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On s`3 KZ equations and W3 null-vector equations

Introduction. Many interesting 2d CFTs are based on affine Lie alge-

bras and their cosets. For example, from the ŝ`2 algebra one can build

the SL(2, R) WZW model which is related to string theory in AdS3, the

Euclidean version the H+
3 model, strings in the 2d BH. The simplest

nonrational theory of this family is Liouville theory.

Families of non-rational 2d CFTs
s`2 and s`3 families
The theories, their sym. alg., target
space dim.

Families of non-rational 2d CFTs

Recently there emerged a more precise meaning to this notion of a

family of CFTs: a formula for arbitrary correlation functions of the H+
3

model (and some of the others) in terms of certain correlation functions

in Liouville theory [SR+Teschner]. Intuitively, the reason is: affine s`2

representations are labelled by just one parameter (the spin), so even if a

theory like the SL(2, R) WZW model has a 3d target space, its dynamics

are effectively 1d, due to the large symmetry of the theory.

Here I want to investigate whether the same might be true in the

s`3 family. The SL(3, R) WZW model has a 8d target space, but we

expect effectively 2d dynamics, since the Cartan subgroup is 2d. The

simplest nonrational theory of the s`3 family is indeed a theory of 2

interacting bosons, called conformal s`3 Toda theory. Is there a hope

to write correlation functions of the SL(3, R) WZW model in terms of

correlation functions of s`3 Toda theory?

I will explore this question with the help of the s`3 KZ equations,

which all correlation functions (of primary fields) in theories with an ŝ`3

symmetry must obey. In the s`2 case, the KZ equations are equivalent

to certain second-order BPZ differential equations of Liouville theory; in

the s`3 case we thus expect the KZ equation to be related to certain

third-order null-vector equations of the s`3 Toda theory.

Symmetries and diff. equations
KZ-BPZ
s`3 KZ
Gaudin
Sklyanin SOV

Symmetries and diff. equations

More precisely, the KZ equations involve Gaudin Hamiltonians, and in

the s`2 case the KZ-BPZ relation is found by using Sklyanin’s separated

variables in KZ equations. Similarly, I will write s`3 KZ equations in

terms of separated variables.

Conjectures and results. Consider an m-point function of affine pri-

mary fields in a theory with ŝ`N symmetry. The theory is parametrized

by the level k > N . The fields are parametrized by their position z on
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the Riemann sphere, the spin j with N − 1 components and isospins x

with N(N−1)
2

components.

We want to relate this to a correlation function in s`N conformal

Toda theory which involves m corresponding fields with momenta α(ji),

plus d = N(N−1)
2

(m − 2) degenerate fields satisfying order N differential

equations. For instance, in the s`2 case, second-order BPZ equations.

Correlation functions
Ωm

s`2 isospins
Ω̃m

relations

Correlation functions

The relation between xi and ya will be given by Sklyanin’s SOV for

the s`N Gaudin model. This is an integral transformation, which does

not depend on the level k. Its kernel S is not known explicitly beyond the

s`2 case. The conjectured relation also involves a simples twist function

Θm, with parameters λ, µ, ν to be determined as functions of the level k.

Status of our conjecture: compatible with KZ in s`2, and s`3 in the

limit k → 3. Proved in specific models in H+
3 -Liouville case. Sorry to

disprove my own conjecture!

The conjecture
Θm

Conjecture
Status of conjecture

The conjecture

KZ equations in Sklyanin variables. Let me now explain how to

construct the variables ya, and how to write the KZ equations in terms

of such variables. We introduce the differential operators Da which ap-

pear in the definition of the fields and in the Gaudin Hamiltonians. We

then build the operator-valued Lax matrix L(u) where u is the spectral

parameter. It satisfies a “linear” commutation relation.

From the Lax matrix, we should build the objects which define the

separation of variables: two functions A(u), B(u) and a characteristic

equation. Sklyanin variables yi are defined as the zeroes of B(u), their

conjugate momenta pi as pi = A(yi). For any given i, pi, yi and invariants

built from L(yi) are related by the characteristic equation.

SOV in the Gaudin model
JaΦj, Da, Hi

s`2 example for Da

L(u)
3 objects
[yi, yj ] etc

SOV in the Gaudin model

Let me review what these objects are in the s`2 case and how they help

rewrite the KZ equations. A(u) and B(u) are simply matrix elements of

L(u). The characteristic equation involves the Gaudin Hamiltonians. It

is a kinematic identity. But now apply it to S−1 ·Ωm so that pi = ∂
∂yi

, and

inject the KZ equations. (If we were interested in diagonalizing Gaudin

Hamiltonians we would have an eigenvalue E` instead of S−1 δ
δz`

S, hence

the term “separation of variables”.) Then compute S−1 δ
δz`

S, doable in

s`2. Resulting equations are equivalent to BPZ, modulo twist with right

values of λ, µ, ν.

s`2 KZ in Sklyanin variables
A(u), B(u), characteristic equation
Apply to S−1Ωm, inject KZ
Compute S−1 δ

δz`
S

s`2 KZ in Sklyanin variables

We want to follow similar steps in the s`3 case. We first have to
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derive the SOV, which is apparently not present in the literature. This

is done by taking a limit of the related s`3 Yangian model, where the

SOV was derived by Sklyanin. Now the characteristic equation involves

not only quadratic but also a cubic invariant built from the Lax matrix.

The quadratic invariants Lβ
αLα

β can be rewritten in terms of the Gaudin

Hamiltonians, like in the s`2 case.

The cubic invariant can be rewritten in terms of higher Gaudin Hamil-

tonians. In the CFT with ŝ`3 symmetry it is interpreted as an insertion of

a field W which is a cubic invariant of the currents J , similar to the Sug-

awara construction of the stress-energy tensor T . Fields Φj are labelled

by their spins j or equivalently by the s`3 invariants ∆j, qj (eigenvalues

of zero-modes of T, W ).

SOV for s`3 Gaudin
A(u), B(u)
Characteristic equation
T , W fields
Cubic term

SOV for s`3 Gaudin

When applied to a correlation function S−1Ωm, some things work

like in s`2: we still have pi = ∂
∂yi

, we can still use KZ equations to re-

place Gaudin Hamiltonians with z-derivatives. But the cubic term now

gives rise to an insertion of W . We obtain 3m− 6 equations whereas we

are really interested only in the KZ equations, because they are differ-

ential equations. We can get rid of the 2m non-differential terms with

W
−1, W−2, by taking appropriate linear combinations of the 3m−6 equa-

tions. An equivalent way to do this is to work modulo terms of that type,

an equivalence which we will denote as ∼. (It can be defined rigorously.)

s`3 KZ in Sklyanin variables
Full equation
Neglect W -terms

s`3 KZ in Sklyanin variables

W3 null-vector equations. Let me explain the choice of the W3 de-

generate field Vαd
in Ω̃m, which should reproduce similar differential equa-

tions. In the s`2 case we had two choices for degenerate fields leading to

second-order BPZ equations, but only one had the correct b-scaling. In

the s`3 case we are looking for a fully degenerate field with 3 independent

null vectors at levels 1, 2, 3. There are 2 such fields with the correct b-

scaling. They are related by the s`3 Dynkin diagram automorphism. We

therefore have a freedom to choose either field. This choice should how-

ever correspond to a choice which we made in the SOV for the Gaudin

model: we decided that the Lax matrix lived in the fundamental repre-

sentation, rather than the antifundamental. In our conventions this will

correspond to the degenerate field V
−b−1ω1

.

Choice of W3 degenerate field Vαd

s`2 case
2 candidate fields in s`3

Cartan matrix, bases
Correct field, relation with funda-
mental in L(u)
Relation of Φj and Vα

Choice of W3 degenerate field Vαd

Now the equations for ΘmΩ̃m follow from the choice of Vαd
as fully

degenerate fields with 3 independent null vectors at levels 1, 2, 3. We

also choose specific values for the parameters λ, µ, ν of Θm.

NVE for ΘmΩ̃m

The equation
D1

D2

Values of λ, µ, ν
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NVE for ΘmΩ̃m

Let us finally compare this with the KZ equations in Sklyanin vari-

ables. These should agree according to the conjecture ΘmΩ̃m = S−1Ωm.

Some terms agree, some cannot be evaluated, and the D1 term disagrees.

The only cure seems to send k to 3 (critical level limit).

Comparison
Rewriting of the two equations
Conjecture for D2

Limit

Comparison

A family of solvable non-rational CFTs. What happens if we mod-

ify the Liouville side in the H+
3 -Liouville relation by replacing V

−

1

2b

with

V
−

r

2b
? We do not get an m-point function in H+

3 , is it an m-point function

in some new CFT?

I propose a Lagrangian for the new CFT in terms of the same bosonic

fields φ, β, β̄, γ, γ̄ which appear in the H+
3 model. Let us study the sym-

metry algebra associated to this Lagrangian. This will help

1. show that it describes a CFT,

2. check that this CFT is solvable, i.e. that all correlation functions

can be deduced from the primary field correlation functions for

which we have an ansatz,

3. check that the correlation functions obey differential equations in

the cases when it should, for instance r = 2.

Family of non-rational CFTs
The ansatz
The lagrangian
Need for symmetry algebra

Family of non-rational CFTs

We find a symmetry algebra generated by fields T, J 3, J−. The stress-

energy tensor satisfies Virasoro so the theory is conformal. The field J 3

is not quite a primary of dimension one, due to a central term in the TJ 3

OPE. In the case r = 2 we find a subsingular vector, i.e. a field R which

vanishes provided J− vanishes too. This leads to third-order differential

equations associated to the zeroes of J−. But J− = 0 ⇔ L2
1 = 0 so

the zeroes of J− are the Sklyanin variables. Moreover, the third-order

differential equations do agree with what the third-order BPZ equations

for Ω̃
(2)
m .

Therefore, the theory with the Lagrangian L(2) and the proposed sym-

metry algebra has correlation functions which satisfy the right differential

equations. This is strong evidence that these correlation functions are

given in terms of Liouville correlation functions by our ansatz.

Symmetry algebra
T, J3, J−

TJ3 OPE
Case r = 2: R

Agreement

Symmetry algebra
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Families of non-rational 2d CFTs

The s`2 family

Alg. Dim. Theory

ŝ`2 3d SL(2, R) WZW ∼ strings in AdS3

ŝ`2 3d H+
3 model

ŝ`2/û1 2d Strings in 2d black hole

V ir = W2 1d Liouville theory

H+
3 -Liouville relation: [SR+Teschner 2005]

The s`3 family

Alg. Dim. Theory

ŝ`3 8d SL(3, R) WZW

· · · 2 ≤ d ≤ 8 · · ·

W3 2d Conformal s`3 Toda theory



Symmetries and differential equations

m-point function in theory with ŝ`N symmetry

Ωm =
〈
Φj1(x1|z1) · · ·Φ

jm(xm|zm)
〉

(1)

obeys Knizhnik–Zamolodchikov equations
[

(k − N)
δ

δzi

+ Hi

]

Ωm = 0 (2)

H1 · · ·Hm = Gaudin Hamiltonians (differential wrt xi)

Gaudin model has Sklyanin’s separation of variables

ŝ`2 KZ
Sklyanin variables

−→ V ir BPZ (3)

ŝ`3 KZ
Sklyanin variables

−→ W3 equations ? (4)



Correlation functions

Ωm =

〈
m∏

i=1

Φji(xi|zi)

〉

(5)

• k > N : level of ŝ`N with c = k(N2−1)
k−N

• j ∈ C
N−1: spin of ŝ`N representation

• x ∈ C
N(N−1)

2 : isospin variables

• z ∈ C: position on Riemann sphere

Ω̃m =

〈
m∏

i=1

Vα(ji)(zi)

N(N−1)
2 (m−2)
∏

a=1

Vαd
(ya)

〉

(6)

• b = 1√
k−N

: parameter of WN with

c = (N − 1)[1 + N(N + 1)(b + b−1)2]

• α(j) ∈ C
N−1: momentum of WN representation

• y ∈ C: position on Riemann sphere (Sklyanin variable)

• Vαd
: degenerate field → order N equation



The relation

Sklyanin’s separation of variables = integral transformation

Ψ(x1 · · ·xm) = S · Ψ̃(y1 · · · yp)

=

∫
∏

a

dya S(x1 · · ·xm|y1 · · · yp)Ψ̃(y1 · · · yp) (7)

S depends on j1 · · · jm and z1 · · · zm but not on k

Θm =
∏

a<b

(ya − yb)
λ
∏

i,a

(ya − zi)
µ
∏

i<j

(zi − zj)
ν (8)

Conjectured relation: Ωm = S · ΘmΩ̃m

Status of relation s`2 case s`3 case

KZ-Compatible Yes [Stoyanovsky] Only if k = 3

Proved in a model Yes [SR+Teschner]



Separation of Variables in the Gaudin model

Ja(z)Φj(x|w) = DaΦj(x|w)
z−w

+ reg. and Hi =
∑

`6=i

Da
(i)D

a
(`)

zi−z`

where [Da
(i), D

b
(j)] = δijf

ab
c Dc

(i) and Da
(i)D

a
(i) = C2(ji)

(s`2 example D− = ∂
∂x

, D3 = x ∂
∂x

− j, D+ = x2 ∂
∂x

− 2jx)

Lax matrix L(u) =
m∑

i=1

taDa
(i)

u − zi






u = spectral parameter

L(u) ∈ MatN×N

[Lγ
α(u), Lε

β(v)] =
δε
αL

γ
β(u) − δ

γ
βLε

α(u) − δε
αL

γ
β(v) + δ

γ
βLε

α(v)

u − v

To be built from L(u):

• A function B(u) and its zeroes yi (Sklyanin variables)

• A function A(u) and pi = A(yi) (momenta)

• A characteristic equation relating pi, yi and L(yi)

such that [yi, yj ] = 0 , [pi, yj ] = δij , [pi, pj ] = 0



s`2 KZ equations in Sklyanin variables

L(u) =




L1

1(u) L2
1(u)

L1
2(u) L2

2(u)










A(u) = L1
1(u)

B(u) = L2
1(u)

p2
i −

1

2
(Lβ

αLα
β )(yi) = 0 (9)

⇔ p2
i −

∑

`

1

yi − z`

(

H` +
1

2

C2(j`)

yi − z`

)

= 0 (10)

[Sklyanin] Then apply to S−1Ωm and inject KZ equations:
[

∂2

∂y2
+

m∑

`=1

k − 2

y − z`

(

S−1 δ

δz`

S +
∆j`

y − z`

)]

S−1Ωm = 0 (11)

⇔

[

1

k − 2

∂2

∂y2
+

m∑

`=1

1

y − z`

(
∂

∂z`

+
∂

∂y

)

+

∑

b

1

y − yb

(
∂

∂yb

−
∂

∂y

)

+

m∑

`=1

∆j`

(y − z`)2

]

S−1Ωm = 0 (12)

⇔ BPZ for ΘmΩ̃m if λ = −µ = ν = 1
2b2 and Vαd

= V− 1
2b

[Stoyanovsky]



Separation of variables for the s`3 Gaudin model






A(u) = −L1
1 +

L1
3L2

1

L2
3

B(u) = L1
2L

2
3L

2
3 − L2

3L
1
3L

2
2 + L1

3L
2
3L

1
1 − L2

1L
1
3L

1
3

Characteristic equation:

p3
i − pi ·

1

2
(Lβ

αLα
β)(yi)

+
1

4
(Lβ

αLα
β)′(yi) +

1

6

(

Lβ
αL

γ
βLα

γ + Lα
βLβ

γLγ
α

)

(yi) = 0 (13)

Similarly to T = − (JaJa)
2(k−3) let W = ρ

6dabc(J
a(JbJc))

with dabc = Tr (tatbtc + tatctb) and ρ = i

(k−3)
3
2

Spin j ⇔ (∆j , qj) with W0Φ
j(x|z) = qjΦ

j(x|z)

[

W (u) −
ρ

6

(

Lβ
αL

γ
βLα

γ + Lα
βLβ

γLγ
α

)

(u)
]

Ωm = 0 (14)



s`3 KZ equations in Sklyanin variables

3m − 6 equations for Ωm =
〈
Φj1(x1|z1) · · ·Φ

jm(xm|zm)
〉

[

∂3

∂y3
+

∂

∂y
·

m∑

i=1

k − 3

y − zi

(

S−1 δ

δzi

S +
∆ji

y − zi

)

+

m∑

i=1

k − 3

2(y − zi)2

(

S−1 δ

δzi

S +
2∆ji

y − zi

)

−
1

ρ

m∑

i=1

(

S−1W
(i)
−2S

y − zi

+
S−1W

(i)
−1S

(y − zi)2
+

qji

(y − zi)3

)]

· S−1Ωm = 0 (15)

2m non-differential terms → m − 6 differential equations:

[

∂3

∂y3
+

∂

∂y
·

m∑

i=1

k − 3

y − zi

S−1 δ

δzi

S +
m∑

i=1

(k − 3)∆ji

(y − zi)2
∂

∂y

−

m∑

i=1

1
ρ
qji

+ (k − 3)∆ji

(y − zi)3

]

S−1Ωm ∼ 0 (16)



Choice of the W3 degenerate field Vαd

s`2 case: 2nd order equation → level 2 null vector

→ fields V− 1
2 b−1 , V− 1

2 b → actually V− 1
2 b−1

s`3 case: 3rd order equation → levels 1, 2, 3 null vectors

→ fields V−b−1ω1
, V−b−1ω2

related by automorphism

Root space basis e1, e2 such that
(

(e1,e1) (e1,e2)
(e2,e1) (e2,e2)

)

=
(

2 −1
−1 2

)

Dual basis ω1, ω2 such that (ei, ωj) = δij

Choice Vαd
= V−b−1ω1

⇔ Choice of fundamental in L(u)

Let Q = (b + b−1)(e1 + e2) and ∆α = 1
2(α, 2Q − α)

and qα = cubic

Relation Φj ↔ Vα(j) with α(j) = −bj + b−1(e1 + e2)

⇒






∆α = ∆j + 2 + b−2

qα = qj



Null-vector equations for ΘmΩ̃m

Ω̃m =
〈∏m

i=1 Vα(ji)(zi)
∏3m−6

a=1 Vαd
(ya)

〉

Θm =
∏

a<b(ya − yb)
− 2

3b2
∏

i,a(ya − zi)
1

b2
∏

i<j(zi − zj)
− 2

b2

[

∂3

∂y3
+

1

b2
D2 +

1

b4
D1 +

1

b2

m∑

i=1

∆ji

(y − zi)2
∂

∂y

+
m∑

i=1

i
b3 qji

− 1
b2 ∆ji

(y − zi)3

]

ΘmΩ̃m ∼ 0 (17)

D1 = −
X

i

1

(y − zi)2
∂

∂y
+ 3

X

i

1

y − zi

X

b

1

y − yb

„

∂

∂yb

− ∂

∂y

«

+ 2

 

X

i

1

y − zi

!2
∂

∂y
− 2

X

b6=c

1

y − yb

1

yb − yc

„

∂

∂yb

− ∂

∂y

«

(18)

D2 =
X

b

1

(y − yb)2
∂

∂y
+
X

i

1

y − zi

∂

∂y

„

∂

∂zi

+ 3
∂

∂y

«

+
X

b

1

y − yb

„

∂

∂yb

− ∂

∂y

«„

∂

∂yb

+ 2
∂

∂y

«

(19)



Comparison

[

∂3

∂y3
+

∂

∂y
·

m∑

i=1

k − 3

y − zi

S−1 δ

δzi

S +
m∑

i=1

(k − 3)∆ji

(y − zi)2
∂

∂y

−
m∑

i=1

1
ρ
qji

+ (k − 3)∆ji

(y − zi)3

]

S−1Ωm ∼ 0 (20)

[

∂3

∂y3
+

1

b2
D2 +

1

b4
D1 +

1

b2

m∑

i=1

∆ji

(y − zi)2
∂

∂y

+
m∑

i=1

i
b3 qji

− 1
b2 ∆ji

(y − zi)3

]

ΘmΩ̃m ∼ 0 (21)

1
b2 = k − 3

D2
?
∼ ∂

∂y
·
∑m

i=1
1

y−zi
S−1 δ

δzi
S

Problem: D1 term.

Only solution: k → 3 ⇔ b → ∞ ? (critical level)



A family of solvable non-rational CFTs

[SR, 2008]

H+
3 -Liouville: S · ΘmΩ̃m = Ωm

Ω̃(r)
m ≡

〈
m∏

i=1

Vαi
(zi)

m−2∏

a=1

V− r
2b

(ya)

〉

(r 6= 1) (22)

S · Θ(r)
m Ω̃(r)

m = ? (23)

where S is the s`2 Gaudin separation of variables

Answer: Lagrangian L(r) = ∂φ∂̄φ+ β∂̄γ + β̄∂γ̄ + (−ββ̄)re2bφ

with φ, β, γ bosons, ∆(φ) = ∆(β) = 0, ∆(γ) = 1

Symmetry algebra →






Differential equation if r = 2?

Are primaries enough?



Symmetry algebra

From the Lagrangian L(r):

T = −β∂γ − (∂φ)2 + (b + b−1(1 − r))∂2φ (24)

J3 = −βγ − rb−1∂φ (25)

J− = β (26)

T (z)J3(w) =
(1 − r)(1 − rb−2)

(z − w)3
+

J3(w)

(z − w)2
+

∂J3(w)

z − w
(27)

Case r = 2: subsingular vector J−(y) = 0 ⇒ R(y) = 0 with

R = 3
2b2(∂J−(J3∂J3)) + 1

2 [b2 + 1 − 2b−2](∂J−∂2J3)

+ 1
2b2(∂J−(J3(J3J3))) + 2(∂J−(J3T )) + [2b−2 + 1](∂J−∂T )

− 1
2(∂2J−(J3J3)) + [−1 + b−2](∂2J−∂J3)− 2b−2(∂2J−T )

(28)

→ agrees with 3rd order BPZ equation for V− 1
b
(y)

(J−(y) = 0 ⇔ L2
1(y) = 0 from separation of variables)


