct the Toffoli gate ?
- Approximate quantum Fourier transform

Open problems: everything is in the details

- Not possible to construct all Clifford gates
- Embed all single-qubit and two-qubit gates into threequbit system
- Construct the Toffoli gate ?
- Approximate quantum Fourier transform
- Analyze the error sources

