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1ST LECTURE-small q

• Introduction
• Band curvature effects at small q
• Effective Hamiltonian – exact coupling 

constants
• Exact results for high energy tail of S(q,ω)
• Behaviour near peak of S(q,ω)
• Bethe ansatz and Density Matrix 

Renormalization group (DMRG) results
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OUTLINE-2nd LECTURE

• “X-ray edge” field theory methods
• Finite size spectrum and Bethe Ansatz
• Long time behaviour of self-correlation 

function
• Comparison to Dynamical Density Matrix 
Renormalization Group results
• Open questions
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Introduction
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Jordan-Wigner transformation:
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Linearizing the fermion dispersion relation and bosonizing
gives:
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With an effective free boson Hamiltonian density:
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•The velocity, v, and Luttinger parameter, K, can be 
determined from Bethe ansatz results 
•We can obtain low energy S(q,ω) and fermion Green’s 
functions in terms of free boson Green’s functions
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BAND CURVATURE EFFECTS

• At small q, Luttinger liquid theory predicts 
Szz(q,ω)=(K/π)<∂xφ ∂xφ>=Kqδ(ω-v|q|)
• In free fermion case this simple form is 
a result of linear dispersion: 

q

All particle-hole excitations of wave-vector q
have same energy, ω=v|q|

ω
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Including band curvature gives finite width:

q
ω

Δ=0width, Δω~q2

so LL theory
is almost 
correct as q⇒0

<Sz>=
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•What happens if we include both band 
curvature and interactions (Δ≠0)?
•Does width still scale as q2?
•What is line shape?  
•Could steps turn into power law divergences?
•Can we study these questions with field 
theory techniques?
•What information can we extract about these 
questions from Bethe ansatz solution?
•What can we learn from numerical techniques
(Density Matrix Renormalization Group)?
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EFFECTIVE HAMILTONIAN:
EXACT COUPLING CONSTANTS

• Band curvature gives interactions upon 
bosonizing even for Δ=0! ( )32

3
2

LxLL φπψψ ∂≈∂+

•Interactions in lattice model given another 
cubic term.  Including both:

•These are most general dimension 3 
interactions allowed by parity
•They destroy Lorentz invariance and 
particle-hole symmetry ( ϕ→-ϕ)
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•We may derive exact identities relating η± to 
derivatives of Luttinger parameter and 
velocity with respect to field, h:

•v(h) and K(h) can be determined to high 
accuracy from numerical solution of 
thermodynamic Bethe ansatz equations
•Thus coupling constants, η± can be 
determined essentially exactly
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BEHAVIOUR NEAR TAIL OF S
• Lowest order perturbation theory in η± gives
retarded Green’s function:

K+
−
−

+−+−= +− )(18
|)|(|)|(

24
|)|( 222

4
2

2

25
2

qvv
qvKqqv

d
dKqqvKqS

ω
ωθηωδ

ω
ηωδ

•Note that, while both corrections are suppressed
by 2 extra power of q or ω, they diverge 
“on mass shell” near ω~v|q|
•We can only trust this perturbation theory far 
from mass shell: ω-v|q|>> q2η±
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•η+
2 term predicts a “high energy tail” for S

•We compared this to Bethe ansatz:
•Up to 2000 form factors were calculated:
•<0|Sz(q)|n>, 2-particle, … up to 8-particle
for finite length chains up to length N=600
•We extend the field theory result to finite N
by the usual conformal transformation
•Field theory predicts states at discrete 
energies: ω=2πvn/N, n=1,2,3,… whereas 
Bethe ansatz states are scattered 
•We bin BA states to make comparison:
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Bethe ansatz squared form factors
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•Red dots are BA results, line is field theory
•Note that we have no adjustable parameters
(all fixed from thermodynamic BA)
and we are at strong coupling
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BEHAVIOUR NEAR PEAK

• We need to somehow sum series in η± to 
get sensible result near peak
• We explicitly calculated series in η- to 4th

order:



17

Here w≡iω-vq and the 4th order term gets 
contributions from all 3 diagrams:
1/[5x24]=1/144 + 1/504  + 1/280

•Tells us that no simple partial resummation
(RPA, SCBA,…) will be sufficient!
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•Series in η- should sum up to give free 
fermion result, including band curvature 
at small q

Implying:

but we have no idea how to sum η+ terms

This crude (η- only) approximation, seems 
to give correct line-width, ~q2 and height
but misses line shape and power law 
singularities
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•Blue dots are BA results (2 particle states 
only) 
•Dashed line is field theory result ignoring η+

Δ=.25
σ=-.1
N=6000
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• We can’t get enough resolution from finite 
size BA, with limited number of states kept, 
to study singularities
• We don’t know how to sum series in η+ to 
make field theory predictions for singularities
• Singularities may also exist at q of O(1) –
we would like to study those also

q
2π2kF
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X-Ray Edge Field Theory Methods
We can calculate S(q,ω) near ωmin (q) for any q using 
other field theory techniques first developed for study 
of X-ray edge singularities – Pustilnik, Glazman, …

q
2π2kF

ω

q

ωmin(q)
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•Consider excitations with one “deep hole” at k1 and many 
particles and holes near +kF
•These appear to give lower threshold for hole Green’s 
function at momentum k or of S(q,ω) at q=±kF-k1

kF

εF

k
k1

q
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To calculate GF(k1,ω) and S(+kF-k,ω), we consider 
a “low energy” effective Hamiltonian, Hk, containing 
only Fourier modes of fermions near k and + kF for 
the particular value of k=k1 of interest

kF

εF

k
k1

Λ

ε1
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•N.B. we haven’t included any terms that would allow 
the “heavy hole” to decay
•Validity of this is complicated and not completely understood
•Now looks like model for a single “heavy” hole 
interacting with a Tomonaga-Luttinger Liquid
(see Tsukamoto, Fujii, Kawakami, PRL 100, 126403, 1998)
•Now we bosonize the fermions near the Fermi surface only:
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•All parameters: ε1, u1, κL, κR, depend on our arbitrary 
choice of heavy hole momentum, k1, and are renormalized 
by the interactions, as we integrate out all wave-vectors 
except for the 3 narrow bands near k1, +kF
•Nonetheless, we determine them exactly using Bethe Ansatz
•Once these parameters are known, we can calculate 
the edge exponents by making a unitary transformation:
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•The parameters γL/R are chosen to eliminate the 
marginal interactions ~∂xφL/Rd+d, leaving only irrelevant 
ones with 2 or more derivatives
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The transformed Hamiltonian is just free fields:
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•Fortunately, the free fermion Green’s function has a very 
simple form:
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•N.B. if v>u1, this vanishes for ω<ωL, as expected 
for a lower edge singularity:
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FINITE SIZE SPECTRUM AND 
BETHE ANSATZ

•Energy and velocity of heavy hole, ε1, u1 are determined 
from Bethe ansatz: ε(k) is energy to add one hole 
•i.e. we remove a single root from ground state (a
topological excitation) of momentum k
•u=dε/dk
•At half-filling (zero field) ε(k)=-v cos k 

Δ⋅
Δ−

=
arccos2

1 2πv

•Away from half-filling ε(k) appears to be modified 
in a non-trivial trivial way by the interactions
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n=.2 (<Sz>=-.3), Δ=1/2
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• To get γL/R, coupling constants between heavy hole and 
bosonized excitations near Fermi surface, we compare 
1/N terms in finite size spectrum
• Without the heavy hole, a low energy excitation with 
an excess charge, ΔN and D particles transported from 
left to right Fermi point has excitation energy:

⎥
⎦

⎤
⎢
⎣

⎡
+++

Δ
=Δ −+ nnKD

K
N

N
vE 2

2

4
)(2π

where n± are non-negative integers – the standard 
Gaussian model result
•The change in ΔN and D under the unitary transformation 
which eliminates the interaction with the deep hole gives 
the spectrum with the deep hole present:
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•The corresponding states, for arbitrary ΔN, D, in the 
presence of the deep hole, can be constructed from 
the Bethe ansatz
From Euler-MacLaurin expansion of density of rapidities
in presence of the deep hole, we obtain ΔE(ΔN,D) in the 
above form, thus determining γL/R
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For h=0 we predict, for any q:
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•Step function at Δ=1 evolves into square root 
singularity at Δ=1 (Heisenberg model) in agreement 
with Mueller ansatz and exact 2-spinon result (except 
for log corrections which are missed in this approach)
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At q→2kF, (for h ≠0) we obtain the exponent:

)1(2)(1 KK −→+− −+ νν

This is different than the well-known Tomonaga-Luttinger 
liquid result
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The TLL exponent, 1-K is replaced by KKK −>− 1)1(2
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•The standard TLL theory approximates the dispersion 
relation as linear, thus giving a higher energy threshold
•We expect that it becomes correct by some sort of 
crossover at this slightly higher energy scale

q
2π2kF

As q→2kF, the region of ω where the TLL theory fails 
shrinks to zero
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LONG-TIME BEHAVIOUR OF 
SELF-CORRELATION FUNCTION

•Our field-theory methods gives directly S(q,t) at long times
•Comparison with DMRG is most direct through G(x,t)
•It is interesting to consider G(x=0,t) at long times

∫−=
π

π
),(),0( tqdqStG

At long times, this is dominated by several special 
values of q:
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q≅0

q≅2kF

q≅kF

(and others)

•Only q=0 and ±2kF
particle-hole pairs 
are low energy excitations

•Nonetheless other 
contributions usually 
dominate at large t!



37

Consider ½-filling (h=0): hole at k=0, particle at k=kF=π/2
dominates
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For h=0 we can evaluate ν± explicitly for lower 
threshold:
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For 0<Δ<1, ½<K<1, so q=π/2 contribution always 
dominates
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COMPARISON TO DENSITY 
MATRIX RENORMALIZATION 

GROUP RESULTS

•DMRG is a numerical, iterative, variational approach 
that gives excellent accuracy for 1D quantum systems at T=0
•Recently generalizations have been found which give 
real time correlation functions out to moderate times with 
good accuracy
•Keeping up to 400 lattice sites and 1000 states we can 
get G(x,t) out to times of 30 – 60 (in units of 1/J=1) with 
errors of order 10-4 -10-5

•We can then Fourier transform in x
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•For 10<t<30 we compare DMRG to field theory/Bethe ansatz
predictions – checking predicted frequencies and exponents
•Once we are convinced it works we can supplement DMRG 
for short to intermediate times with asymptotic results 
out to infinite time – the time-Fourier transform can then 
be performed without usual rounding of singularities 
due to finiteness of time interval

h=0, lower edge energy and exponent from G(0,t)
•Similar comparison works well for GF



41

Fourier transformed DMRG + field theory data
for h=0
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CONCLUSIONS
• Luttinger-liquid theory fails to describe some critical features 

of 1D many body systems
• Limited progress can be made by including 
higher dimension operators in bosonized Hamiltonian
• “X-ray edge” methods, combined with Bethe ansatz
predict new critical exponents that seem to agree 
with DMRG calculations
• Open questions remain regarding decay of “heavy
hole” and robustness of critical singularities, among 
other topics


